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Abstract: In the Model-Based Engineering (MBE) paradigm, models are the core elements
in the design process of a system from its requirements to the actual implementation of the
system. By means of Supervisory Control Theory (SCT), supervisory controllers (supervi-
sors) can be synthesized instead of designing them manually. In this paper, a framework based
on the Compositional Interchange Format for hybrid systems (CIF) has been developed that
integrates the MBE and the SCT paradigms. To illustrate the framework, an industrial-size
case study has been performed: synthesis of a supervisory controller for the patient support
system of an MRI scanner. In this case study, we address 1) modelling of the components
and the control requirements; 2) synthesis of the supervisor; 3) simulation of the synthesized
supervisor and a hybrid model of the plant; and 4) real-time, simulation based control of the
supervisor and the actual patient support system of the MRI scanner.

Keywords: Model-based engineering, Supervisory control synthesis, Automata, Interchange
formats

1 Introduction
Complex manufacturing machines consist of physical components (hardware) and control systems. The
physical components, typically sensors, actuators and main structure, provide the means of the machine.
The interactions between the physical components result in the so-called uncontrolled behavior of the
machine. The control systems interact with the sensors and actuators to employ the means of the machine,
which results in the controlled behavior of the machine. The controlled behavior should be such that
the machine fulfills its functions, i.e. meets its pre-defined requirements. The control systems can be
divided into five functional subsystems, see [PFC89]: 1) Regulative control (also known as direct or
feedback control) that assures that the actuators reach the desired position in the desired way. 2) Error-
handling control (also known as fault detection and isolation or exception handling) that detects erroneous
behavior, determines the cause, and acts to recover the machine control system. 3) Supervisory control
(also known as logic control) that coordinates the control of the individual machine components. This
includes planning, scheduling and dispatching functions. 4) The data processing subsystem that stores
and manipulates gathered data. 5) The user interface subsystem that allows the user to interact with the
machine control system. In this paper, we focus on the development process of supervisory controllers
(supervisors).

The current practice of developing supervisory controllers is to code them manually, based on (possibly
informal) control requirements. Creating and changing requirements, a design and/or an implementation
can be time consuming and error-prone. An other possibility is to use the Model-Based Engineering
(MBE) paradigm, see [Ogr00, Bra08], in order to design the supervisory controller. In this case, (pos-
sibly formal) executable models for the supervisory controller are developed (by hand). Using analysis
∗ This work was partially done as part of the Darwin project under the responsibility of the Embedded Systems Institute, partially
supported by the Netherlands Ministry of Economic Affairs under the BSIK program, as part of the ITEA project Twins 05004, and
as part of the Collaborative Project MULTIFORM, contract number FP7-ICT-224249
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techniques such as simulation and verification, the system controlled by the supervisor can be analyzed.
However, the development of a model of the supervisory controller is a highly non-trivial task. An alterna-
tive approach is to synthesize the supervisory controller automatically using Supervisory Control Theory,
see [Won07, CL07]. First, the uncontrolled behavior of the machine to control is modeled precisely (by
hand). Secondly, the requirements on the function of the machine (with respect to supervisory control)
are modeled in detail (by hand). This includes safety and functional requirements. Out of these formal
requirements and the model of the uncontrolled system, the supervisory controller can be synthesized
automatically. This supervisory controller is proven correct by construction. This means that the con-
trolled system behaves according to the prescribed requirements on the function of the machine and that
the system is deadlock and lifelock free.

Although Supervisory Control Theory ensures that the controller is proven correct by construction, it
remains a non-trivial task (but easier than the development of the supervisory controller itself) to define
the correct plant and requirement models, and errors or undesired behavior might still exist in the plant
models and/or requirement models.

Therefore, in this paper, we describe a framework developed for supervisory controller design. It
combines the model-based engineering paradigm, that enables analysis by means of simulation and ver-
ification, together with supervisory control theory, that provides automatic synthesis of supervisors. For
example, the plant models that are developed for the supervisor synthesis, can be reused for simulation
of these plant models controlled by the synthesized supervisor. Simulation results can be used to validate
whether the controlled plant behaves as intended. At a later stage in the design process, more detailed,
e.g. timed or hybrid, plant models can be developed. Simulation of the more detailed plant models con-
trolled by the synthesized model of the supervisor, enables a more detailed analysis. Early integration
and testing can be performed by means of coupling models and realizations of different components via
an infrastructure. Finally, the realization of all plant and controller components are integrated into one
system.

