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Abstract: Despite the pivotal significance of transformations for eledtiven
approaches, there have not been any attempts to expliciijehtransformation
languages yet although a number of benefits are to be gairmestl. tFansformation
developers may change the design of their transformatioguizges by modeling,
rather than programming. Second, they may use environn@nteate transforma-
tions that are customized with respect to the input and augmguages involved.
In this paper, we use a running example to identify, discaisd,demonstrate some
of the above advantages. In particular, we explore and stigggys to systemat-
ically support developers in creating transformation leagges by means of semi-
automated metamodeling.

Keywords: model transformation, metamodeling, domain-specificsfiaimation

1 Introduction

Model-driven approaches are gaining popularity both inftren of being based on standard
modeling languages, such as the UML, as well as domainfipenbdeling languages. In both
instances, the aim is to increase developer productivitihe case of the former by raising the
level of abstraction at which systems can be specified anldeircase of the latter by lowering
the impedance mismatch between a modeling language anplisaion domain.

There are still many open problems with respect to the ecandevelopment of domain-
specific modeling languages, but their definition is well enstbod. This shifts the focus on
transformations which have a number of applications amohigiware: (1) establishing trans-
formation chains from high-level to low-level specificat# (2) providing semantics for a source
language by mapping it to a target language, and (3) creatoansistent mapping between two
or more models. A number of transformation paradigms exists, template-based, rule-based,
triple graph grammars, with or without explicit control flg@HO§. They are supported by var-
ious implementations such agiA[JK06, AToM?3 [LV02], GREAT [AKK *06], QvT [Obj0g],
VMTS [LLMCO5]. They provide tremendous value for developers, but in éaghementation
the transformation paradigm is hard-coded to be used as&siniplementations do not provide
a way to interrogate or modify transformation definitiondiest-class transformation models.

This is surprising as there are a number of benefits to be davhen treating transformations
as first-class citizens which are explicitly modeled and raaye to introspection and modifica-
tion. We identify the following potential advantages. Icbees easier to explore the language
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design space by making alterations to the control flow, mrap@and pattern specification parts
of the language. Obviously, this requires modeling thegetye semantics, but once available,
alterations to the syntax and semantics definitions of siarfstormation (meta-)models should
be easier to perform than the respective changes in a code bastead of using a generic
pattern specification language to be used for all input atpublanguages, one can utilize cus-
tomized pattern specification languages on a case-by-e&s® Butomating the creation of such
customized pattern specification languages opens up aneastal way to achieve customized
transformation definition environments providing incregsigor.

In the following, we first introduce our running example whiwe use as the basis of our
subsequent discussions. In Sect®mwe investigate the automated construction of customized
pattern specification languages, using the componentsatala, augmentation, and modifica-
tion, exploring and discussing alternative solutions. sTjtiovides a systematjarocedure for
explicitly modeling transformation languages. Finally discuss related work in Sectidn

2 A Typical Transformation

Next

. . 1 : /0.1
The example that we will use I_ State 1 fromState " FSATransition Event
the remainder of the paper to i name : string 1 toState * | event : string label : string
lustrate our arguments is a typfisinitial : boolean current : boolean
ical case of a domain-specifigSAccerting : boolean| | Constraints:
. . current : boolean - For all State: name is unique
language being assigned a se- - Exactly one State is initial
mantics by translating it into - Exactly one State is accepting
. K - Exactly one State is current
a target formalism with known a) - Exactly one Event is current
semantics. In order t0 de----- - oo oo ooLo.
fine the semantics of state- Place ] . Arc 1 1 [ orrranciion
charts and/or perform reacha-|iokens : integer weight : integer
bi|ity analyses on them, one [name:string toPlace: boolean
can translate them to Petri :
Constraints:
nets [_V02] Another reason - For all Place: name is unique
i i i i - For all Place: tokens > 0
for con_S|de_r|ng this particular ) For all Are: weights ».0
translation is that one can use
Petri nets as a common seman- Figure 1: (a) FSA & (b) Petri Net Metamodels

tic domain for statecharts, se-

gquence diagrams, and activity diagrams. For the purposdsisopaper, however, we restrict
ourselves to translating finite state automata, rather #tarecharts, into Petri nets. The re-
sulting transformation definitions of this translation anech simpler but still rich enough to
illustrate our arguments. Figufleshows both metamodels.

