
Electronic Communications of the EASST
Volume 18 (2009)

Proceedings of the
Eighth International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2009)

Refactoring of Model Transformations

Hartmut Ehrig, Karsten Ehrig and Claudia Ermel

19 pages

Guest Editors: Artur Boronat, Reiko Heckel
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Refactoring of Model Transformations

Hartmut Ehrig, Karsten Ehrig and Claudia Ermel

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

ehrig@cs.tu-berlin.de, karstene@cs.tu-berlin.de, claudia.ermel@tu-berlin.de

Abstract: Model-to-model transformations between visual languages are often de-
fined by typed, attributed graph transformation systems. Here, the source and target
languages of the model transformation are given by type graphs (or meta models),
and the relation between source and target model elements is captured by graph
transformation rules. On the other hand, refactoring is a technique to improve the
structure of a model in order to make it easier to comprehend, more maintainable
and amenable to change. Refactoring can be defined by graph transformation rules,
too. In the context of model transformation, problems arise when models of the
source language of a model transformation become subject to refactoring. It may
well be the case that after the refactoring, the model transformation rules are no
longer applicable because the refactoring induced structural changes in the models.
In this paper, we consider a graph-transformation-based evolution of model trans-
formations which adapts the model transformation rules to the refactored models.
In the main result, we show that under suitable assumptions, the evolution leads to
an adapted model transformation which is compatible with refactoring of the source
and target models. In a small case study, we apply our techniques to a well-known
model transformation from statecharts to Petri nets.

Keywords: model transformation, graph transformation, model refactoring

1 Introduction

Model-driven software development (MDD) is a discipline that relies on models and that aims
to develop, maintain and evolve software by performing model transformations [BBG05]. The
basic idea of model transformations is to more or less automatically derive models of a certain
target language from models of a source language, e.g. by mapping the source language com-
ponents of a domain specific language to Petri nets, where model properties can be analyzed
formally.

An intrinsic property of software (and their models) in a real-world environment is their need
to evolve. As the model is enhanced, modified and adapted to new requirements, it becomes
more and more complex and drifts away from its original design. Refactoring [Fow99, MT04],
originally used in the industry for source code re-structuring, aims at reducing the software
complexity by “changing a software system in such a way that it does not alter the external
behavior of the code, yet improves its internal structure” [Fow99]. Recently, approaches for
refactoring have been lifted to the more abstract level of design models (model refactoring),

1 / 19 Volume 18 (2009)

mailto:ehrig@cs.tu-berlin.de, karstene@cs.tu-berlin.de, claudia.ermel@tu-berlin.de


Refactoring of Model Transformations

supporting in particular the refactoring of UML diagrams like class diagrams, statecharts and
activity diagrams [BSF02, SPLJ01].

In this paper we tackle the problem which arises when model refactoring operations are ap-
plied to a model (or a modelling language) which is transformed by a model transformation.
Problems arise if the refactoring operations induce structural model changes which cannot be
handled by the model transformation. In order to solve this problem, we propose a strategy for
a systematic evolution of model transformation specifications in accordance to the refactoring
operations.

Model transformations between visual languages are conveniently defined in a formal way by
typed, attributed graph transformation [EEPT06, MVVK05, Kön05, EE05]. To execute model
transformation rules and to check functional properties of model transformations (termination
and confluence), the graph transformation engine AGG [AGG09] is available.

On the other hand, various approaches exist using graph transformation to provide a formal
specification of model refactorings [MTM05, MTR07, GGZ+05]. Basically, a refactoring oper-
ation is defined by a set of graph transformation rules typed over the modelling language of the
models to be refactored.

In our approach, we consider a construction allowing us to apply the refactoring operation
not only to models of the source or target language of a model transformation, but also to the
model transformation rules. The approach is based on the work of Parisi-Presicce who defined
the transformation of graph grammars in [PP96]. In our main result, we show that under suitable
assumptions, such an evolution of the model transformation rules leads to an adapted model
transformation which is compatible with refactoring of the source and target models. In a small
case study, we apply our techniques to a well-known model transformation from statecharts to
Petri nets, when the statechart becomes subject to a refactoring.

The paper is structured as follows: After introducing our case study for refactoring and model
transformation in Section 2, we consider the notion of consistency of a model transformation
step and a refactoring step in Section 3, where the steps are defined as single rule applications
of the respective graph rules to a model state. In Section 4, we extend this basis to sequences of
rule applications and state our main result for the consistent evolution of model transformations.
We give an overview over extension of our main results in Section 5, and look into some further
refactorings in Section 6. Section 7 compares our approach to related work, and in Section 8 we
conclude the paper with an outlook to future work.

2 Example: Transforming and Refactoring Statecharts

2.1 Model Transformation State2PN from Statecharts to Petri Nets

In this section, we review the model transformation from a simple version of statecharts into
Petri nets, given in [EEPT06].

Example 1 (Type Graph of the SC2PN Model Transformation) The statechart type graph T GS

is shown in the left part of Figure 1 and explicitly introduces several ideas from the area of
statecharts that are only implicitly present in the standard UML metamodel (such as state con-
figurations). We consider a network of state machines StateMachine. A single state machine

Proc. GT-VMT 2009 2 / 19



ECEASST

captures the behavior of any object of a specific class by flattening the state hierarchy into state
configurations and grouping parallel transitions into steps. A Configuration is composed of a set
of States that can be active at the same time. A Step is composed of non-conflicting Transitions
(which are, in turn, binary relations between states) that can be fired in parallel. A step between
two configurations is triggered by a common Event for all its transitions. The effect of a step is a
set of Actions.

