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Abstract: Despite the pivotal significance of transformations for model-driven
approaches, there have not been any attempts to explicitly model transformation
languages yet although a number of benefits are to be gained. First, transformation
developers may change the design of their transformation languages by modeling,
rather than programming. Second, they may use environmentsto create transforma-
tions that are customized with respect to the input and output languages involved.
In this paper, we use a running example to identify, discuss,and demonstrate some
of the above advantages. In particular, we explore and suggest ways to systemat-
ically support developers in creating transformation languages by means of semi-
automated metamodeling.

Keywords: model transformation, metamodeling, domain-specific transformation

1 Introduction

Model-driven approaches are gaining popularity both in theform of being based on standard
modeling languages, such as the UML, as well as domain-specific modeling languages. In both
instances, the aim is to increase developer productivity, in the case of the former by raising the
level of abstraction at which systems can be specified and in the case of the latter by lowering
the impedance mismatch between a modeling language and its application domain.

There are still many open problems with respect to the economic development of domain-
specific modeling languages, but their definition is well understood. This shifts the focus on
transformations which have a number of applications among which are: (1) establishing trans-
formation chains from high-level to low-level specifications, (2) providing semantics for a source
language by mapping it to a target language, and (3) creatinga consistent mapping between two
or more models. A number of transformation paradigms exists, e.g., template-based, rule-based,
triple graph grammars, with or without explicit control flow[CH06]. They are supported by var-
ious implementations such as ATL [JK06], ATOM3 [LV02], GREAT [AKK +06], QVT [Obj08],
VMTS [LLMC05]. They provide tremendous value for developers, but in eachimplementation
the transformation paradigm is hard-coded to be used as is. The implementations do not provide
a way to interrogate or modify transformation definitions asfirst-class transformation models.

This is surprising as there are a number of benefits to be gained when treating transformations
as first-class citizens which are explicitly modeled and amenable to introspection and modifica-
tion. We identify the following potential advantages. It becomes easier to explore the language
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design space by making alterations to the control flow, mapping, and pattern specification parts
of the language. Obviously, this requires modeling the respective semantics, but once available,
alterations to the syntax and semantics definitions of such transformation (meta-)models should
be easier to perform than the respective changes in a code base. Instead of using a generic
pattern specification language to be used for all input and output languages, one can utilize cus-
tomized pattern specification languages on a case-by-case basis. Automating the creation of such
customized pattern specification languages opens up a cost-neutral way to achieve customized
transformation definition environments providing increased rigor.

In the following, we first introduce our running example which we use as the basis of our
subsequent discussions. In Section3, we investigate the automated construction of customized
pattern specification languages, using the components relaxation, augmentation, and modifica-
tion, exploring and discussing alternative solutions. This provides a systematicprocedure for
explicitly modeling transformation languages. Finally, we discuss related work in Section4.

2 A Typical Transformation

Figure 1: (a) FSA & (b) Petri Net Metamodels

The example that we will use in
the remainder of the paper to il-
lustrate our arguments is a typ-
ical case of a domain-specific
language being assigned a se-
mantics by translating it into
a target formalism with known
semantics. In order to de-
fine the semantics of state-
charts and/or perform reacha-
bility analyses on them, one
can translate them to Petri
nets [LV02]. Another reason
for considering this particular
translation is that one can use
Petri nets as a common seman-
tic domain for statecharts, se-
quence diagrams, and activity diagrams. For the purposes ofthis paper, however, we restrict
ourselves to translating finite state automata, rather thanstatecharts, into Petri nets. The re-
sulting transformation definitions of this translation aremuch simpler but still rich enough to
illustrate our arguments. Figure1 shows both metamodels.

2.1 Finite State Automata as Language Recognizers

We interpret our sate automata to be language recognizers, i.e., they either accept input se-
quences as belonging to respective regular languages or not. The top part of Figure2 shows
a sample input sequence (“yees”) and a finite state automaton accepting the languagey(e)∗s.
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Figure 2: (a) FSA to (b) Petri Net
Mapping

In our example, we want to simulate the execution of the
finite state automaton in the context of receiving the events
from the input sequence in order to ascertain whether the
input sequence is a sentence of the language. To this end,
we translate such scenarios into corresponding Petri nets (see
bottom part of Figure2).

2.2 Translating Finite State Automata To Petri
Nets

Figure 3 shows an excerpt of the transformation rules
that are required to translate a finite state automa-
ton plus an input sequence into a Petri net that

can be used to simulate the automaton execution. In particular, Figure 3 shows
a subset of the rules that translate finite automaton states into Petri net places.

