Electronic Communications of the EASST

Volume X (2009)

Proceedings of the
3" International Workshop on
Multi-Paradigm Modeling
(MPM 2009)

Code Generation with the Model Transformation of Visual Behavior
Models

Tamas Mészaros and Tihamér Levendovszky and Gergely Mezei

10 pages

Guest Editors: T. Levendovszky, L. Lengyel, G. Karsai, C. Hardebolle

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Code Generation with the Model Transformation of Visual Behavior
Models

Tamas Mészaros' and Tihamér Levendovszky” and Gergely Mezei®

! mesztam @aut.bme.hu, 3 gmezei @aut.bme.hu

Department of Automation and Applied Informatics
Budapest University of Technology and Economics, Budapest, Hungary

2 tihamer @isis.vanderbilt.edu
Institute for Software Integrated Systems
Vanderbilt University, Nashville, TN, USA

Abstract: There exist numerous techniques to define the abstract and the concrete
syntax of metamodeled languages. However, only a few solutions are available to
describe the dynamic behavior (animation) of visual languages. The aim of our re-
search is to provide visual modeling techniques to define the dynamic behavior of
the languages. Previously, we have created languages to describe animation. In this
paper, we describe how these models can be processed by model transformation
techniques. We elaborate the main steps of the transformation and show the details
as well. We use graph rewriting-based model transformation, therefore we provide
a highly generic solution which can be easily modified, and analyzed with the tech-
niques borrowed from the field of graph rewriting. The termination analysis for the
presented method is also provided.

Keywords: Metamodeling, Animation, Model Transformation, VMTS

1 Introduction

Domain-Specific Modeling (DSM) has gained increased popularity in software modeling. Domain-
Specific Modeling Languages (DSMLs) can simplify the design and the implementation of sys-
tems in various domains. Domain-specific visualization helps to understand the models for do-
main specialists not familiar with programming.

A popular way to define DSMLs is metamodeling. Metamodels define a vocabulary of model
elements for a specific language by describing the available model elements, their properties and
the relations between the elements. This definition is often referred to as the abstract syntax of
the language. However, metamodeling is not meant to describe the visual representation, the
concrete syntax, or the editing behavior of modeling items. Based on the metamodel, a default
concrete syntax can be generated, but the description of customized visualization - including
colors, sizes and layouting - usually needs additional modeling techniques.

Multi-paradigm modeling [MVO02][MV04][VLMO2] is a special, straightforward way to apply
domain-specific modeling to describe complex systems with different languages. Each language
is efficient in its own domain and together, they can describe different aspects of the same sys-
tem. Therefore, multi-paradigm modeling not only applies domain-specific languages, but it

1/10 Volume X (2009)

mailto:mesztam@aut.bme.hu
mailto:gmezei@aut.bme.hu
mailto:tihamer@isis.vanderbilt.edu

Code Generation with the Model Transformation of Visual Behavior Models Eq}

offers a higher level of model composition techniques. The integration of orthogonal models
is achieved by the modeling environment and the model processors. Multi-paradigm modeling
addresses and integrates three orthogonal directions of research [VLMO02]: (i) multi-formalism
modeling, which addresses building models using different formalisms and designing transfor-
mations between them; (ii) model abstraction that covers the description of models at different
abstraction levels; (iii) metamodeling, which means formally defining models as formalisms.
Language engineering is a key factor in Multi-Paradigm Modeling (MPM). Since MPM strongly
builds on metamodeling, the applied language engineering methods must also be generic enough
to support various metamodels.

Besides the generic methods to build the abstract and concrete syntax of a visual language,
only a few solutions are available to describe the dynamic behavior (“animation”) of the models
created by metamodeling. By animation, we mean both the visualization of automated model
manipulation and the manipulation of the presentation without modifying the underlying model
itself. Recent solutions usually bind visualization properties to model properties, and achieve
animation by manipulating model properties. Model properties are usually modified with model
transformation or direct API calls.