Figure 1: Integration of Attributed Type Graphs for the Model Transformation SC2PN

The target modelling language are Petri nets. The Petri net type graph T GT is shown in
the right part of Figure 1. In fact, we use elementary net systems [Rei85], where each place
contains at most one token. In order to interrelate the source and target modeling languages, we
use reference types to construct an integrated attributed type graph, as shown in Figure 1. For
instance, the reference node type RefState relates the source type State to the target type Place.

The model transformation from statecharts into Petri nets is fully given by the transformation
rules defined in [EEPT06]. In this paper, we concentrate on the rules constructing the integrated
model which contains elements of both source and target language, and do not consider explicitly
the restriction of the integrated model to the target language of Petri nets.

The main model transformation rules are shown in Figure 2. Note that we use a shortcut
notation for our rules where the left- and right-hand sides of each rule are depicted in one graph.
Nodes which exist only in the right-hand side (i.e. they are generated by the rule) are coloured,
and their adjacent arcs are also generated by the rule. Moreover, all model transformation rules
are non-deleting, and each rule has a negative application condition (NAC) which equals the
right-hand rule side and prevents the rule to be applied more than once at the same match as
before.

Example 2 (SC2PN Model Transformation Rules) Each state in the statechart is transformed
to a corresponding place in the target Petri net model, where a token in such a place denotes that
the corresponding state is active initially (rules InitState2Place and State2Place). A separate place
is generated for each valid event in rule Event2Place. Each step in the statechart is transformed
into a Petri net transition (rule Step2Trans). Since the Petri net should simulate how to exit and
enter the corresponding states in the statechart, input and output arcs of the transition have to

3 / 19 Volume 18 (2009)



Refactoring of Model Transformations

Figure 2: Model Transformation Rules for SC2PN

be generated accordingly (see rules StepFrom2PreArc and StepTo2PostArc). Furthermore, firing a
transition should consume the token of the trigger event (rule Trigger2PreArc), and should generate
tokens on (the places related to) the target event indicated as the action (Action2PostArc).

2.2 Refactoring Operation for Statecharts

Not all possible model refactorings make it necessary to adapt the model transformation rules.
One well-known refactoring is the so-called Pull-Up-Attribute which removes an attribute type
from all subtypes of a supertype and adds the attribute type to the common supertype, instead.
This kind of refactoring (changing only the inheritance relation of a meta model) does not induce
changes on the instance models which remain valid as they are. Hence, model transformation
rules remain applicable after the refactoring, too. On the other hand, there are refactorings which
induce structural changes of the instance models. This kind of critical refactorings make an
adaption of the model transformation rules necessary and are considered here. Figure 3 shows
an overview of changes in the type graph and the necessity of changing (migrating) the corre-
sponding models and/or model transformation rules, as well.

Adding new types or deleting constraints are uncritical since existing models remain valid with
respect to the new type graph, as well. Critical refactoring operations are the addition of con-
straints, and the deletion of existing types (including attribute types). Here, the added constraints
may be violated by existing models, and deleted types may be used in existing models, which
must be refactored accordingly. If the intention of adding a new subtype is that certain model
elements, previously typed over the supertype, should now be typed over the new subtype, then
the models must be adapted, as well. Analogously, existing models might use types which have

Proc. GT-VMT 2009 4 / 19



ECEASST

Figure 3: Relation between Refactorings at Meta-Model and at Model Level

been renamed or violate constraints after they have been modified, depending on the character
of the modification.

As running example, we present a refactoring operation for statecharts, where the representa-
tion of initial states is changed from an attribute to a new node type. This involves the deletion
of an attribute type which is a critical refactoring according to Figure 3. The motivation for this
statechart refactoring is to simplify the definition of a concrete syntax for statecharts, where node
types are mapped to figures. We use this example later on to illustrate the evolution of a model
transformation from statecharts to Petri nets when such a model refactoring on statecharts has
taken place.

Example 3 (Refactoring Operation for Statecharts) Let the type graph for statecharts be the one
depicted in the left part of Figure 1. For the definition of our refactoring operation, this type
graph is extended by two new node types Initial and Normal, which are linked to the State node
type. The refactoring operation markState is modelled by the two graph rules in Figure 4, where
an Initial node is added to a state whose isInit attribute is true (rule markInitial), and, vice versa, a
Normal node is added to a state whose isInit attribute is false (rule markNormal). Note that the isInit
attribute is deleted by the refactoring rules.

Figure 4: Rules for Statechart Refactoring Operation markState

5 / 19 Volume 18 (2009)



Refactoring of Model Transformations

3 Consistency of Stepwise Model Transformation and Refactoring

In this section, we give the formal definition how to adapt a model transformation to a refactoring
operation (Definition 1) and consider the relation of a model transformation step and a refactoring
step in Lemma 1.

A model transformation rule p1 ∈ P is adapted to a refactoring (given by refactoring rule
q∈Q), by applying refactoring rule q to all rule graphs of model transformation rule p1, resulting
in the adapted model transformation rule p2. Note that the construction of applying rules to rules
is based on [PP96] and extended to rules with NACs in [EE08].

Definition 1 (Application of Q -Productions to P -Productions) Production q = (Lq← Iq→ Rq)
is applicable to p1 : L1→ R1 with nac1 : L1→ N1 leading to p2 : L2→ R2 with nac2 : L2→ R2 if

we have m : Lq→ L1 leading to the following DPOs, written p1
q,m _*4 p2 , where all morphisms

are injective:

Lq

m
��

(1)

Iqoo //

��
(2)

Rq

��
L1 Doo // L2

L1

p1

��
(3)

Doo //

��
(4)

L2

p2

��
R1 Eoo // R2

L1

nac1

��
(5)

Doo //

��
(6)

L2

nac2

��
N1 Foo // N2

Example 4 (Applying a Refactoring Rule to a Model Transformation Rule) Figure 5 shows
the application of refactoring rule markInitial from Figure 4 to model transformation rule Init-
State2Place from Figure 2, according to Definition 1.

