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Abstract: Domain specific languages (DSL) which describe reactive systems gen-
erally have a need for systematic generation of tests for their models. During the
design of a DSL there is a lack of support for its integration with existing model
based test generation tools. In this paper, we show how this integration can be
conceptualized and systematized. We introduce a framework for composing DSLs
for reactive systems, with a particular DSL for Model Based Testing called SATEL
(Semi-Automatic Testing Language). This DSL composition is achieved by com-
posing both the syntaxes of the two DSLs and their semantics. The result of this
composition is also a language where it is possible to express models in the target
DSL and test specifications for those models. The semantics of the composed lan-
guage corresponds to the generation of test cases for models expressed in the target
DSL. We finish the paper by analyzing the compositional framework we obtained in
terms of its applicability to other target DSLs.

Keywords: Model based Testing, DSL composition, Inference Rules, Language
Engineer, Test Generation.

1 Introduction

The present work lies within the research topic of integrating Model Driven Development (MDD)
in the process of building domain specific languages (DSL). We address in particular languages
which describe the behaviour of reactive systems. It is common to engineer a DSL by describing
its syntax using appropriate metamodeling tools and its semantics using model transformation
tools. Modern metamodeling tools, can help the software language engineer to easily prototype
usable editors that can restrict and guide the domain experts in expressing valid models.

On the other hand, Model-Based Testing (MBT) is currently an established discipline within
MDD. Normally MBT implies specifying some sort of test specification for a model expressed in
a specification language (e.g. UML, state machines, logics or others). From the test specification
and the model specification, test cases can be produced for an implementation of that model.
An example of an MBT framework is defined in [L0́9], where a language called SATEL was
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DSL Composition for model-based test generation

developed in order to specify test intentions (also called in the literature test specifications) over
specifications of reactive systems expressed in a petri-net based formalism [BG91]. Being a
black box testing language, SATEL is adapted to generate test cases for reactive systems which
interact with their environments.

In this work we describe how the test selection and generation mechanism of SATEL can be
reused and integrated as a part of the process of engineering DSLs for describing reactive sys-
tems. Our main objective is to provide a methodology which natively includes a test selection
mechanism in the development of any DSL. This will allow the engineer to directly generate tests
from models expressed in the developed DSL. We will describe how this integration can be real-
ized at the level of the metamodel of the involved languages by means of a DSL compositional
framework called CoPsy[PAB08].

This paper is organized as follows: in section 2 we describe the problem of composing a test
language with another DSL. In section 3 we identify which are the main issues in that composi-
tion. Section 4 lays down the formal foundations of the CoPsy composition framework we use
in this paper. In section 5 we instantiate the CoPsy framework in order to explain the details of
the composition of SATEL with an example DSL — in particular we use the HALL language
[BA07] as the composition target. Section 6 provides a discussion on the Prolog implementation
of our composition method as well on some issues raised by our approach. Finally section 7
concludes.

2 Motivation

In this paper, we consider the testing language SATEL as a DSL that we will compose with the
DSL that describes models for which we wish to produce test cases — which hereon we call the
target DSL. The compositional approach consists on merging both languages, at the syntactic
and semantics levels. With this composed language, the engineer will be able to express the
model of the system (s)he wishes to implement, as well as the test intentions for that model.

T in TickIntention;
t in TickIntention => <tick> . t in TickIntention;

(counter < 6), t in TickIntention  => 
       t . <mark with time(counter)> in TestMark;

Variables
       t : primitiveHML;
       counter : natural;

counter:natural
(initial=0)

increment finished

tick

(counter<>10) =>
counter=counter+1

counter=10

tick alarm

mark time(counter)

counter=0 Naturals 
definition

Figure 1: An instance model of the composed SATEL(HALL)
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Test intentions in SATEL are written as formulas1 representing test case templates with con-
strained variables. The domains of those variables correspond to the three abstract dimensions
of a test case, namely: the shape of the sequences of input/output pairs; the kind of input/output
pairs inside those sequences; and the parameters of the inputs and outputs. The constraints over
the variables allow shaping the resulting test cases.