To support the design process of industrial-size supervisory controllers, a (software) tool framework,
based on the Common Interchange Formalism for hybrid systems, see [BRSR07, BRRS07], has been
developed. To illustrate this tool framework, we describe an industrial-size case study that has been
performed: synthesis of a supervisory controller for the patient support system of an MRI scanner.

The outline of this paper is as follows. Section 2 introduces the Model-Based Engineering (MBE)
paradigm and Supervisory Control Theory (SCT). The developed framework and the accompanying tools
are described in Section 3. The industrial-size case study is described in Section 4. Section 5 concludes
the paper with conclusions and recommendations of future work.

2 MBE and SCT
This section provides the required background on Model-Based Engineering and Supervisory Control
Theory.

2.1 Model-Based Engineering
The Model-Based Engineering (MBE) system development process is depicted in Figure 11. It starts with
defining system requirements R and creating a system design D. Based on system design the system is
divided into n components. For each component i ∈ {1, . . . ,n} requirements Ri are defined and its design
Di is developed. Based on the design of a component, models Mi are developed, each with their own
purpose and required level of detail. After that, the component implemented resulting in a realization Zi.

The models of the components can be used to perform further functional and performance analysis

1 In the figure, the following conventions are used: icon denotes documents, denotes models, and denotes realizations.
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Figure 1: Model-Based Engineering.

by means of simulation and/or verification techniques such as model checking. Early integration and
testing can be performed by means of coupling models and realizations of different components via an
infrastructure. At the end, the realization of all components are integrated into one system. To confirm
that the resulting system fulfills its requirements, the implemented components and the system as a whole
are tested.

2.2 Supervisory Control Theory
Supervisory Control Theory (SCT) has been developed by W.M. Wonham and P.J. Ramadge, and their
co-workers, in the 1980’s, see [Won07, CL07]. It allows to synthesize the models of the supervisors, such
that the correctness of these models is predetermined. The behavior of the system under control (further
on, uncontrolled system) is considered unsatisfactory and has to be restricted by the supervisor to fulfill
certain requirements. First, an uncontrolled system and its requirements are formally specified in terms
of automata. Then, from these models, the supervisor is derived. The method guarantees that the system
consisting of the derived supervisor and the uncontrolled subsystem fulfills the requirements. The theory
has been implemented in a software package called TCT, see [Won07]. For large systems, the method
suffers a state space explosion problem. To overcome this problem, research has been and is conducted to
reduce complexity by using methods such as modular, decentralized and hierarchical control, see [CL07]
and references therein.

3 Integrating MBE and SCT
In this section, we present the framework developed for supervisory controller design. It combines the
model-based engineering paradigm, that enables analysis by means of simulation and verification, to-
gether with supervisory control theory, that provides automatic synthesis of supervisors. Furthermore, we
present the developed tool framework that supports the design process.

3.1 Integrating MBE and SCT
Figure 2 shows the framework developed for supervisory controller design. From requirements RS/P

2 of
the controlled system, a design DS/P of the system is made and decomposed into a plant and a supervisory
controller. Requirements RS of the supervisor are formally modeled resulting in model MRS of the control
requirements . From plant requirements RP, a design DP and one or more models MP can be made, each

2 Notation S/P denotes plant P under supervision of supervisor S.
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Figure 2: Supervisory controller design framework.

with a different level of detail. For instance, a discrete-event model of the plant can be made that serves
as input for the supervisory controller synthesis, while a more detailed (possibly hybrid) model can be
developed to study the dynamic behavior of the plant by means of simulation. In this way, simulation of
the hybrid plant model and the model of the supervisor can reveal invalid assumptions in the models that
are used for the supervisor synthesis. Using SCT, that takes as input the discrete-event model of the plant
and the model of the control requirements for the supervisor, the model of supervisor MS is synthesized.
Using this model and the model(s) of the plant, the analysis techniques provided by the MBE paradigm
can be used. By means of, for instance, code-generation, a realization of the supervisor can be made.

3.2 Tool framework

In this section we describe the tool-framework that is developed to support the development of supervisors
using the integrated MBE and SCT paradigms. The tool-framework uses the Common Interchange Format
for hybrid systems (CIF) to connect the controller synthesis tools and the analysis tools such as simulators,
and modelcheckers.