Figure 5: Applying Refactoring Rule markInitial to Model Transformation Rule InitState2Place

General Assumption: Let a visual modeling language V L be given by all models (graphs)
typed over a type graph. As basis for model transformation and refactoring, we assume a com-

Proc. GT-VMT 2009 6 / 19



ECEASST

mon type graph T G which includes the type graphs for the source and the target languages of
the model transformation, as well as the extended type graph for the refactoring. Let (MT,P) :
V L1→V L2 be a model transformation (with P non-deleting with NACs), (MR1,Q) : V L1→V L∗1
be a model refactoring (with Q bijective on nodes, without NACs), and (MR,Q) : P→ P∗ be a
model refactoring of rules according to Definition 1, and let T G be the common type graph
for V L1,V L2,V L∗1,P and Q. All over, we assume injective rules and injective matches. For sim-
plicity, we do not handle the corresponding refactorings of the different type graphs in this paper.

The following lemma shows the compatibility of a model transformation step transforming
source model G1 ∈ V L1 into target model G2 ∈ V L2 by applying rule p1 ∈ P, and a refactoring
step, changing G1 ∈V L1 to G′1 ∈V L∗1 by applying rule q∈Q, where the refactored source model
G′1 is transformed by the refactored model transformation rule p2 ∈ P∗, resulting in model G′2.

Lemma 1 (Direct Transformation and Refactoring Steps)

Given G1
p1,m1=⇒ G2 with p1 ∈P and p1

q,m _*4 p2 with q∈Q,
we have G1

q
=⇒ G′1,G2

q
=⇒ G′2 and G′1

p2=⇒ G′2.

G1
p1,m1 +3

q
��

q,m
�
�

G2

q
��

G′1 p2
+3 G′2

Proof. Given p1 : L1 → R1 with nac1 : L1 → N1, we obtain p2 : L2 → R2 with nac2 : L2 → N2
with pushouts (1)− (6) as in Definition 1.

Furthermore, we obtain from G1
p1,m1=⇒ G2 the pushout in the left square in the diagram below,

with pushouts (1)−(4), as shown in Definition 1. Next, we construct D1 as pushout complement
in the left back square – using that Iq→ Lq and hence D→ L1 is bijective on nodes, which implies
that the gluing condition is satisfied – and then G′1 as pushout in the right back square. Then,
D2 and G′2 are constructed as pushouts in the middle and right square, respectively, leading to
induced morphisms D2→ G2 and D2→ G′2 such that all squares commute.

In the left cube, the left, right, back and top squares are
pushouts by construction. This implies that also the front
and bottom squares are pushouts by pushout composition
and decomposition. Hence, all squares of the left cube and,
similarly, also of the right cube are pushouts. This leads to
the DPOs of the direct transformations G1

q
=⇒G′1, G2

q
=⇒

G′2 and G′1
p2,m2=⇒ G′2.

Lq
m �� (1)

Iq

��

//oo

(2)
Rq

��
L1p1

�����

m1��

(3)
Doo

��

������
//

(4)
L2

��

p2
�����

R1

��

Eoo

��

// R2

��
G1

�����
D1oo

�����
// G′1

����

G2 D2oo // G′2
It remains to show that m2 : L2→ G′1 satisfies nac2 : L2→
N2, defined by pushouts (5) and (6) in Definition 1, using
that m1 : L1 → G1 satisfies nac1 : L1 → N1. Assume that
m2 6|= nac2, then we have injective q2 : N2→G′1 with m2 =
q2 ◦ nac2. Pushout-pullback decomposition allows us to
construct pushouts (7) and (8) from the outer DPO, leading
to an injective q1 with q1 ◦ nac1 = m1. This contradicts
m1 |= nac1. Hence, we have m2 |= nac2.

L1

nac1
��

m1

##

(5)

Doo //

��
(6)

L2

nac2
��

m2

{{

N1

q1

��
(7)

Foo //

��
(8)

N2

q2

��
G1 D1oo // G2

7 / 19 Volume 18 (2009)



Refactoring of Model Transformations

Example 5 (Model Transformation Step and Refactoring Step) Figure 6 shows the diagram
relating the source and target model of the model transformation step and the changed source
and target models of the refactoring step where p1 and p2 are given in Figure 5.

Figure 6: Relating Refactoring and Model Transformation Step

4 Sequences of Rule Applications

In this section, we extend our result from Lemma 1 on the compatibility of model transformation
and refactoring steps to sequences with rule sets Q, P and P∗ according to the general assumption
in Section 3. Our main result in Theorem 1 states that under certain compatibility assumptions
which can be decided at rule level, a complete model transformation sequence can be refactored,
leading to a compatibility diagram similar to the one in Lemma 1, but where now sequences
of rule applications are considered instead of single steps. For the proof of Theorem 1, we
require compatibility of model transformation and refactoring rules, defined in Definition 2.
Furthermore, we use a lemma stating that a terminating transformation at rule level leads to a
terminating transformation at model level, as well (Lemma 2). We say that graph G (resp. rule
p∗) is terminal wrt. Q if no rule q ∈ Q can be applied to G (resp. p∗).

Definition 2 (Q– (P, P ∗)– Compatibility) Q is (P,P∗)-compatible if we have:

1. Independence Compatibility:

Given terminal p∗ wrt. Q, G1
p∗

=⇒ G2 and G1
q

=⇒ G′1 (resp. G2
q

=⇒ G′2) with p∗ ∈ P∗

and q ∈ Q, we have parallel (resp. sequential) independence including NACs of G2
p∗⇐=

G1
q

=⇒ G′1 (resp. G1
p∗

=⇒ G2
q

=⇒ G′2 for terminal G1 wrt. Q).