Figure 1 provides an example of the definition of a model, which is an instance of SATEL
composed with a second DSL called HALL. A model of the composed language consists of two
parts: a HALL model (on the right of figure 1) and a SATEL model (on the left of figure 1). Note
that the composed language consists of the HALL DSL merged with a version of SATEL which,
in this case, is parameterized by the syntax and semantics of HALL.

Although we do not provide in this paper a thorough description of the syntax and the seman-
tics of HALL or SATEL, let us explain briefly the timer system model and it’s associated test
intentions shown in figure 1. This system specification defines two inputs (tick and mark) which
respectively: advance a time counter by one unit; reset the counter while outputting, using the
time output, the time reached before the mark event. If the timer reaches 10, an alarm is set.
Notice that the timer system defined in HALL makes use of the type definition of Naturals.

In Figure 1 (on the left), two test intentions are declared, the TickIntention and the TestInter-
ruptions. Both test intentions are meant to generate tests for the timer system. The keyworks
tick, mark and time are in fact inputs and outputs taken from the HALL model, as defined by the
composition of the two DSLs. The test intention TickIntention includes two axioms which recur-
sively build sequences of tick inputs, declared in the HALL part of the specification. Note that
the axiom ’T in TickIntention’ declares the empty test case, while the axiom ’t in TickIntention
=> <tick> . t in TickIntention;’ recursively concatenates — by using the ’.’ operator — tick
inputs to already formed test cases.

On the other hand, the TestInterruptions test intention concatenates sequences of tick inputs
obtained with a final input/output pair ’<mark with time(counter)>’2, where counter is a vari-
able. The axiom for the TestMark test intention includes the condition (counter<6) — which
we can express in a test intention because the composed language can use the Naturals defini-
tion from HALL. This means that from this test intention five valid test cases will be generated,
according to the semantics of the timer system:
<tick> <mark with time(1)>
<tick> <tick> <mark with time(2)>
...
<tick> <tick> <tick> <tick> <tick> <mark with time(5)>

3 Concepts to be Composed

Having in mind the example in section 2, let us now identify which parts of SATEL are parame-
terized by the target DSL. We start by the syntactic aspects of the composition:

• SATEL is a language for black-box testing, and as such requires knowledge of the signa-
tures of the types inputs and outputs in the models that are going to be tested;

1 In HML which is a very simple temporal logic — including the next, and and not operators — adapted to represent-
ing the observation of a System Under Test.
2 The with keyword separates inputs from outputs in SATEL syntax. Notice also that an input may exist without
output as in the case of the tick input in test intention TickIntention.
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• The data types coming from the target language provide the types for the parameters of
the inputs and outputs in test intentions. They also provide the syntax for expressing
conditions that reduce the domains of the variables that are part of the test intention.

In semantic terms the following concepts are part of the composition:

• To produce test cases it is necessary to understand whether those tests describe behaviours
that should be accepted or not by the implementation — called the oracle problem. This
satisfaction is checked for each test case by verifying if the sequence of input/output pairs
it describes corresponds to the semantics of the model. It is thus necessary to merge with
the semantics of SATEL the rules that define the semantics of models in the target DSL;

• In order to narrow the number of produced test cases by a test intention, SATEL allows
the expression of conditions over the domains of the variables included in test intentions.
In particular, the conditions over the parameters of inputs and outputs are solved using
the semantics of the types in the target language. In other words, the descriptions of the
semantics of the types used in the target language are composed with SATEL’s semantics
in order to solve the constraints in certain variables that may be expressed in the test
intentions.

We will now introduce the methodology and the tool we use to formally compose SATEL with
any given DSL, according to the composition concepts presented above.