2.1 Finite State Automata as Language Recognizers

We interpret our sate automata to be language recognizersthey either accept input se-
quences as belonging to respective regular languages orTimet top part of Figur€ shows
a sample input sequenceyéés”) and a finite state automaton accepting the langudggs.
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In our example, we want to simulate the execution of the
finite state automaton in the context of receiving the events
from the input sequence in order to ascertain whether the
input sequence is a sentence of the language. To this end,
we translate such scenarios into corresponding Petrises (
bottom part of Figure).

2.2 Translating Finite State Automata To Petri
Nets

Figure 3 shows an excerpt of the transformation rules

Figure 2: (a) FSA to (b) Petri Netthat are required to translate a finite state automa-

Mapping ton plus an input sequence into a Petri net that

can be used to simulate the automaton execution. In patjcuFigure 3 shows

a subset of the rules that translate finite automaton statés Petri net places.
The rest of the rules dealing with the translation apg==

similar to those shown and are not of further significan § 0

for the purposes of this paper. Note that we are using, i i i

AToM3[LV02] and MoTIF [SV07] and thus use concretg O ' ; O-

syntax for describing single push-out graph transforma- | iEiie e - miiioes sy

tion rules, employing numerical labels to indicate idgntife®iee — —

of elements. We are well aware of the tension betwgen P 1

the “must transition” and “may fire” semantics of finit@:urye. Q nexr | im_wpast,ge:wm-

state automata and Petri nets, respectively. In timed Pre/%rmoopnansmon ,

nets, this difference may lead to a situation where affi*= { ™ {1+ 5°

nite state automaton does not change states anymore a@gﬁ ED2 i .48@5

though itshould, just because the Petri net used for sim- ’ aQ Os: 30‘:4—»05

. . . .. NEXT NEXT
ulating it does not fire transitions anymore, even thougy

wAIZPNTransmon

it could. However, the place/transition nets we assume (o < E L s, REs

not create this mismatch and a simulator for them will fire , | (——1} ([ {J

enabled transitions. O=}-0! 46 568 RS
Next, we describe and discuss the explicit modeling : 6 91%3 6

NEXT E NEXT

of transformation definitions as an enabler of customized

transformation development environments. Figure 3: Translating States to

Places
3 Explicit Transformation Modeling

Metamodeling, i.e., the explicit specification of a language’s well-f@umess constraints, has
become popular because of a number of associated advanfipte specification is not hidden
in the code of a tool, making it easier to understand and copr(2) the specification can be
altered by users of the tool instead of requiring a new tdelase, and (3) one can reason about
the specification and the models it describes. The same tdyeapply if metamodeling is
not only applied to modeling language definitions, but atstransformation definitions. While

1 Linguistic metamodeling, to be precise.
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there is a considerable initial investment to be made inieiyl modeling a transformation
language including its semantics, the prospect to moréyeagieriment with language features,
customize them for certain purposes, and allow transfoomatto be reasoned about and/or
modified makes that investment worthwhile.

Clearly, in order to enable the last aspect mentioned ahineetransformation language’s
mapping approach, e.g., rule-based graph transformatemds to be explicitly modeled.

Unlike the mapping and control aspects of a transformatogliage, its pattern specification
sublanguage depends on other languages. The input and tariguages of a transformation
determine which pattern specifications for left-hand sldéS) and right-hand side (RHS) can
be considered well-formed. The underlying assumption ketbat the pattern specification
language should not be generic to fit all possible input artguidanguages, but specifically
tailored to the input and output languages involved.

3.1 Generic versus Customized Pattern Specification Langges

The most economic approach to providing a pattern spedditédnguage is to offer a generic
one. Most tools do not use concrete syntax for specifyingsfamation patterns and thus are
able to use the same generic (often UML object-diagramiiedp pattern specification syn-
tax for all possible input/output languages. They oftem ddave an underlying generic (often
MOF-like) representation format which can be used to represlements from any input/output
language.