Proc. GT-VMT 2009 8 / 19



ECEASST

2. Termination Compatibility:

For each G terminal wrt. P and G
Q!

=⇒ G∗, also G∗ is terminal wrt. P∗, where Q! means to
apply rules in Q as long as possible.

Example 6 (Compatibility of the SC2PN Model Transformation and the markState Refactoring)
We continue our case study introduced in Example 1 – Example 5. Figure 7 shows the refactored
model transformation rules InitState2Place and State2Place. Note that all other model transforma-
tion rules from Figure 2 remain unchanged because the refactoring rules cannot be applied to
them.

Figure 7: Refactored Model Transformation Rules for SC2PN

We now show that we have independence and termination compatibility as defined in Defini-
tion 2:

1. Independence compatibility: Given terminal p∗ wrt. Q and q ∈Q with G′1
q⇐= G1

p∗
=⇒G2,

we have parallel independence because the matches can only overlap in State which is
a gluing point for both rules. Moreover, we have NAC compatibility because the nodes
and edges generated by the rules in Q are of different types from those generated by p∗.
Analogously, we can show sequential independence.

2. Termination compatibility: Given terminal G wrt. P and G
Q!

=⇒ G∗, then the markState
refactoring rules have been applied to all initial state nodes occuring in a rule in P, and to
all initial state nodes in G. So there is no match from a rule p∗ ∈ P∗ to G∗ where the NAC
of p∗ would not prevent its application, and hence, G∗ is terminal wrt. P∗.

The following lemma states that a terminating transformation at rule level leads to a terminat-
ing transformation at model level.

Lemma 2 (Direct Transformation and Terminating Refactoring) Given G1
p1,m1=⇒ G2 with p1 ∈ P

and p1
Q! _ *4 p∗1 terminating, we construct G∗1

p∗1=⇒G∗2 and terminating G1
Q!

=⇒G1∗ and G2
Q!

=⇒
G∗2, provided that we have termination of (MR1,Q) and independence compatibility (see Defini-
tion 2.1).

Proof. Let p1
Q! _*4 p∗1 terminate via (q1, ..,qn) and G1

p1=⇒ G2, then we apply Lemma 1 in
each step, leading to diagrams (1) – (n).

9 / 19 Volume 18 (2009)



Refactoring of Model Transformations

G1
q1 +3

p1

��
(1)

G11
q2 +3

p11

��
(2)

G12

p12

��

qn +3

p1n−1

��

(n)

G1n
qn+1 +3

p1n p∗1
��

(n+1)

G1n+1

p∗1
��

qn+m +3

p∗1

��

(n+m)

G∗1

p∗1
��

G2 q1
+3 G21 q2

+3 G22 qn
+3 G2n qn+1

+3 G2n+1 qn+m
+3 G∗2

If G1n is not yet terminal wrt. Q, we can extend G1
∗=⇒G1n by G1n

Q!
=⇒G∗1 via (qn+1, ..,qn+m)

with terminal G∗1 wrt. Q, using termination of (MR1,Q). Parallel independence of G1n

p∗1=⇒
G2n

qn+1=⇒G1n+1 according to independence compatibility allows us to construct diagram (n+1) by
the Local Church-Rosser Theorem with NACs, and, similarly, diagrams (n+2), ..,(n+m). But
now also G2

∗=⇒G∗2 via (q1, ..,qn+m) is terminating because G∗2
q

=⇒G∗∗2 would imply G∗1
q

=⇒G∗∗1
by sequential independence of G∗1

p∗1=⇒G∗2
q

=⇒G∗∗2 according to independence compatibility.

Now we state our main result saying that under certain compatibility assumptions which can
be decided at rule level, a complete model transformation sequence can be refactored, leading
to a compatibility diagram similar to the one in Lemma 1, but where now sequences of rule
applications are considered instead of single steps.

Theorem 1 (Evolution of Model Transformations by Model Refactoring) Given a model trans-
formation (MT,P) : V L1→V L2 (with P nondeleting with NACs), a model refactoring (MR1,Q) :
V L1→V L∗1 (with Q bijective on nodes, without NACs), and a model refactoring (MR,Q) : P→
P∗ according to Definition 1 with common type graph T G for V L1,V L2,V L∗1,P and Q, such that

1. (MT,P),(MR1,Q) and (MR,Q) are terminating,

2. Q is locally confluent,

3. Q is (P,P∗)-compatible (see Definition 2),

then we have V L∗2 typed over T G with extended

4. terminating model refactoring
(MR2,Q) : V L2→V L∗2, and

5. terminating model transformation
(MT ∗,P∗) : V L∗1→V L∗2 with

6. commutativity of the diagram to the right.

V L1
(MT,P) //

(MR1,Q)
��

V L2

(MR2,Q)
��

V L∗1 (MT ∗,P∗)
// V L∗2

Proof. Given G1 ∈V L1, G1
Q!

=⇒G∗1, G1
P!=⇒G2 via (p1, .., pn), and pi

Q! _ *4 p∗i for (i = 1, ..,n),
where termination is given by assumption 1. Now, we use Lemma 2 above to construct the
following sequence (1)− (n):

Proc. GT-VMT 2009 10 / 19



ECEASST

G1
p1 +3

Q!
��

(1)

G11
p2 +3

Q!
��

Q!
��

(2)

G12 +3

Q!
��

Q!
��

pn+3

(n)

G1n = G2

Q!
��

G∗1 p∗1
+3 G∗11 = G+

11 p∗2
+3 G∗12 = G+

12
+3

p∗n
+3 G∗1n = G∗2

Note that G11
Q!