In [MMCO09], we have already presented an integrated solution to describe the dynamic be-
havior of the models in a generic and visual way. In our approach, we separate the model and
its animation logic, and provide visual languages to define the animation of either the model
elements or only their visualization. We apply the multi-paradigm approach in the sense of sepa-
rating the animation description into different domains: (i) framework integration, (ii) animation
logic specification, and (iii) user interface description. The integration of the models is per-
formed with both references between models of different domains and by the model processors.
The integration of external components or frameworks into our environment is supported with a
visual language and a code generator, thus, the animation logic can handle all components in a
uniform way.

To be able to execute the visual behavior models with high performance, instead of the run-
time interpretation of the models we generate executable source code from them and compile the
source code into reusable dynamic linked libraries. We perform the code generation with graph
rewriting-based [EEPT06] model transformation. In this paper, we present the transformation
steps used to build the model of the source code from the animation models. The presented
solution is not specific to VMTS, it can be adapted to any metamodeling environment which
implements our animation framework.

2 Background

Visual Modeling and Transformation System [VMTO09] is a general purpose metamodeling envi-
ronment supporting n-level metamodeling. N-level means in this context that the instance models
can be used as metamodels: they can be used to define model hierarchies such as meta class di-
agram - class diagram - object diagram. The maximum depth of these hierarchies is not limited;
we can construct an n-level modeling chain. VMTS uses a proprietary modeling space. Models
in VMTS are represented as directed, attributed graphs. In our approach, edges are attributed as
well.

Proc. MPM 2009 2/10

Eg ECEASST

Event handler

. - Event handler model
implementation

High level animation model Animator state machine

ENVIRONMENT

Domain knowledge and
simulation engines

Animation
engine

Animated model

Figure 1: The Architecture of the VMTS Animation Framework

2.1 The VMTS Animation Framework (VAF)

The VMTS Animation Framework (VAF) [MMCO09] is a flexible framework supporting the real-
time animation of models both in their visualized and modeled properties. The architecture of
VAF is illustrated in Figure 1.

VAF separates the animation of the visualization from the dynamic behavior (simulation) of
the model. For instance, the dynamic behavior of a graphically simulated statechart is really
different from that of a simulated continuous control system model. In our approach, the domain
knowledge can be considered a black-box whose integration is supported with visual modeling
techniques. Using this approach, we can integrate various simulation frameworks or self-written
components with event-driven communication. The animation framework provides three visual
languages to describe the dynamic behavior of a metamodeled model, and their processing via an
event-driven concept. The key elements in our approach are the events. Events are parametriz-
able messages that connect the components in our environment. The services of the presentation
framework, the domain-specific extensions, possible external simulation engines (ENVIRON-
MENT block in Figure 1) are wrapped with event handlers, which provide an event-based in-
terface. Communication with event handlers can be established using events. The definition
of event handlers is supported with a visual language. The visual language defines the event
handler, its parameters, the possible events, and their parameters - called entities (Event handler
model in the figure). The default implementation of an event handler can be generated [LM09]
based on the interface of the wrapped objects (Implementation block).

The animation logic can be described using an event-driven hierarchical state machine, called
Animator (Animator state machine block). We have designed another visual language to define
these state machines. The metamodel of this language is depicted in Figure 2. The state machine
consumes and produces events. The transitions of the state machine are guarded by conditions
(Guard property) testing the input events and fire other events after performing the transition
(Action property). States also define an Action property, which describes an operation that is
executed when the state becomes active. The state space of the Animators can be extended using
variables of primitive types. The input (output) events of the state machine are created in (sent

3/10 Volume X (2009)

Code Generation with the Model Transformation of Visual Behavior Models Eﬁ

EventRoute

L

Port

. e . am L]
e

Startstate Stopstate

Figure 2: The metamodel of the VMTS animation description language

to) another state machine or an event handler. The events produced by the event handlers and
the state machines are scheduled and processed by a DEVS [ZKPO0O] based simulator engine
(Animation Engine).

The event handlers and the state machines can be connected in a high-level model (High level
animation model). The communication between components is established through ports. Ports
can be considered labeled buffers, which have a configurable size. Note, that both the high-
and low-level languages are defined by the same metamodel (Figure 2), however, based on their
application they can be considered as two different languages.