4 Methodology and Foundations

The composition framework we use in this paper was introduced by Pedro in [PAB08]. The
framework consists of defining a new language c as the composition of two other languages a and
b. On the one hand, the syntax of language c is given by the composition of the metamodels of a
and b. On the other hand, in CoPsy, semantics are given by transformation rules. Transformation
rules take instances of a language without direct semantics and produce new models in another
language for which the semantics is known. This said, the semantics of language c is given by
the composition of the transformation rules of a and b. Figure 2 presents an overview of the
approach. The figure encompasses three main concepts:

Metamodels: we can distinguish three types of metamodels: parametric, effective and target.
The parametric metamodel corresponds to the abstract syntax of a language with ’holes’. These
’holes’ are called formal parameters (denoted fp in the picture). During the composition, the
effective parameter metamodel (denoted ep in the picture) will fill the ’holes’ defined in the
parametric metamodel. The target metamodel defines the abstract syntax of the language for
which the semantics are known;

Models: models are instances of the metamodels, as is denoted by the instanceOf relations in
figure 2;

Transformations: the transformations are rules that match elements of a source model and
transform them into elements of a target model. Intuitively, the target model is the one for which
the semantics are known. Some transformations also have ’holes’, more precisely formal param-
eters. For example in figure 2, the transformation tr f p includes a formal parameter. By replacing
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the formal parameters in transformations with effective ones defined in other transformations we
are able to compose the semantics of the languages involved in the composition.

ep

ep metamodel

fp

parametric 
metamodel

tr1 tr2
fp

trn

tr2
ep

tr1 tr2
ep

trn

target
metamodel

instanceOf

instanceOf

instanceOf

instanceOf

instanceOf

instanceOf

φ ψ

Figure 2: CoPsy Overview

Figure 2 thus represents the whole process of composing two languages. The left row of the
image depicts the syntax and semantics of the first language in the composition. This language
is parameterized by the second language depicted in the right row of the image. This param-
eterization is achieved by mapping the effective parameters into the formal ones by the φ and
the ψ functions. On the one hand, φ works at the level of the metamodels of the two languages
by specifying how the elements of the parametric metamodel which are formal parameters are
replaced by the elements of the ep metamodel. On the other hand, ψ defines how transformations
of the parametric metamodel having formal parameters are changed using the transformations
of the ep metamodel which are effective parameters.

5 CoPsy framework instantiation

The previously identified concepts are now composed by using the CoPsy framework. We take
HALL as an example of a target DSL. HALL is a suitable language for the composition with
SATEL, since it describes reactive systems, and uses algebraic type definitions. Moreover, its
syntax was defined by using a metamodel, and its operational semantics was defined by a set
of inference rules. The DSL composition is done at both the languages’ metamodel (abstract
syntax) and transformation (semantic) levels.

5.1 Composition at the syntax level

Both the SATEL’s and HALL’s syntaxes are expressed using EMF/ECore metamodels. Due to
the space constraints we only present here a subset of the real metamodels of both languages.
We start the syntax composition of these languages, by identifying in the SATEL’s metamodel
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Figure 3: Composition of the SATEL and HALL at the metamodel level
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the elements that will belong to the formal parameter fp of the composition. As shown in Figure
3 (in the top layer), the meta-classes identified in light gray belong to the formal parameter fp
of the composition. In our concrete example, see Figure 3 - in the middle layer, we chose terms
from the HALL language to form the effective parameter of the composition.

Figure 3 - in the bottom layer, shows the resulting metamodel obtained by the application of
the mapping function ϕ to the metamodel parameterization. The meta-class GenMachine (b)
was substituted by the meta-class Component (i) - which means that the models of the composed
language can express HALL components and state machines. The meta-class GenAlgebra (a)
was substituted by the meta-class AlgebraicSpec (j) - which means that we can now produce
models in the composed language that defines concrete algebraic specifications that will be used
both on HALL components and SATEL intentions specifications. In the composed language,
when we want to declare variables of an algebraic type, we must now point to its respective Sort
(m) declaration. Also, if we want to use some algebraic operation, or use some algebraic constant
in our test intentions, we must now point to their respective declarations by referring declaration
elements of type Operation (n) or Const (h). Finally, whenever we want to reference in our test
intentions some input or output events from our HALL specification, we will now have to point
to their respective declarations by referring elements of type InputEvent (l) or OutputEvent (k).