=⇒G∗11 and G11
Q!

=⇒G+
11 are in general defined by different Q-sequences induced

by p1
Q! _ *4 p∗1 and p2

Q! _*4 p∗2 , respectively. But termination and local confluence of Q by
assumptions 1 and 2 implies unique normal forms and hence, G∗11 = G+

11 (up to isomorphism),
and similarly G∗12 = G+

12, ..,G
∗
1n−1

= G+
1n−1

.
Finally, G∗1 =⇒ G∗2 via (p∗1, .., p∗n) is terminating by termination compatibility according to

assumption 3. Hence, we have diagram (A) for each G1 ∈ V L1, with G2 ∈ V L2,G∗1 ∈ V L∗1 and

G∗2 ∈ V L∗2, where V L∗2 = {G∗2|∃G2 ∈ V L2 : G2
Q!

=⇒ G∗2}, which implies terminating (MR2,Q) :
V L2→V L∗2 and (MT ∗,P∗) : V L∗1→V L∗2 with commutativity of diagram (B):

G1
P! +3

Q!
��

(A)

G2

Q!
��

G∗1 P∗!
+3 G∗2

V L1

(MR1,Q)
��

(MT,P) //

(B)

V L2

(MR2,Q)
��

V L∗1 (MT ∗,P∗)
// V L∗2

Remark 1 If (MT,P) and (MT ∗,P∗) are not functional, then commutativity of diagram (B)

means that for each G1
P!=⇒ G2 exists a corresponding G∗1

P∗!=⇒ G∗2 such that diagram (A) com-
mutes.

Example 7 (Refactoring of the SC2PN Model Transformation) In order to apply Theorem 1,
we have to show the required properties:

1. The original model transformation (MT,P) = SC2PN is terminating by [EEPT06]. The
refactoring operation markState is terminating, because rules markInitial and markNormal
delete one attribute each, and therefore each rule is only applicable once at a match to
a State node. The refactoring of the model transformation rules (MR,Q) is terminating,
because at most one rule q ∈ Q with Q = {markInitial,markNormal} is applicable once.

2. The refactoring rules in Q are locally confluent: rules markInitial and markNormal are parallel
independent because their left-hand sides overlap in gluing point State only. Moreover,
there is at most one match of markInitial resp. markNormal at the same State.

3. Q is (P,P∗)-compatible as shown in Example 6.

According to the application of Theorem 1, we obtain the terminating model refactoring
(MR2,Q), and the terminating model transformation (MT ∗,P∗) for each possible statechart

11 / 19 Volume 18 (2009)



Refactoring of Model Transformations

which is transformed to a Petri net using (MT,P), i.e. the rules in P, and which is refactored
using the refactoring (MR1,Q), i.e. the rules in Q. As result we have the commutative diagram
below, where V L1 is the visual language of statecharts,
V L∗1 is the statechart language, extended by the new node
types Initial and Normal for the markState refactoring, V L2
is the integrated language of statecharts and Petri nets (de-
fined by the type graph in Figure 1), and V L∗2 is the inte-
grated language of extended statecharts and Petri nets.

V L1
(MT,P) //

(MR1,Q)
��

V L2

(MR2,Q)
��

V L∗1 (MT ∗,P∗)
// V L∗2

5 Extensions of Main Results

5.1 General Model Refactoring Rules Q

We have assumed that Q-rules are nondeleting (bijective) on nodes. This was essential in
Lemma 1 to construct the transformation G1

q
=⇒ G′1.

In a direct proof of the main result, this can be avoided if
we have parallel independence (with NACs) of all P- and
Q-rules. By the Local Church-Rosser Theorem, this would
lead to the diagram to the right, with P∗= P, where Q-rules
are not applied to P.

V L1
(MT,P) //

(MR1,Q)
��

V L2

(MR2,Q)
��

V L∗1 (MT ∗,P)
// V L∗2

In our example, however, we do not have parallel independence of P- and Q-rules, but of P∗-
and Q-rules, as required by Q-(P,P∗-) compatibility. In fact, our refactoring rule q is not parallel
independent of the model transformation rule p1 but parallel independent of the refactored model
transformation rule p∗1. This is also the case for all other refactored model transformation rules
p∗i because L∗i does not contain the attribute ”IsInit = true”.

5.2 Model Refactoring Rules with NACs

We have assumed that Q-rules have no NACs. Now, we consider Q-rules which are still nondelet-

ing on nodes, but with NACs. In Lemma 1, we assume to have p1
q,m _*4 p2 with m |= nacq and

have to show for G1
q,m1◦m=⇒ G′1 and G2

q,g1◦m1◦m=⇒ G′2 that m1 ◦m |= nacq implies g1 ◦m1 ◦m |= nacq.
This means, we have to require that m |= nacq implies g1 ◦m1 ◦m |= nacq because this also
implies m1 ◦m |= nacq.

In Lemma 2, we need the following more general NAC-compatibility of Q: Whenever G1i

p1i=⇒
G2i is derivable from G1

p1=⇒ G2 with p1 ∈ P and p1i

qi,mi=⇒ p1i+1 satisfies nacqi , then also the
extension of match mi : Lqi → L1i to G1i and G2i satisfies nacqi for i = 1, ..,n. Moreover, we
need independence compatibility for rules Q,P and P∗ with NACs. For the last step, we need
local confluence of rules Q with NACs. Both can be obtained from the corresponding Local
Church-Rosser Theorem and the Local Confluence Theorem with NACs [LEPO08].

5.3 Extended Application of Refactoring Rules to Model Transformation Rules

In Definition 1, the application of a Q-rule q to a P-rule p1 : L1→ R1 with nac1 : L1→ N1 was
only possible if we had a match m : Lq→ L1.