3.2.1 The CIF language

The Compositional Interchange Format (CIF) for general hybrid systems, see [BRSR07, BRRS07, BRRS08],
was recently developed within the European Network of Excellence HYCON, see [HYC05]. Its opera-
tional semantics, defined formally in a SOS style [Plo04], defines the mathematical meaning of a hybrid
model and is independent of implementation issues and limitations, such as e.g. circular dependencies
and algebraic loops. In [BRSR07], the CIF has been related to previous work on interchange formats for
hybrid systems, such as [MoB02], and [PCPS06].

The CIF has been developed with two major purposes in mind 1) to provide a generic modeling formal-
ism (and appropriate tools) for a wide range of general hybrid systems, and 2) to establish inter-operability
of a wide range of tools by means of model transformations. The CIF serves as the basis of the Euro-
pean research project MULTIFORM, see [MUL08]. The main objective of this project is to develop
interoperability of tools and methods based on different modeling formalisms to provide integrated coher-
ent tool support for the design of large complex controlled systems. Within MULTIFORM, algorithms
and tools for the translation to/from the CIF will be defined for a large variety of modeling languages,
including CHI, GPROMS, MATLAB/SIMULINK, MODELICA, MUSCOD-II, PHAVER, and UPPAAL.
In [SSB+09], the concepts of the CIF are illustrated by means of a hybrid model of a supermarket refrig-
eration system that exhibits both, nonlinear DAE dynamics as well as significant discrete dynamics, and
serves as a challenging case study for hybrid control techniques in several European research projects.
More information about CIF and CIF tools allowing, e.g., simulation and visualization, can be found
in [Sys08].

Proc. MPM 2009 4 / 10



ECEASST

3.2.2 Tool framework

Figure 3 shows the developed tool framework to support the supervisory controller design. Documents,
models and realizations are graphically depicted according to the convention of Figure 1. (Software) tools
are represented as filled, rounded rectangles.
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Figure 3: Tool framework based on CIF.

In the tool framework, RS/P and DS/P represent the requirements and the design of plant P under
supervision of supervisor S, and RP and RS denote the requirement documents of the plant and supervisor,
respectively. The models used in this figures are related to the models from Figure 2 as follows: RS.ads ∈
MRS ; S.ads,S.cif ∈MS; PDE.ads,PDE.cif,PHY.cif ∈MP; and S.py ∈ ZS

3.
The control requirements RS are formally modeled by means of automata, resulting in RS.ads. Model

PDE.ads describes the uncontrolled discrete-event behavior of the plant. The TCT tool takes as input
(discrete-event) model of the uncontrolled system PDE.ads and model of the control requirements RS.ads.
As output, we obtain model of the supervisor S.ads. Using the ADS2CIF translator, the models of the
plant and the supervisor can be translated to equivalent CIF models (PDE.cif, and S.cif, respectively). A
discrete-event model of the plant controlled by the supervisor S/PDE.cif is obtained by combining these
individual component models using the MERGECIF tool.

At this moment, the translations are implemented using the general-purpose programming language
Python. Recently, we have defined the conceptual model (domain model or meta model) of the CIF lan-
guage by means of Ecore class diagrams [SBPM09]. These class diagrams (see [Sys08]) will be used for
the model-to-model transformations that will be developed in near future.

Using the CIF simulator (SIMULATOR), the S/PDE.cif model can be simulated to analyse its behavior
with respect to the control requirements. After that, the discrete-event model of the plant can be replaced
by the hybrid CIF model of the plant PHY.cif. The next step is to replace the hybrid CIF model of the
plant by actual hardware of the plant P. The real-time simulator (RT SIMULATOR) connects the hardware
of the plant and the CIF model of the supervisor to analyse the response of the plant hardware as well
as the simulation output. After that, using the CIF2PY compiler, the CIF model of the supervisor can be
compiled into Python code S.py that can be executed on real-time control platform RT CONTROL that is
connected to the actual hardware of the plant.

3 The (file) extension ‘.ads’ refers to the input language for the controller synthesis software package TCT, extention ‘.cif’ refers
to the CIF language, and extention ‘.py’ refers to the Python language.
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4 Case study: Patient Support System
An MRI scanner, see Figure 4, is used in medial diagnosis to render pictures of the inside of a patient
non-invasively. To position a patient in an MRI scanner, a patient support system, consisting of a patient
table (see Figure 5), a user interface and a light-visor is used.