There are good reasons, however, to consider using a pafieaification language which is
customized to the input/output languages involved:

e One may use pattern specification visualizations which depted to the languages in-
volved. Even if no concrete syntax is used, one may still vimrustomize the syntax,
e.g., to adequately visualize connector elements.

e A customized syntax allows excluding patterns from beingc#ped that do not have a
chance of matching subgraphs in the host graphs. For iresstanthe context of Petri nets,
a pattern consisting of an arc linking two places will nevemiatched on any valid Petri
net instance (i.e., conforming to the meta-model in Figre

A generic pattern specification language will allow any @attto be expressed whether or not it
will be able to match subgraphs from the input language(geaerate subgraphs conforming to
the metamodel(s) of the output language(s). Just as a maiaid-specific modeling tool has ad-
vantages for its users, guiding them to produce meaningfaleis, a customized transformation
pattern specification tool also aids in avoiding meanirgyfegtern specifications.

Whether this customization is achieved by changing theessmtation format for each gener-
ated transformation definition environment or by just exdiag a language definition against
which generic pattern specifications are checked is imna&terthe user, but a tool builder de-
cision. In the following, we assume that, in one way or angthattern specifications can be
checked for conformance to a pattern specification langdagjaition. As a result, a method
needs to be identified that enables these conformance chees economic manner, while
offering the transformation language user maximum benefits

Proc. MPM 2009 4110
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3.2 Metamodels versus Conformance Checks

Unfortunately, providing a customized pattern specifaratianguage is not as easy as simply
reusing the corresponding input/output metamodels. ,Renanding a full adherence of pat-
tern specifications to original language definitions is nmaicpcal. If all minimal multiplicity
requirements of language definitions were enforced, onkel cmi specify useful patterns which
refer to model fragments, ignoring minimal multiplicityq@rements. Second, one may want to
provide several levels of rigor with respect to checking wedl-formedness of pattern specifi-
cations. While the transformation designer edits a pagpatification, one most certainly does
not want to enforce all well-formedness constraints. b alsould be possible to save ill-formed
sketches to be worked on later. This does not mean, howéatrihe complete absence of all
potential well-formedness checks is always the best choiseich cases. Tablklists poten-
tially useful levels of conformance checking rigorousné@sere are two ways to enable the use
of such levels of conformance: (1) either one creates mad#éieguage definitions and performs
a normal conformance check against them, or (2) one usewmarignguage definitions, but
accordingly modified conformance checks. The second optsra number of advantages:

e one can simply use the original language definitions; themoineed to create multiple
variants of them.

e switching between conformance levels does not require \litets of a metamodel; the
latter is quite feasible though with an appropriate arciites.

e the alternative (1. above) cannot use a standard confoemelmeck anyhow (see Sec-
tion 3.3and Sectior).

However, there are also a number of disadvantages:

e some generic way to extend languages defined by metamodelguised; pattern speci-
fication languages require additional features beyond tiggnal input/output languages
(see Sectio3.3). Customized metamodels can easily incorporate these.

e custom conformance checks are harder to reason about teiontmetamodels; in the
absence of a fully modeled action language, conformancekshwill be implemented
in some programming language making it harder to see angznalthat relation they
actually implement.

Level of rigor | Description
Freeform | no constraints at all
Valid elements | elements are typed by the metamodel
Valid multiplicities | (relaxed) multiplicity constraints are enforced
Valid constraints | (a subset of) metamodel constraints are enforced

Table 1: Levels of Conformance
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e conformance checks are harder to customize by users; dramstion designers can be
expected to alter the transformations that yield tailoredamodels but may not be able to
re-program conformance checks.

e swapping conformance checks means that the transformdéeelopment will remain
the same; swapping metamodels opens up the possibilityetdhesn for the automated
generation of dedicated development environments withritify sets of control elements.

Finally, there is another motivation for supporting morartbone mode of well-formedness
checking which can only be enabled by using multiple metarhedrsions: Typically, trans-
formation definitions comprise layers of rules in the semsg bne will expect all rules from
one layer to have matched, and then match no more, beforeextidayer of rules will be used.
This layering often exists independently of whether or his dealt with explicitly. In particular
with in-place transformations, the input and output larggrsachange from layer to layer. The
first layer’'s input language is the source language whil®utput, the input to the next layer,
will typically contain generic links which are not part ofetlsource language (see Sect®f).
The last layer’s output language is the target languageremisall preceding layers will produce
either augmented versions of it or mixtures between thecsoamd target languages. The avail-
ability of a series of adapted metamodels may aid the tramsftion developer to understand
what the layers involved are and assign rules to them acugydi

We have not yet pursued the idea of using a series of tranafmmlayer interface language
definitions and it would be challenging to automate the gaiwr of these intermediate lan-
guage definitions. Luckily, however, automating the caatf customized pattern specification
languages from original input/output language definitioas be automated very well.