Proc. GT-VMT 2009 12 / 19



ECEASST

If this is not possible, we can also consider the
case that we have a match m : Lq → R1 satisfying
nacq and no L1-deletion, i.e. we have the pushout-
complement E in (1) and d : L1→ E, such that (3)
commutes (see the diagram to the right).

Lq

(1)m
��

Iq

(2)
��

loo r // Rq

��
L2 = L1

(3)
d

==
p1 // R1 E

r1oo r2 // R2

In this case, the resulting rule p2 is given by p2 : L2 = L1
d−→ E r2−→ R2, where r2 is defined

by pushout (2). In this case we need more restrictive assumptions to obtain the main result.

6 Additional Refactoring Rules

In this section, we consider a few more refactorings for our example and validate the compati-
bility criteria discussed in Section 4.

6.1 Refactoring State2SimpleState

Figure 8 shows refactoring rules for renaming State nodes into SimpleState nodes which may be
applied after the refactoring in Subsection 2.2.

Figure 8: Refactoring Rules for State2SimpleState

First, rule copyState creates new SimpleState nodes while the attribute value of stname is copied
to sname. This rule is applied only once for each State with NAC=R. Secondly, rule relinkTrans
removes any incoming arc from State and links it to the previously inserted SimpleState node.
AnyNode should be treated as superclass of all nodes of the extended SC2PN type graph (i.e.
replaced with Trans, Initial, Normal and RefState).

Figure 9 shows two of the refactored model transformation rules after applying the State2SimpleState
refactoring to the model transformation rules resulting of the markState refactoring.

Figure 9: Refactored Model Transformation Rules of SC2PN after markState and
State2SimpleState

13 / 19 Volume 18 (2009)



Refactoring of Model Transformations

Finally, all isolated State nodes should be removed by restriction to the adapted type graph.
We first show that we have Q– (P, P ∗)– compatibility (i.e. independence and termination

compatibility) as defined in Definition 2:

• Independence compatibility: Given terminal p∗1 wrt. Q and q ∈Q with G′1
q⇐= G1

p∗
=⇒G2,

we must show that we have parallel independence. For q = copyState, we have the sit-
uation that there cannot be a graph G where q and any refactored model transformation
rule p∗i (see e.g. Figure 9) are both applicable: On the one hand, any p∗i is applicable only
when a State and the corresponding SimpleState with the same value for their name at-
tributes exist in the graph. On the other hand, the NAC of copyState forbids its application
in this case.

For q = relink, we have parallel independence for all rule p∗i , as no rule deletes elements
that are needed by the other rule. We do not have to consider NACs here.

• Termination compatibility: Given terminal G wrt. P and G
Q!

=⇒G∗, then the State2SimpleState
refactoring rules have been applied to all state nodes occuring in a rule in P, and to all state
nodes in G. So there is no match from a rule p∗ ∈ P∗ to G∗ where the NAC of p∗ would
not prevent its application, and hence, G∗ is terminal wrt. P∗.

We now can show the required properties for applying Theorem 1:

1. We already know that the original model transformation SC2PN is terminating [EEPT06].
The refactoring operation State2SimpleState is terminating because of the NAC of rule
copyState, and the arc replacement operation defined by rule relink, which can be applied
exactly once for each existing arc pointing to a State node.

2. The refactoring rules in Q are locally confluent since they are parallel independent for
non-overlapping matches. For overlapping matches, rule relink can only be applied when
rule copyState has been applied before.

3. Q is (P,P∗)-compatible as shown above.

6.2 Refactoring UnifyNames

Figure 10 shows refactoring rules for unifying the name attributes (stname and plname) from
nodes State and Place to name. The old attribute name is deleted in the left-hand side of the rule
while the new name is inserted on the right-hand side.

Figure 10: Refactoring Rules for UnifyNames

Proc. GT-VMT 2009 14 / 19



ECEASST

Figure 11 shows two of the refactored model transformation rules after applying the Unify-
Names refactoring to the model transformation rules resulting of the markState refactoring.

Figure 11: Refactored Model Transformation Rules of SC2PN after markState and UnifyNames

Again, we first show that we have Q– (P, P ∗)– compatibility (i.e. independence and termina-
tion compatibility) as defined in Definition 2:

• Independence compatibility: Given terminal p∗1 wrt. Q and q ∈Q with G′1
q⇐= G1

p∗
=⇒G2,

we must show that we have parallel independence. For q = unifySName, we have the
situation that there cannot be a graph G where q and any refactored model transformation
rule p∗i (see e.g. Figure 11) are both applicable: On the one hand, any p∗i is applicable
only to a State with an attribute name assigned to n and without an attribute stname. On
the other hand, rule uni f ySName is applicable only to a State with an attribute stname
assigned to n. Analogously, q = unifySName is parallel independent of all refactored
model transformation rule p∗i .

For q = relink, we have parallel independence for all rule p∗i , as no rule deletes elements
that are needed by the other rule. We do not have to consider NACs here.

• Termination compatibility: Given terminal G wrt. P and G
Q!

=⇒ G∗, then the unifySName
refactoring rules have been applied to all state and place nodes occuring in a rule in P, and
to all state and place nodes in G. So there is no match from a rule p∗ ∈ P∗ to G∗ where the
NAC of p∗ would not prevent its application, and hence, G∗ is terminal wrt. P∗.

We now can show the required properties for applying Theorem 1:

1. We already know that the original model transformation SC2PN is terminating [EEPT06].
The refactoring operation UnifyName is terminating because both rules are applicable as
many times as there are State attributes of type stname and Place attributes of type plname.