Figure 3: Translating States to
Places

The rest of the rules dealing with the translation are
similar to those shown and are not of further significance
for the purposes of this paper. Note that we are using
ATOM3 [LV02] and MOTIF [SV07] and thus use concrete
syntax for describing single push-out graph transforma-
tion rules, employing numerical labels to indicate identity
of elements. We are well aware of the tension between
the “must transition” and “may fire” semantics of finite
state automata and Petri nets, respectively. In timed Petri
nets, this difference may lead to a situation where a fi-
nite state automaton does not change states anymore even
though itshould, just because the Petri net used for sim-
ulating it does not fire transitions anymore, even though
it could. However, the place/transition nets we assume do
not create this mismatch and a simulator for them will fire
enabled transitions.

Next, we describe and discuss the explicit modeling
of transformation definitions as an enabler of customized
transformation development environments.

3 Explicit Transformation Modeling

Metamodeling1, i.e., the explicit specification of a language’s well-formedness constraints, has
become popular because of a number of associated advantages: (1) the specification is not hidden
in the code of a tool, making it easier to understand and correct, (2) the specification can be
altered by users of the tool instead of requiring a new tool release, and (3) one can reason about
the specification and the models it describes. The same advantages apply if metamodeling is
not only applied to modeling language definitions, but also to transformation definitions. While

1 Linguistic metamodeling, to be precise.
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there is a considerable initial investment to be made in explicitly modeling a transformation
language including its semantics, the prospect to more easily experiment with language features,
customize them for certain purposes, and allow transformations to be reasoned about and/or
modified makes that investment worthwhile.

Clearly, in order to enable the last aspect mentioned above,the transformation language’s
mapping approach, e.g., rule-based graph transformation,needs to be explicitly modeled.

Unlike the mapping and control aspects of a transformation language, its pattern specification
sublanguage depends on other languages. The input and output languages of a transformation
determine which pattern specifications for left-hand side (LHS) and right-hand side (RHS) can
be considered well-formed. The underlying assumption hereis that the pattern specification
language should not be generic to fit all possible input and output languages, but specifically
tailored to the input and output languages involved.

3.1 Generic versus Customized Pattern Specification Languages

The most economic approach to providing a pattern specification language is to offer a generic
one. Most tools do not use concrete syntax for specifying transformation patterns and thus are
able to use the same generic (often UML object-diagram-inspired) pattern specification syn-
tax for all possible input/output languages. They often also have an underlying generic (often
MOF-like) representation format which can be used to represent elements from any input/output
language.

There are good reasons, however, to consider using a patternspecification language which is
customized to the input/output languages involved:

• One may use pattern specification visualizations which are adapted to the languages in-
volved. Even if no concrete syntax is used, one may still wantto customize the syntax,
e.g., to adequately visualize connector elements.

• A customized syntax allows excluding patterns from being specified that do not have a
chance of matching subgraphs in the host graphs. For instance, in the context of Petri nets,
a pattern consisting of an arc linking two places will never be matched on any valid Petri
net instance (i.e., conforming to the meta-model in Figure1).

A generic pattern specification language will allow any pattern to be expressed whether or not it
will be able to match subgraphs from the input language(s) orgenerate subgraphs conforming to
the metamodel(s) of the output language(s). Just as a plain domain-specific modeling tool has ad-
vantages for its users, guiding them to produce meaningful models, a customized transformation
pattern specification tool also aids in avoiding meaningless pattern specifications.

Whether this customization is achieved by changing the representation format for each gener-
ated transformation definition environment or by just exchanging a language definition against
which generic pattern specifications are checked is immaterial to the user, but a tool builder de-
cision. In the following, we assume that, in one way or another, pattern specifications can be
checked for conformance to a pattern specification languagedefinition. As a result, a method
needs to be identified that enables these conformance checksin an economic manner, while
offering the transformation language user maximum benefits.
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3.2 Metamodels versus Conformance Checks

Unfortunately, providing a customized pattern specification language is not as easy as simply
reusing the corresponding input/output metamodels. First, demanding a full adherence of pat-
tern specifications to original language definitions is not practical. If all minimal multiplicity
requirements of language definitions were enforced, one could not specify useful patterns which
refer to model fragments, ignoring minimal multiplicity requirements. Second, one may want to
provide several levels of rigor with respect to checking thewell-formedness of pattern specifi-
cations. While the transformation designer edits a patternspecification, one most certainly does
not want to enforce all well-formedness constraints. It also should be possible to save ill-formed
sketches to be worked on later. This does not mean, however, that the complete absence of all
potential well-formedness checks is always the best choicein such cases. Table1 lists poten-
tially useful levels of conformance checking rigorousness. There are two ways to enable the use
of such levels of conformance: (1) either one creates modified language definitions and performs
a normal conformance check against them, or (2) one uses original language definitions, but
accordingly modified conformance checks. The second optionhas a number of advantages:

• one can simply use the original language definitions; there is no need to create multiple
variants of them.