2.1.1 Generated source files

Our implementation is based on the C# language, however, the presented solution can be easily
adopted to arbitrary object-oriented programming languages. On executing an animation, both
the high-level model and the low-level state machines are converted into source code, which
highly builds on our DEVS-based simulation engine.

From each state-machine model (from each Animator) an individual class is generated, which
implements the behavior described by the state machine. Furthermore, a Configuration class is
also generated from the high-level model, this class wires the animator-classes and the event-
handler instances together, and initializes the simulation framework.

The structure of the animation files is depicted is listed below:

namespace VMTS.VAF {
public class <AnimatorName> : Simulator {
//Ports of the animator implemented by properties
public Port <PortName> {get; private set;}
public <AnimatorName> (Coordinator coordinator)
base (coordinator) { }
<Variables of the animator>
public override void Init () {
//Initialization of the ports
<PortName> = new Port (this);
<PortName>.Capacity = <capacity>;
<PortName>.Circular = <isCircular>;
public override void BuildUp () {
startState = new VMTS.VAF.State(this, null, null);
currentState = startState;
//Initialization of the states
State <stateName> = new State(this, <entering action>,

Proc. MPM 2009 4/10

Eﬁ ECEASST

<container state>);
//Initialization of the transitions
<fromState>.AddTransition (new Transition(this, <toState>,
<guard condition>, <action>), <isInternal>);

P}

As one can see, the Init method initializes the ports, and the BuildUp method creates the states,
and connects them with transitions. The guard condition and the action assigned to a transition
is expressed using anonym methods.

The structure of the configuration files is the following:

namespace VMTS.VAF ({
class Configuration {

public Configuration() {
coordinator = new Coordinator();
Init ();

}

public Configuration(Coordinator _coordinator) ({

coordinator = _coordinator;
Init ();

}

private void Init () {

//instantiation of generated animator classes

<animator field> = new <animator type>(coordinator);...
coordinator.Simulators.Add (<animator field>);...
//instantiation of event handler classes

<event handler field> = new <event handler type> (coordinator);
coordinator.EventHandlers.Add (<event handler field>); ...
<setting event handler parameters>

//registering connections

coordinator.AddMapping (<from>.<fromPort>, <to>.<toPort>);...

}
<Animator field declarations>
<Event handler field declarations>

+}

The Coordinator class instantiated in constructor represents the interface towards the simulation
engine. In the Init method the animators and event handlers are instantiated, and registered
towards the coordinator, furthermore, the connections between the components (animators and
event handlers) are also registered.

3 Transformation Models

The model of the generated source code uses the VMTS implementation of a C# DOM, which
is very similar to the CodeDOM [COD] of Microsoft. Our DOM implementation builds on
a general code generation and parsing technique presented in [AL09]. The control sequence
of the transformation is depicted in Figure 3. The sequence can be departed into two well-
separated parts: part (1) creates the individual animation classes for each Animator element and
its contained state machine, while part (2) creates the configuration class.

5/10 Volume X (2009)

Code Generation with the Model Transformation of Visual Behavior Models Eq}

2+ RCGenerateSkeleton [2+ RCGenerateClass [', RCMethodInit 1. RCProperyPorts (&) .. RCMethodBuildup &)
a ' VAF_Rule_GenerateSkeleton .Y VAF Rule GenerateClass 4" VAF_Rule Method init o VAF_Rule_Property Ports w0 VAF_Rule_Method Buildup

. RCPopEvents * RCProcessTransitions 1 |
VAF_Rule_PopEvents sitions

L VAF Rule ProcessTr 1 J
1) v/
. RCCOSkeleton (1] 1. RCCOInitAnim A%, RCCOINitEH :, RCCOEventRoute [
(2) o VAF Rule_CQ_Skeleton o VAF Rule_CO_initAnim o VAF Rule_CO_imitEH .0 VAF Rule CO_EventRoutes

Figure 3: The control sequence of the transformation rules

[\ RCSuhLeveIStatz A RCTchEveIStats
{ o VAF Rule SublevelStates 4@ VAF_Rule ToplevelStates

csharpfile 0

Animator CSharpFie

‘ animator g

Model g

‘method_bulldup]
et

Memberbethod

‘compileunit

e
== = = ~ —

actionserpt |]] [[S] £ 8
Snppesimt SttementColiecton Snippetsimt VarabeReterancedr
odel Hodel 1 Hodel 1 o