5.2 Composition at the semantics level

Firstly, the semantics of each of these DSL’s (both SATEL and HALL) is described by means of
transformations into a common target language of inference rules. In order to use inference rules
as a target language of model transformation tools, we also defined an EMF-based metamodel
for the language of Inference Rules. For instance, a SATEL transformation rule will match
model elements which are conformant with the SATEL’s metamodel, and will produce model
elements which are conformant with the Inference Rules Metamodel. We chose the language of
Inference Rules because it consists in an elegant mean for specifying the operational semantics
of a language, and it has a well defined semantics which is based on formal logics. After all the
transformation rules are executed, the inference rules that they produce can be also computed.
While in operation, the whole set of inference rules generates different kinds of relations that
defines the language’s semantics.

The most important semantic relation in this work is generated by the inference rule ruleTest-
Gen, shown in Figure 4. This particular inference rule was produced by a transformation rule
which does not depend on any kind of model instance of SATEL. The transformation rule that
produced ruleTestGen had formal parameters which were replaced during the composition with
HALL according to the ψ mapping function 3.

The rule ruleTestGen states that we can deduce that a given grounded 4 SATEL HMLformula
belongs to the Tests relation if: there exists a tupple 〈condition,HML f ormula〉 from the Inten-
tions relation (premise (1)); the grounded conditions over the HMLformula are satisfied given
the semantics of HALLTypes (premise (2)); and this grounded HMLformula is satisfied by the
semantics of HALLSemantics, given an initial state HALLinit (premise (4)).

3 Due to space constraints, in this paper, we will not further detail the ψ mapping function.
4 Ground expressions have no free variables: this means that there exists an isGround inference rule, which opera-
tionally generates values to replace the free variables inside these expressions.
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ruleTestGen

(1) 〈conditions,HML f ormula〉 ∈ Intentions,
(2) HALLTypes |=alg conditions,
(3) HALLSemantics,HALLinit |=sat HML f ormula

HML f ormula ∈ Tests

Figure 4: Inference Rule for test case generation in SATEL(HALL) semantics

Premise (1) is satisfied by the Intentions relation which is generated by inference rules pro-
duced by transformation rules which match SATEL elements, e.g SATEL conditions and HML
formulas.

Premise (2) |=alg satisfaction depends on the HALLTypes relation which is generated by in-
ference rules produced by transformation rules which match elements of HALL algebraic type
definitions, e.g. sorts, constants, operations, equations.

Premise (3) |=sat satisfaction depends on the HALLSemantics relation, which constitutes the
oracle for the test cases. This relation is generated by inference rules produced by a set of
transformation rules which do not depend on any kind of HALL model (this constitutes the step
semantics of the language). It also depends on the HALLinit relation, which is generated by
inference rules produced by a set of transformation rules matching HALL elements, e.g. state
machines, variable definitions, HALL specific inputs, HALL specific outputs.

Notice that all the transformation rules referring to HALL elements involved in Premise (2)
and (3) substituted the tr f p transformation rules from the parameterized SATEL that existed
before the composition. Also, this substitution occurred according to the ψ mapping function.

6 Discussion

We have implemented a composition of SATEL and HALL using EMF and Prolog. At the
syntactic level, we manually composed the EMF metamodels of both languages, by merging their
abstract syntaxes as we described in Figure 3. Semantically, the composition of both DSLs was
made possible by leveraging both the language’s syntax and semantics into a common ground:
the Prolog clauses. On the one hand, both DSL’s semantics were expressed by inference rules
encoded into Prolog clauses. On the other hand, we developed a generic mechanism which
automatically translates any model expressed on a given EMF-based DSL into a Prolog fact.
This prolog fact contains both the structure and the initial state of the system. By merging
all these clauses, we are able to explore the semantics of both DSLs: in HALL this means to
explore the transition system of the model, and in SATEL this means to generate test cases using
that transition system as an oracle. More precisely, test cases are generated by: expanding test
intentions into intermediate formulas that solve recursion and test intention composition; finding
substitutions for remaining variables in those formulas by solving conditions associated to the
test intention; ”playing” the ground formulas (now test cases) against the operational semantics
of the HALL model to check if that model satisfies the formulas — thus binding the oracle to
each test case.