2. The refactoring rules in Q are locally confluent since they are parallel independent.

3. Q is (P,P∗)-compatible as shown above.

7 Related Work

Refactoring of information systems is a common technique for software evolution through trans-
formation [LKPS06, MT04]. Automated transformation within domain specific languages in-
cluding version support has been considered in [Bel07, GSA07].

Refactoring by graph transformation rules plays an important role for software system refac-
toring by providing a graphical way for rule definition and an underlying algebraic framework

15 / 19 Volume 18 (2009)



Refactoring of Model Transformations

for analyzing refactoring dependencies [MTR07] and to assure behavior preservation in model
refactoring using transformations with borrowed contexts [RLK+08]. Moreover suitable verifi-
cation techniques are available, e.g. architectural refactoring by rule extraction [BHE08].

From a technical point of view, in this paper we apply model refactoring rules Q deleting
(on edges) to non-deleting transformation rules P, which is in some sense dual to the S2A-
construction of animation rules PA from simulation rules PS in [EE08], where non-deleting rules
Q are applied to deleting rules PS. Both kinds of rule transformations are based on the construc-
tion in [PP96] but have been extended by NACs and by the possibility to transform generated or
deleted rule objects, as well.

Within the Eclipse Modeling Framework [EMF08] model refactoring has already been imple-
mented using graph transformation concepts [BEK+06]. While software refactoring is a com-
mon technique, a general theory for refactoring of model transformations has still been missing.

8 Conclusion

In this paper, we consider a graph-transformation-based evolution of model transformations
which adapts model transformation rules to refactored models. In the main result, we show
that under suitable assumptions, the evolution leads to an adapted model transformation which
is compatible with refactoring of the source and target models. In a small case study, we apply
our techniques to refactor a model transformation from statecharts to Petri nets.

As future research, we intend to consider refactoring operations at type graph level based on
our approach on transformations of type graphs with inheritance [EEH09]. Moreover, up to now,
we have studied model transformations resulting in an integrated model which contains both
source and target language elements. A restriction to the target model presently means that we
get the same target model as before refactoring the source model and the model transformation
rules. Additionally, we plan to handle target language refactorings analogously to refactorings
of the source language.

Bibliography

[AGG09] AGG. 2009. http://tfs.cs.tu-berlin.de/agg.

[BBG05] S. Beydeda, M. Book, V. Gruhn (eds.). Model-Driven Software Development.
Springer-Verlag, Heidelberg, 2005.

[BEK+06] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer, E. Weiss. Graphical Def-
inition of In-Place Transformations in the Eclipse Modeling Framework. In Nier-
strasz et al. (eds.), Proc. 9th International Conference on Model Driven Engineering
Languages and Systems (MoDELS’06). lncs 4199, pp. 425–439. springer, 2006.
http://tfs.cs.tu-berlin.de/publikationen/Papers06/BEK+06a.pdf

[Bel07] P. Bell. Automated Transformation of Statements within Evolving Domain Specific
Languages. In Sprinkle et al. (eds.), Proceedings of the 7th OOPSLA Workshop
on Domain-Specific Modeling. Volume TR-38. Computer Science and Information

Proc. GT-VMT 2009 16 / 19

http://tfs.cs.tu-berlin.de/agg
http://tfs.cs.tu-berlin.de/publikationen/Papers06/BEK+06a.pdf


ECEASST

System Reports, Technical Reports, University of Jyvskyl, Finland, 2007.
http://www.dsmforum.org/events/DSM07/papers/bell.pdf

[BHE08] D. Bisztray, R. Heckel, H. Ehrig. Verification of Architectural Refactorings by Rule
Extraction. In Fiadeiro and Inverardi (eds.), Proc. Fundamental Approaches to Soft-
ware Engineering (FASE’08). LNCS 4961, pp. 347–361. Springer Verlag, 2008.
doi:10.1007/978-3-540-78743-3
http://www.springerlink.com/content/gk5m632668x42295/

[BSF02] M. Boger, T. Sturm, P. Fragemann. Refactoring Browser for UML. In Proc. 3rd Intl
Conf. on eXtreme Programming and Flexible Processes in Software Engineering,
Alghero, Sardinia. Pp. 77–81. 2002.

[EE05] H. Ehrig, K. Ehrig. Overview of Formal Concepts for Model Transformations based
on Typed Attributed Graph Transformation. In Proc. International Workshop on
Graph and Model Transformation (GraMoT’05). ENTCS 152. Elsevier Science,
Tallinn, Estonia, September 2005.
http://tfs.cs.tu-berlin.de/publikationen/Papers05/EE05.pdf

[EE08] H. Ehrig, C. Ermel. Semantical Correctness and Completeness of Model Transfor-
mations using Graph and Rule Transformation. In Proc. International Conference
on Graph Transformation (ICGT’08). LNCS 5214, pp. 194–210. Springer Verlag,
Heidelberg, 2008.
http://tfs.cs.tu-berlin.de/publikationen/Papers08/EE08a.pdf

[EEH09] H. Ehrig, C. Ermel, F. Hermann. Transformation of Type Graphs with Inheritance
for Ensuring Security in E-Government Networks. In Wirsing and Chechik (eds.),
Proc. International Conference on Fundamental Aspects of Software Engineering
(FASE’09). LNCS. Springer Verlag, Heidelberg, 2009. To appear.
http://tfs.cs.tu-berlin.de/publikationen/Papers08/EEH09.pdf

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theoretical Computer Science. Springer
Verlag, 2006.
http://www.springer.com/3-540-31187-4

[EMF08] Eclipse Consortium. Eclipse Modeling Framework (EMF) – Version 2.4. 2008. http:
//www.eclipse.org/emf.

[Fow99] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
1999.