(a) VAF_Rule_GenerateSkeleton (b) VAF_Rule_GenerateClass

Figure 4: Creating the skeleton of the animation source code

3.1 Processing the state machines

The VAF _Rule_GenerateSkeleton (Figure 4) rule creates the model for the source file, the default
namespace (VMTS.VAF) and the necessary namespace references. The rule is executed exhaus-
tively, meaning that it is repeated until a valid match (an unprocessed animator) is found. After
finishing this rule, an output file with default content is generated for each animator.

The VAF_Rule_GenerateClass is illustrated in Figure 4. The rule matches an Animator and
its connecting namespace element (the relation between the Animator and the namespace is
expressed with not an edge, but with an attribute reference). Then the rule creates a class
(class_anim) element in the output model, and adds a constructor with base constructor call
and the skeleton of the Inif method. The rule is executed in an exhaustive manner again.

Afterwards, the VAF_Rule_Property_Ports rule matches each Port inside an animator and gen-
erates a C# property for each of them within the appropriate class, furthermore, it also cre-
ates the initialization code for each port within the Init method of the class element. The
VAF _Rule_Method _BuildUp rewriting rule matches each Animator and their connecting class
again, and creates a BuildUp member method beginning with the initialization of the startState
and currentState member variables.

3.1.1 Processing the states

The following two rules (VAF_Rule_TopLevelStates and VAF_Rule_SubLevelStates) are depicted
in Figure 5. They are used to generate the model of the connecting code for the states contained
directly by the Animator (top-level) and for the states contained by another states (sub-level).
The VAF_Rule_TopLevelStates rule generates the model of the following code-fragment for each

Proc. MPM 2009 6/10

E} ECEASST

i et e tements “method buildup, class_anim[]
ool odel D imstate imState on on
oge 0 T oce 1
o refstate e nststate [
\\\\\\\\\\\\\\\ s e i Objeciresietpr decstate) [refstate oreata | _(nsttate) (esignContinedstart]
il odet 3 ol odel 3 e Aasgnsimt
o i) | s
thisRet | nullExpl [ymD legate | | nullExp2 |] . /', .
e 16 T TrEe G O) (i) O 8 Bt g
odel odl 3 odel1 ol 3 e
ot o 1 oo 1 o o3 Mol

actionseript []) (actio sum-em) [stopriring actionseript [] g8
Suppetsimt |- StatemeniCollection g~ Srigpetsimt Snppetsimt @] StatementColiection Sippetstmt V riabieReferencebipr
HModel 1, Mode! 1 Model I Model

(a) VAF_Rule_TopLevelStates (b) VAF_Rule_SubLevelStates

Model 1

Figure 5: Processing states

top-level state:

State stateXXXX;
stateXXXX = new State(this, null, null);

or

stateXXXX = new State(this, delegate() { <action script> }, null);

If an action is defined for the state, then the second version is selected, in case of which the action
is specified with the help of an anonym method. The selection is ensured by assigning inverted
application conditions to the nullExpl and anonymDelegate rule nodes: the affected elements
are created only if the condition can be satisfied. The anonym method-version is selected in
case of top-level Stop nodes as well: the simulation engine is stopped by sending a stop event
to the framework (the stopFiring node is conditionaly created as well). Note, that the last null
parameter in the constructor call of the State class denotes that the states do not have a container
state.

The VAF _Rule_SubLevelStates is somewhat similar to the top-level version. One difference is,
that at Stop states we do not have to stop the simulation, but to notify the framework to check
the outgoing transitions of the container state as well (see the conditionaly created performTrans
node). Another difference is, that the container state parameter is set (containerStateRef) in the
constructor call. Furthermore, if a contained Start node is processed, the ContainedStart property
of the container state object is set to the internal start state object (assignContainedStart branch
in the figure). Both rules are executed exhaustively. When a State is processed, the rule creates an
attribute-level reference from the State element to the class_anim element. The existence of this
reference is set as a negative application condition for the rule, therefore, each State is processed
exactly once, and the execution terminates. We also prescribe the existence of this reference as
a positive application condition between the containerState and the class_anim element, thus we
can ensure, that the code model for a contained state is generated only if its container state is
already processed.