In our implementation, we formalized the metamodels for each of the languages involved in
the composition, as well as the metamodel of the composed language. However, we did not ex-
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plicitly formalise the transformation rules described in chapter 5, although we can see the EMF to
Prolog transformation mechanism as a transformation rule. Also, we did not explicitly formalise
any composition rules - in the DSL’s metamodels or transformations. In order to generalize the
composition mechanism to other DSLs, we found the need to introduce the composition frame-
work CoPsy. To do so, we first had to explicitly formalise the transformation rules that provide
inference rules semantics to both SATEL and HALL. Then, we formalized the formal parame-
ters of the composition, both in SATEL’s metamodel and in the transformation rules. Finally, we
identified what are the effective parameters from HALL’s metamodel and transformation rules,
and established their mappings with the formal parameters in SATEL.

However, there are several issues that can be challenging while applying the current composi-
tional framework to provide a test selection and generation mechanism to other DSLs. Firstly, the
integration of a target DSL in this solution involves that that DSL has a defined step/operational
semantics expressed in terms of inference rules which are able to perform the described |=alg and
|=sat deductions in a finite time.

Secondly, since SATEL needs to generate substitutions for the variables in test intentions and
solve conditions over these variables, we also need to have access to the semantics of the types
that the target DSL uses. In our experiment, to solve this particular problem, we have used
algebraic type specifications.

As we’ve mentioned before, the new composed language corresponds to the union of HALL
— which remains unchanged in the composition — with a parameterized version of SATEL.
The scope of SATEL is adapted to HALL so that inputs and outputs of this language can be
used in SATEL. Also, the semantics of SATEL’s test generation (oracle computation) is adapted
to HALL’s semantics. An issue in the presented example is that the conditions over SATEL
variables can be expressed and computed because the syntax and semantics of types used in
HALL is fully described by algebraic specifications. Target languages that do not use algebraic
specifications must provide some other fashion of describing the syntax and semantics of those
types. Depending on this description, the expressivity/usability of the parameterized SATEL can
be affected.

This work was inspired by another example [L0́9] of an implicit composition of SATEL with
another language which describes reactive systems, called COOPN. Another example of implicit
composition of model based testing languages with another language is presented in SpecEx-
plorer [CGN+05]. SpecExplorer includes a set of tools that enables test generation from spec-
ifications expressed in Spec#. In the above examples, the composition of model based testing
languages with another language is made implicitly and no reflection is provided on the compo-
sition itself.

There are some other composition frameworks that like CoPsy that are also able to perform
DSL composition both at the syntatic and semantic levels. For example, in [IP04] a technique
and a tool are presented that allow composing a system as a set of properties of subsystems
defined as transformations. A technique called semantic anchoring is presented in [CSAJ05].
Semantic anchoring consists of attaching semantics to a metamodel in terms of a computational
model, e.g. Abstract State Machines. However, none of these composition frameworks focus
the problem of DSL reuse, nor provide a clear definition of the composition based on mapping
functions at the metamodel and transformation levels. To our knowledge, there is no existing
compositional framework that enables the reuse of test selection and generation mechanisms

9 / 10 Volume 21 (2009)



DSL Composition for model-based test generation

within the development of a DSL.

7 Conclusion

In this paper, we proposed a methodology for the composition of a model based testing language
called SATEL with other DSLs. Using CoPsy as a composition framework, we extracted a
composition interface from the SATEL language, both at the syntactic and semantic levels. We
have also presented an example where we composed SATEL with HALL. Currently, there is an
implementation of the CoPsy framework, which is able to automate DSL composition. As future
work, we plan to use this implementation in order to automate as far as possible the integration
of SATEL test selection and generation mechanism in the process of DSL engineering.
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