• switching between conformance levels does not require the switch of a metamodel; the
latter is quite feasible though with an appropriate architecture.

• the alternative (1. above) cannot use a standard conformance check anyhow (see Sec-
tion 3.3and Section4).

However, there are also a number of disadvantages:

• some generic way to extend languages defined by metamodels isrequired; pattern speci-
fication languages require additional features beyond the original input/output languages
(see Section3.3). Customized metamodels can easily incorporate these.

• custom conformance checks are harder to reason about than custom metamodels; in the
absence of a fully modeled action language, conformance checks will be implemented
in some programming language making it harder to see and analyze what relation they
actually implement.

Level of rigor Description
Free form no constraints at all

Valid elements elements are typed by the metamodel
Valid multiplicities (relaxed) multiplicity constraints are enforced

Valid constraints (a subset of) metamodel constraints are enforced

Table 1: Levels of Conformance
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• conformance checks are harder to customize by users; transformation designers can be
expected to alter the transformations that yield tailored metamodels but may not be able to
re-program conformance checks.

• swapping conformance checks means that the transformationdevelopment will remain
the same; swapping metamodels opens up the possibility to use them for the automated
generation of dedicated development environments with differing sets of control elements.

Finally, there is another motivation for supporting more than one mode of well-formedness
checking which can only be enabled by using multiple metamodel versions: Typically, trans-
formation definitions comprise layers of rules in the sense that one will expect all rules from
one layer to have matched, and then match no more, before the next layer of rules will be used.
This layering often exists independently of whether or not it is dealt with explicitly. In particular
with in-place transformations, the input and output languages change from layer to layer. The
first layer’s input language is the source language while itsoutput, the input to the next layer,
will typically contain generic links which are not part of the source language (see Section3.3).
The last layer’s output language is the target language, whereas all preceding layers will produce
either augmented versions of it or mixtures between the source and target languages. The avail-
ability of a series of adapted metamodels may aid the transformation developer to understand
what the layers involved are and assign rules to them accordingly.

We have not yet pursued the idea of using a series of transformation layer interface language
definitions and it would be challenging to automate the generation of these intermediate lan-
guage definitions. Luckily, however, automating the creation of customized pattern specification
languages from original input/output language definitionscan be automated very well.

3.3 Semi-Automated Metamodeling

Figure 4: Rule Metamodel

The previous section motivated the use of vari-
ants of original metamodels for defining the
well-formedness of pattern specifications. In
this section, we discuss how one can create such
variants systematically and thus automate the
process.

Figure4 depicts how rules refer to precondi-
tion and postcondition patterns and the pattern
element they contain. When adapting transfor-
mation languages to specific input and output languages, oneneeds to tailor these precondition
and postcondition patterns so that they are fit to be used for the respective input and output lan-
guages. We obtain the required tailored pattern specification metamodels by starting with the
original language metamodels and then subjecting them to a number of changes. The required
metamodel metamorphosis has three distinct components: relaxation, augmentation, and modifi-
cation. Figure5 shows an excerpt of the result of applying these steps to the finite state machine
metamodel of Figure1.
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3.3.1 Relaxation

Figure 5: Generated Pattern Specification Metamodel

Original language defini-
tions cannot be used as
is for defining the well-
formedness of pattern spec-
ifications.
First, often transformation
designers aim to match for
any one-of-many element
types, e.g. one-of-many
“connection” kinds.
Such generalizations are
typically present in orig-
inal language definitions
but as abstract concepts
which cannot be instanti-
ated. One relaxation step
therefore is to turn such
abstract concepts into con-
crete ones.

Second, as mentioned
before, enforcing minimal
multiplicity constraints would
be completely impractical.
A further relaxation step is, therefore, to reduce all minimal multiplicities to zero (see Figure5
for the relaxation ofState multiplicities and Section4 for a more elaborate discussion).

Third, only a subset of explicitly formulated original constraints (e.g., using OCL) can be ac-
tive for the purpose of checking pattern specification well-formedness. All constraints concerned
with ensuring completeness of models are potentially unsuitable for the inherent fragment-like
nature of specification patterns. The relaxation process could automatically filter out constraints
with the help of a corresponding naming scheme for constraints or manually provided augmen-
tations, but we currently believe any further automation will be difficult to achieve. This is why
we refer to the metamodel generation assemi-automated.

A potential further relaxation is to raise all maximum multiplicities to “unbounded” in order
to allow intermediate results that can be helpful to drive the transformation process, despite the
fact that they would be ill-formed as end results. However, we argue that purposefully violating
well-formedness requirements in this way amounts to “hacking” and should be avoided. We
recommend using so-called generic links for these purposesinstead.