User Interface Light Visor

Bore

Patient table

Figure 4: MRI scanner

Position encoder
(on/off)

Horizontal motor
(in/out/stopped)

Clutch
(on/off)

Tabletop sensor
(on/off)

Max out sensor
(on/off)

TTR button
(on/off)

Vertical motor
(up/down/stopped)

Max up sensor
(on/off)

Max down sensor
(on/off)

Emergency
(on/off)

2× Timer
(on/off)

Figure 5: Patient table

The patient support system can be divided into the following components: vertical axis, horizontal axis
and user interface. The vertical axis consists of a lift with appropriate motor drive and end-sensors. The
horizontal axis contains a removable tabletop which can be moved in and out of the bore, either by hand or
by means of a motor drive depending on the state of the clutch. It contains sensors to detect the presence of
the tabletop, and the position of the tabletop. Furthermore, the system is equipped with hardware a safety
system (emergency stop and tabletop release), that allows the operator to override the control system in
emergency situations. Finally, the system contains a light-visor for marking the scan plane, and automated
positioning of this scan plane to the center of the bore of the MRI scanner.

4.1 Controller synthesis
4.1.1 Models of the uncontrolled plant

The model of the uncontrolled plant consists of 5 components: 1) vertical axis consisting of the motor
model, the sensors model, and the model of the relation between the motor and the sensors; 2) horizontal
axis consisting of separate models for the motor, clutch, sensor, TTR sensor, TT sensor, encoder, and
the TTS mode, respectively, and a model for the relation between the actuators and the sensors; 3) PICU
consisting of models for the tumble switch, manual button, light-visor button, TTS button, manual LED,
TTS LED, and the emergency LED, respectively. Furthermore, it contains a model to describe the time-
behavior of the tumble timer; 4) light visor; 5) emergency subsystem. The complete models of the vertical
axis are shown in Figure 64.

The vertical axis contains two sensors: maximally up and maximally down. Initially the table is as-
sumed to be neither up or down, so that both end sensors are inactive. The sensors emit the events
v max. . . on or v max. . . off, when a sensor becomes active or ceases to be active, respectively (Fig. 6a).
Because of the physical location, the sensors are never active at the same time.

The motor is initially in an error state (Fig. 6c). The motor returns to this state after each error. From
the error state, the system can be reset, to enter the inactive state. If the system is inactive, movement can
be started. When movement is stopped, the system enters the stopping state. If the system is not moving
anymore, the motor emits the event stopped, and the motor enters the stopped state. From this state, either
movement can be started, or the system can be reset to enter the inactive state.

4 In the figure, solid and dashed edges denote controllable and uncontrollable events, respectively; all states are marked.
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Figure 6: Plant model of the vertical axis (∈ PDE.ads).
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Figure 7: Example vertical control requirements (∈ SR.ads).

The sensors do not change state when the motor is not moving (Fig. 6b). Only when the vertical motor
is moving up, the maximally down sensor can turn off and the maximally up sensor can turn on, and
likewise for the opposite direction. Note that this model is not a control requirement, it is an physical
property of the system. If this model would be included as control requirement, the resulting supervisor
would be empty due to restrictions on the uncontrollable sensor events, which cannot be realized by
any supervisor. Summarized, the model of the uncontrolled plant consists of 27 relatively small, loosely
coupled automata.

4.1.2 Models of the requirements

In total there are 57 automata describing the control requirements for the supervisor. The automaton model
of the requirement “The vertical axis should not move beyond its maximally up and maximally down
position” is shown in Figure 7. When the table is maximally up or down, it should stop (events v stop up
and v stop down). In the maximally up position it is not allowed to move up (no event v move up), in the
maximally down position it is not allowed to move down (no event v move down).

4.1.3 Synthesis of the supervisor

By using modular supervisor synthesis, see [Won07, CL07], 14 supervisors are synthesized which to-
gether implement all control requirements. The global nonblocking property is checked using automaton
abstractions, see [SSRH08]. This abstraction procedure removes internal transitions of relevant automata,
allowing the nonconflicting check to be performed over relatively small automata, even though the original
system is fairly large.
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Figure 8: Hybrid CIF model of the vertical axis (∈ PHY.cif).