3.3 Semi-Automated Metamodeling Rule

name : string

The previous section motivated the use of vari-
ants of original metamodels for defining the
well-formedness of pattern specifications. In
this section, we discuss how one can create such
variants systematically and thus automate the

«[NACs 1|LHS 1|RHS

PostConditionPattern

[

PreConditionPattern

[

process. a o |
Figure4 depicts how rules refer to precondil- MTpre_Element | | GenericNode | MTpost_Element

tion and postcondition patterns and the pattern )

element they contain. When adapting transfor- Figure 4: Rule Metamodel

mation languages to specific input and output languagesheeeés to tailor these precondition
and postcondition patterns so that they are fit to be usedhéoraspective input and output lan-
guages. We obtain the required tailored pattern speciitatietamodels by starting with the
original language metamodels and then subjecting them tovdbar of changes. The required
metamodel metamorphosis has three distinct componetagaton, augmentation, and modifi-
cation. Figures shows an excerpt of the result of applying these steps torilie fitate machine
metamodel of Figuré.
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3.3.1 Relaxation
MT_Element o
Original language defini- | Constaints: MT_label : string Senee T
. - GenericNode can gnly link MT_pivot : MT_Element *
FIOI’]S Canhqt be used as 3?;;nt§|2:nt§?gtrher MT_isProcessed : boolean
is for defining the well- MTpost_Element =~
formedness of pattern spec- ]
L. [ |
IfI_CatlonS' . MTpre_Element MTpost_Element GenericNod
First, often transformation _ enerictiode
MT_matchSubtype : boolean

designers aim to match for
any one-of-many element

PAN

types, e.g. one-of-many|
“connection” kinds.

Such generalizations are
typically present in orig-

MTpre_State

MTpost_State

MTpre_name : constraint
MTpre_islnitial : constraint
MTpre_isAccepting : constraint
MTpre_current : constraint

MTpost_name : action
MTpost_islnitial : action
MTpost_isAccepting : action
MTpost_current : action

inal language definitions MTors Jiostats
but as abstract concepty 0.1
which cannot be instanti- - . . .
a.ted. One relaxation SteF MTpre_FSATransition MTpost_FSATransition
therefore iS to turn SUCh MTpre_label : constraint MTpost_label : action
abstract concepts into con
crete ones.

Second, as mentioned
before, enforcing minimal
multiplicity constraints would
be completely impractical.

A further relaxation step is, therefore, to reduce all miaimmultiplicities to zero (see Figure
for the relaxation ofstate multiplicities and Sectiod for a more elaborate discussion).

Third, only a subset of explicitly formulated original carants (e.g., using ©L) can be ac-
tive for the purpose of checking pattern specification i@ltnedness. All constraints concerned
with ensuring completeness of models are potentially talslg for the inherent fragment-like
nature of specification patterns. The relaxation proceskl@utomatically filter out constraints
with the help of a corresponding naming scheme for consrainmanually provided augmen-
tations, but we currently believe any further automatioh g difficult to achieve. This is why
we refer to the metamodel generationsasi-automated.

A potential further relaxation is to raise all maximum mpiigities to “unbounded” in order
to allow intermediate results that can be helpful to drive tlansformation process, despite the
fact that they would be ill-formed as end results. However,argue that purposefully violating
well-formedness requirements in this way amounts to “hagkand should be avoided. We
recommend using so-called generic links for these purposésad.

MTpre_fromState
0..1

MTpost| toState MTpost |[fromState
0..1 0..1

MTpre_Next
0..1

MTpre_Event

MTpost_Next
0..1 0..1

MTpost_Event
MTpost_label : action
MTpost_current : action

0.1

MTpre_label : constraint
MTpre_current : constraint

Figure 5: Generated Pattern Specification Metamodel

3.3.2 Augmentation

To be fit as pattern specification metamodels, input/outpetamodels also need to be aug-
mented with features required for transformation purposes
In Figure5, all types are made descendant$/df_Element so that they inherit features that all
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elements that may appear in a pattern specification must bayea way to label them for iden-
tity matching. The generated metamodels also featureiadditgeneric nodes and links which
are often necessary to drive the transformation (e.g.,lmegdneric connectors between states
and places in Figur&). Elements which are used in negative application conutiiNACs)

or the LHS of rules (subtypes &M Tpre element) also need a flag feature that tells the pattern
matcher whether to look for exact types or allow subtype hiatcas well. The remaining differ-
ences between the original and generated metamodel ekerenall modifications of existing
features.