3.1.2 Processing transitions

Transition edges between two states are processed by the VAF_Rule_ProcessTransitions and the
VAF _Rule_PopEvents rules (depicted in Figure 6).

7/10 Volume X (2009)

Code Generation with the Model Transformation of Visual Behavior Models Eﬁ

statel [] transition [state2 [aall statements|-] method_buildup [-] class_anim _j
s Hoim Bpresonsit oo ambartitrad Typebechrato
oce g Hose g Hode! 3
) [O
=
Mocel odel Model1 mu

isinternal
BoolExpr
Model 1

newThis []) [toState (1] (guardNun 8 yuardkeal transAmwn
R e l e oryuazpsetor | Rommanent
= = = =)
gualdsmemems wansmemems [S)
Eee | ——
o] o]
guamRﬂum =) umsAmunSmppeU targetPort | | dropReference | | dropCall []
E E—
Model 1] Hodel) Model 1} Modet I
(a) VAF_Rule_ProcessTransitions (b) VAF_Rule_PopEvents

Figure 6: Processing transitions

The VAF _Rule_ProcessTransitions rule matches transitions in an exhaustive manner, and gen-
erates the following code fragment for each of them inside the BuildUp method of the connecting
class:

<stateFrom>.AddTransition (new Transition(this, <stateTo>,
delegate () { return <guard condition>;},
delegate () { <action script> }), false);

We can get the container class easily, as we have created a reference between each state and the
connecting class_anim node. The last parameter (isInternal = false) denotes, that this transition
is an internal one (triggered by a timer), or an external one, triggered by external events. At each
execution of the rule, the selected transition edge is flagged, so that it cannot be processed twice.
The VAF_Rule_PopEvents rule generates a portXXXX.Drop(); command for each port triggered
by the selected transition. The rule receives the transition to be processed as a parameter from
the previous rule, and checks each port in an exhaustive way, whether it is used in the guard
script of the actual transition. The Drop method call consumes the topmost event from the target
port, and only from those ports, which were triggered by the transition.

As one can see, the VAF_Rule_ProcessTransitions and the VAF_Rule_PopEvents rule forms a
cycle: they cycle exists, if each transition has been processed, including the verification of each
port for each transition.

3.2 Generating the configuration class file

The configuration class is generated by the rules in the block (2) in Figure 3. The VAF_Rule_CO_Skeleton
rule generates the skeleton of the class: type declaration, two constructors, and an empty Init
method. The VAF_Rule_CO _InitAnim rule creates a member variable for each Animator element,

and initializes them in the Init method. Similarly, the VAF_Rule_CO_InitEH rule creates member
variables for the event handler elements, and initializes them. Finally, the VAF_Rule_CO _EventRoutes
processes the EventRoute edges, registers the connections between the ports of the connected
components:

coordinator.AddMapping (
<sourceContainer>.<sourcePort>,
<targetContainer>.<targetPort>);

Proc. MPM 2009 8/10

Eg ECEASST

Model 3 Model 1

invokeAddMap| | invokeAddMap2 |
MethodinvokeExpr MethodinvokeSxpr
Model 1) Model 1

7 [addkef L/] [fromPon ‘_,] [IaPor! _/] [addRefZ _j] [lromPunZ u] [mpmz k_,]
Model 1J Model 1 Model 1 Model xJ Model 1 Model 1
[) (] (]]]]

ehsRef 1] (fromPortContainer|(toPortContainer(|| (ehsRef2 [](fromPortContainerz ||[toPortContainer2 [|
Model 1 Model 1 Model 1 Model 1 Model 1 Model 1

Figure 7: The VAF_Rule_EventRoutes rule

The VAF _Rule_CO_EventRoutes rule is illustrated on Figure 7.

Note, that on Figure 7 the AddMapping method call is modelled twice. As the EventRoutes can
be bi-directional as well (depending on their Direction property), a reverse direction PortMap-
ping can also be added. The reverse direction is created conditionally based on the settings of
the EventRoute edge.