4.2 Simulation of the supervisor and a hybrid model of the plant

Figure 8 shows the hybrid CIF model of the vertical axis component. In this figure, an automaton instan-
tiation is represented as a solid box that is labeled with its name and the name of the automaton definition.
Its internal declarations are listed in the upper left corner, and its external declarations are represented
as ports on the borders of the box. The shape of a port depends on the type of declaration: a solid box
denotes an action, and a solid triangle on the outer side (inner side) denotes an output (input) variable.
Modes are visualized by means of circles labeled with the name of the mode. The flow, invariant and
time-can-progress predicates are omitted from the figure, the predicates are true unless stated differently.
Edges are represented as arrows between modes and are labeled with their guard, action, update (e.g.
assignment to a variable), and, if the edge is urgent, the keyword now.

The CIF model of the vertical axis consists of an automata instantiation vertical that instantiates automa-
ton definition Vertical. Automaton definition Vertical consists of the automata instantiations motorStop,
motor, and sensor that instantiate the automata definitions MotorStop, Motor, and Sensor, respectively.
Automaton definition MotorStop translates the various stop events from the supervisor to a single stop
event; Motor models the dynamic behavior of the motor; and Sensors models the behavior of the sensors.
The invariant predicate for all modes of the Motor automaton equals ˙postion = speed, where ˙position de-
notes the derivative of the position. The automata Motor and MotorStop synchronize on the stop event.
The automata Motor and Sensors share the continuous variable position.

Figure 9 shows the simulation results of the following use case. Initially, the tabletop is positioned at
the maximally out position, and the table is halfway up. The tumble switch is used to move the table to the
upper position (t = 2). When the table reaches the upper position (t = 3), the table stops, and the tumble
switch is released. Then the table is moved inward, first slowly (t = 4), then faster (t = 5). After that the
movement is stopped (t = 7). Finally the table is moved out (t = 8), and switches automatically to moving
down (t = 10) until it reaches the lowest position.

Proc. MPM 2009 8 / 10



ECEASST

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10  12
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

po
si

tio
n

an
gl

e

t

H_position(t) V_position(t) Tumble_angle(t)

Figure 9: Simulation results S/PHY.cif.

4.3 Real-time, simulation based control

The sensors and actuators of the actual patient support table are connected to an industrial grade I/O
controller, which in turn is connected to a standard PC. The I/O controller conditions the sensor signals,
translates sensor state changes to events, and translates events from the PC to appropriate inputs for the
actuators. On the PC, the events from the I/O controller are buffered in an event queue. After receiving an
event from the I/O controller, the state of the supervisor is updated, and the set of controllable events that
is allowed by the supervisor is calculated. From this set, an event is selected and sent to the I/O controller.
In the simulation model, the plant model and the model of the supervisor interact synchronously, i.e. they
synchronize on common events. However, during the Real-time, simulation based control, the interaction
between the patient table and the supervisor is asynchronously. More precisely: after a change of state
of a sensor, this change has to be detected by the I/O controller (sensor polling delay). Then the I/O
controller sends an event to the PC (communication delay between I/O controller and PC). After detection
of the event (event queue polling delay), the state of the supervisor is updated, the allowed events are
calculated, and an event is selected (calculation delay). In the setup, first all events from the event queue
are processed. Then, when the event queue is empty, an allowed controllable event is selected and sent to
the I/O controller.

5 Conclusions
In this paper, we developed a framework for supervisory controller design, based on the Model-Based
Engineering and Supervisory Control Theory paradigms. This framework enables 1) simulation of the
discrete-event plant models controlled by the synthesized supervisor model in order to validate the con-
trolled behavior; 2) simulation of more detailed, e.g. timed or hybrid, plant models; 3) early integration
and testing by means of real-time simulation; and 4) code-generation for the supervisory controller.

To support the design process of industrial-size supervisory controllers, a tool framework, based on the
Common Interchange Formalism for hybrid systems (CIF) has been developed.

As part of the MULTIFORM project, the relations between the discrete-event model of the plant that
is used for the supervisory controller synthesis and the more detailed timed and/or hybrid models of the
plant will be studied.

Acknowledgements: The authors like to thank Dennis Hendriks and Albert Hofkamp for implementing
major parts of the CIF tool framework, and Peter Thijs for implementing the ADS2CIF translation tool.
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