3.3.3 Modification

The modifications that need to be applied to original metaghelkments depend on whether we
want to obtain precondition (i.e., NAC and LHS) or postcdiodi (i.e., RHS) pattern specifica-
tions.

For precondition pattern specifications we need to replaeedspective types of attributes to
the type ‘tonstraint”. This allows the transformation designer to specify coaiats for element
features, such a8Tpre_name="NEXT" (see Figure3). For postcondition pattern specification we
need to allow actions rather than constraints, so that #restormation designer can set values
of attributes, among other potential actions. In mikxtPlace of Figure3, the “=” in the RHS
part of the rule is an assignment action rather than an eguealeck. Note that the same naming
and modification scheme is applied to classes, associadodsole names.

Finally, we sometimes need to modify the concrete syntaandliage elements whose size
or natural layout is not conducive for specifying patterddso, elements which are normally
not rendered at all, such as instances of formerly absttass&s or association ends, need to be
assigned some concrete syntax so that they may be referired tosual manner.

We have implemented a prototype of this procedure. A new medial is created as partly
shown in Figure5. In the relaxation step, we did not consider the (OCL) camsts of the
respective metamodels yet and they thus have been maitainghe augmentation step, the
first two levels of the inheritance hierarchy of Figireorrespond to concepts from the meta-
metamodel of ADM3/MoTIF. Finally in the modification step, our prototype did not téke
account issues related to layout in the concrete syntaxegbdittern elements.

Summarizing, this section has discussed various altegsafor enabling transformation de-
signers to make use of customized pattern specificatiorubeges and environments. We pro-
posed the semi-automated generation of customized me&snbdsed on the components of
relaxation, augmentation, and modification.

4 Related Work

Bézivin et al. explicitly model transformations with “trsfiormation models”BBG™06] but for
capturing the relations maintained by transformationisaiathan supporting their customization
or generation.

The need to relax conformance rules occurs in other areaseks Morin et al. also relax
an original metamodel in order to allow the formulation ofriout specifications in the context
of aspect-oriented modeling/[BJR07. Levendovszky et al. capture domain-specific design
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patterns which also inherently are fragments of proper nsdd&MO09]. Instead of creating a
relaxed version of the metamodel, they use relaxed confuecmai.e., “relaxed instantiation”.
This allows them to use one original language definition &c&hboth proper models and design
patterns. Since they only need to support this one variagboformance checking, this is a
viable approach. In general, however, the explicit modebh transformations may require a
multitude of conformance levels, making the relaxation etamodels a more attractive option
(see SectioR.2). Levendovsky et al., furthermore, observe that simpljirsgegll minimal mul-
tiplicities to zero will allow the formulation of fragmentshich cannot be completed to proper
models. They suggest detecting such fragments by usingraorissolving. This approach is
applicable in our context as well and could be realized byiragdorresponding constraints to
the relaxed metamodels.

5 Conclusion

Although we discussed our work and developed our artifactaé context of ADM3/MOTIF,
our ideas and results are by no means confined to the spedifiis combination. Our proposal
to explicitly model transformation definitions is appliéatio a wide range of transformation
approaches.

While it is not necessary to explicitly modall aspects of transformation definitions, we have
illustrated that there are benefits associated with each step. First, the explicit modeling
of pattern specifications allowed the semi-automatic geimr of customized pattern specifi-
cation language definitions based on the components ofatibax augmentation, and modifi-
cation. It thus provided a cost-effective way to obtain ooszed transformation development
environments. In contrast toTA higher-order transformations, ours can be fully checked fo
well-formedness violations. Second, the explicit modgliri transformation control structures
allowed the modular addition of new behavior, such as selesed animation. Summarizing,
we demonstrated the benefits of explicitly modeling tramaftions and proposed ways to eco-
nomically enable their definition.

For future work, we would like to investigate how explicithgodeling transformation lan-
guages allows support for higher-order transformatiorressted as models, transformations can
be themselves subject to transformation.
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