3.3.2 Augmentation

To be fit as pattern specification metamodels, input/output metamodels also need to be aug-
mented with features required for transformation purposes.

In Figure5, all types are made descendants ofMT_Element so that they inherit features that all
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elements that may appear in a pattern specification must have, e.g., a way to label them for iden-
tity matching. The generated metamodels also feature additional generic nodes and links which
are often necessary to drive the transformation (e.g., see the generic connectors between states
and places in Figure3). Elements which are used in negative application conditions (NACs)
or the LHS of rules (subtypes ofMTpre_element) also need a flag feature that tells the pattern
matcher whether to look for exact types or allow subtype matching as well. The remaining differ-
ences between the original and generated metamodel elements are all modifications of existing
features.

3.3.3 Modification

The modifications that need to be applied to original metamodel elements depend on whether we
want to obtain precondition (i.e., NAC and LHS) or postcondition (i.e., RHS) pattern specifica-
tions.

For precondition pattern specifications we need to replace the respective types of attributes to
the type “constraint”. This allows the transformation designer to specify constraints for element
features, such asMTpre_name=”NEXT” (see Figure3). For postcondition pattern specification we
need to allow actions rather than constraints, so that the transformation designer can set values
of attributes, among other potential actions. In ruleNextPlace of Figure3, the “=” in the RHS
part of the rule is an assignment action rather than an equality check. Note that the same naming
and modification scheme is applied to classes, associations, and role names.

Finally, we sometimes need to modify the concrete syntax of language elements whose size
or natural layout is not conducive for specifying patterns.Also, elements which are normally
not rendered at all, such as instances of formerly abstract classes or association ends, need to be
assigned some concrete syntax so that they may be referred toin a visual manner.

We have implemented a prototype of this procedure. A new metamodel is created as partly
shown in Figure5. In the relaxation step, we did not consider the (OCL) constraints of the
respective metamodels yet and they thus have been maintained. In the augmentation step, the
first two levels of the inheritance hierarchy of Figure5 correspond to concepts from the meta-
metamodel of ATOM3/MOTIF. Finally in the modification step, our prototype did not takeinto
account issues related to layout in the concrete syntax of the pattern elements.

Summarizing, this section has discussed various alternatives for enabling transformation de-
signers to make use of customized pattern specification languages and environments. We pro-
posed the semi-automated generation of customized metamodels based on the components of
relaxation, augmentation, and modification.

4 Related Work

Bézivin et al. explicitly model transformations with “transformation models” [BBG+06] but for
capturing the relations maintained by transformations rather than supporting their customization
or generation.

The need to relax conformance rules occurs in other areas as well. Morin et al. also relax
an original metamodel in order to allow the formulation of pointcut specifications in the context
of aspect-oriented modeling [MBJR07]. Levendovszky et al. capture domain-specific design
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patterns which also inherently are fragments of proper models [LLM09]. Instead of creating a
relaxed version of the metamodel, they use relaxed conformance, i.e., “relaxed instantiation”.
This allows them to use one original language definition to check both proper models and design
patterns. Since they only need to support this one variant ofconformance checking, this is a
viable approach. In general, however, the explicit modeling of transformations may require a
multitude of conformance levels, making the relaxation of metamodels a more attractive option
(see Section3.2). Levendovsky et al., furthermore, observe that simply setting all minimal mul-
tiplicities to zero will allow the formulation of fragmentswhich cannot be completed to proper
models. They suggest detecting such fragments by using constraint solving. This approach is
applicable in our context as well and could be realized by adding corresponding constraints to
the relaxed metamodels.

5 Conclusion

Although we discussed our work and developed our artifacts in the context of ATOM3/MOTIF,
our ideas and results are by no means confined to the specifics of this combination. Our proposal
to explicitly model transformation definitions is applicable to a wide range of transformation
approaches.

While it is not necessary to explicitly modelall aspects of transformation definitions, we have
illustrated that there are benefits associated with each such step. First, the explicit modeling
of pattern specifications allowed the semi-automatic generation of customized pattern specifi-
cation language definitions based on the components of relaxation, augmentation, and modifi-
cation. It thus provided a cost-effective way to obtain customized transformation development
environments. In contrast to ATL higher-order transformations, ours can be fully checked for
well-formedness violations. Second, the explicit modeling of transformation control structures
allowed the modular addition of new behavior, such as source-level animation. Summarizing,
we demonstrated the benefits of explicitly modeling transformations and proposed ways to eco-
nomically enable their definition.

For future work, we would like to investigate how explicitlymodeling transformation lan-
guages allows support for higher-order transformation, astreated as models, transformations can
be themselves subject to transformation.
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