[GGZ+05] L. Grunske, L. Geiger, A. Zündorf, N. Van Eetvelde, P. Van Gorp, D. Varro. Us-
ing Graph Transformation for Practical Model Driven Software Engineering. In
Beydeda et al. (eds.), Model-driven Software Development. Pp. 91–118. Springer,
2005.

17 / 19 Volume 18 (2009)

http://www.dsmforum.org/events/DSM07/papers/bell.pdf
http://dx.doi.org/10.1007/978-3-540-78743-3
http://www.springerlink.com/content/gk5m632668x42295/
http://tfs.cs.tu-berlin.de/publikationen/Papers05/EE05.pdf
http://tfs.cs.tu-berlin.de/publikationen/Papers08/EE08a.pdf
http://tfs.cs.tu-berlin.de/publikationen/Papers08/EEH09.pdf
http://www.springer.com/3-540-31187-4
http://www.eclipse.org/emf
http://www.eclipse.org/emf


Refactoring of Model Transformations

[GSA07] G. de Geest, A. Savelkoul, A. Alikoski. Building a framework to support Do-
main Specific Language evolution using Microsoft DSL Tools. In Sprinkle et al.
(eds.), Proceedings of the 7th OOPSLA Workshop on Domain-Specific Modeling.
Volume TR-38. Computer Science and Information System Reports, Technical Re-
ports, University of Jyvskyl, Finland, 2007.
http://www.dsmforum.org/events/DSM07/papers/geest.pdf

[Kön05] A. Königs. Model Transformation with Triple Graph Grammars. In Model
Transformations in Practice Satellite Workshop of MODELS 2005, Montego Bay,
Jamaica. 2005.
http://sosym.dcs.kcl.ac.uk/events/mtip05/submissions/konigs model
transformation with triple graph grammars.pdf

[LEPO08] L. Lambers, H. Ehrig, U. Prange, F. Orejas. Embedding and Confluence of Graph
Transformations with Negative Application Conditions. In Ehrig et al. (eds.),
Proc. International Conference on Graph Transformation (ICGT’08). LNCS 5214,
pp. 162–177. Springer Verlag, Heidelberg, 2008.
http://tfs.cs.tu-berlin.de/publikationen/Papers08/LEPO08.pdf

[LKPS06] M. Löwe, H. König, M. Peters, C. Schulz. Refactoring Information Systems. In
Favre et al. (eds.), Proceedings of the Third Workshop on Software Evolution
through Transformations: Embracing the Chance (SeTra 2006). Volume 3. Elec-
tronic Communications of the EASST, Natal, Brazil, September 2006.

[MT04] T. Mens, T. Tourwé. A Survey of Software Refactoring. Transactions on Software
Engineering 30(2):126–139, February 2004.

[MTM05] T. Mens, G. Taentzer, D. Müller. Model-Driven Software Refactoring. In Rech and
Bunse (eds.), Model-Driven Software Development: Integrating Quality Assurance.
Pp. 170–203. Idea Group Inc., 2005.

[MTR07] T. Mens, G. Taentzer, O. Runge. Analysing Refactoring Dependencies Using Graph
Transformation. Software and System Modeling 6(3):269–285, September 2007.
http://tfs.cs.tu-berlin.de/publikationen/Papers07/MTR07.pdf

[MVVK05] T. Mens, P. Van Gorp, D. Varrò, G. Karsai. Applying a Model Transformation
Taxonomy to Graph Transformation Technology . In Proc. International Workshop
on Graph and Model Transformation (GraMoT’05). ENTCS 152, pp. 143–159.
Elsevier Science, 2005.

[PP96] F. Parisi-Presicce. Transformation of Graph Grammars. In 5th Int. Workshop
on Graph Grammars and their Application to Computer Science. LNCS 1073.
Springer, 1996.

[Rei85] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-
puter Science 4. Springer Verlag, 1985.

Proc. GT-VMT 2009 18 / 19

http://www.dsmforum.org/events/DSM07/papers/geest.pdf
http://sosym.dcs.kcl.ac.uk/events/mtip05/submissions/konigs__model_transformation_with_triple_graph_grammars.pdf
http://sosym.dcs.kcl.ac.uk/events/mtip05/submissions/konigs__model_transformation_with_triple_graph_grammars.pdf
http://tfs.cs.tu-berlin.de/publikationen/Papers08/LEPO08.pdf
http://tfs.cs.tu-berlin.de/publikationen/Papers07/MTR07.pdf


ECEASST

[RLK+08] G. Rangel, L. Lambers, B. König, H. Ehrig, P. Baldan. Behavior Preservation
in Model Refactoring using DPO Transformations with Borrowed Contexts. In
Proc. International Conference on Graph Transformation (ICGT’08). LNCS 5214.
Springer Verlag, Heidelberg, 2008.
http://tfs.cs.tu-berlin.de/publikationen/Papers08/RLK+08.pdf

[SPLJ01] G. Sunyé, D. Pollet, Y. LeTraon, J.-M. Jézéquel. Refactoring UML Models. In Proc.
UML 2001. LNCS 2185, pp. 134–138. Springer-Verlag, Heidelberg, 2001.

19 / 19 Volume 18 (2009)

http://tfs.cs.tu-berlin.de/publikationen/Papers08/RLK+08.pdf

	Introduction
	Example: Transforming and Refactoring Statecharts
	Model Transformation State2PN  from Statecharts to Petri Nets
	Refactoring Operation for Statecharts

	Consistency of Stepwise Model Transformation and Refactoring 
	Sequences of Rule Applications
	Extensions of Main Results
	General Model Refactoring Rules Q
	Model Refactoring Rules with NACs
	Extended Application of Refactoring Rules to Model Transformation Rules

	Additional Refactoring Rules
	Refactoring State2SimpleState
	Refactoring UnifyNames

	Related Work
	Conclusion