4 Termination Analysis of the Transformation

Except for the VAF_Rule_ProcessTransitions and the VAF_Rule_PopEvents rule-pair, there are
no directed cycles in the transformation control flow graph. Therefore, we can examine the
termination of the remaining rules separately.

In case of the VAF_Rule_GenerateSkeleton rule, the processing of an Animator is denoted by
creating an attribute reference between the Animator (animator node) and the affected names-
pace declaration (ns node). The existence of such a reference is assigned as a negative application
condition to this rule. Thus, during exhaustive execution, each Animator node is processed ex-
actly once, and the rule terminates, as soon as there are not any unprocessed Animators. The
termination of the VAF_Rule_GenerateClass rule can be proven on a similar basis. That case the
associated Animator and Namespace elements can be exactly matched using the attribute refer-
ence, and each Namespace element is flagged after processing it. The existence of this flag is
assigned again to the rule as a negative application condition, thus the rule is executed exactly
once for each Animator.

The termination of the remaining exhaustively executed rules can be proven based on the
presented two cases. The VAF_Rule_ProcessTransitions rule is executed not exhaustively, but in
a cycle. In each cycle, the rule flags the actually processed Transition edge, thus it cannot be
matched again. As the following VAF_Rule_PopEvents rule does not change this flag (and that
rule terminates as well), the cycle exits as soon as each transition has been matched exactly once.

As each rule in the transformation terminates, and the only cycle in the control flow exits after
a finite number of steps, the entire transformation terminates as well.

5 Conclusion

In [MMCO09] we have provided an approach and the languages capable of describing the dynamic
behavior of visual languages. However, these languages alone are not enough to create a solution

9/10 Volume X (2009)

Code Generation with the Model Transformation of Visual Behavior Models Eq}

providing dynamic animation for models. This paper presents a graph rewriting-based model
transformation, which turns the behavior models into executable source code. By using this
transformation, our final goal is now reachable. Moreover, by using a graph-rewriting based
approach, we can analyze the properties of the transformation. Due to the limits of this paper we
have analyzed only the termination properties of our solution, but with a little extension of the
transformation we could also verify e.g. the liveness or other correctness properties of the input
state machines. The presented approach is not specific to VMTS or to the C# language, but can
be easily adopted to any other modeling environments using a similar DEVS-based simulation
engine.

Bibliography

[ALO9] L. Angyal, L. Lengyel. Synchronization of Textual and Visual Representations of
Evolving Information in the Context of Model-Based Development. In In Proceedings
of the IEEE Eurocon 2009 Conference. Pp. 468—443. St Petersburg, Russia, May
20009.

[COD] Microsoft CodeDOM website.
http://msdn.microsoft.com/en-us/library/650ax5cx.aspx

[EEPTO06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph Trans-
Jformation. Springer, Berlin, illustrated edition edition, 2006.

[LMO09] T. Levendovszky, T. Mészéros. Tooling the Dynamic Behavior Models of Graphical
DSLs. In In proceedings of the 13th International Conference on Human-Computer
Interaction. San Diego, USA, July 2009.

[MMCO09] T. Mészaros, G. Mezei, H. Charaf. Engineering the Dynamic Behavior of Metamod-
eled Languages. Simulation, Special Issue on Multi-Paradigm Modeling, 2009.

[MVO02] P.J. Mosterman, H. Vangheluwe. Guest editorial: Special issue on computer auto-
mated multi-paradigm modeling. ACM Trans. Model. Comput. Simul. 12(4):249-255,
2002.

[MVO04] P.J. Mosterman, H. Vangheluwe. Computer Automated Multi-Paradigm Modeling:
An Introduction. Simulation: Transactions of the Society for Modeling and Simulation
International, Special Issue: Grand Challenges for Modeling and Simulation 80:433—
450, 2004.

[VLMO2] H. Vangheluwe, J. de Lara, P. J. Mosterman. An Introduction to Multi-Paradigm Mod-
eling and Simulation. In In Proceedings of the 2002 Conference on Al, Simulation and
Planning in High Autonomy Systems. Pp. 9-20. Lisboa, Portugal, 2002.

[VMTO09] VMTS Team. Visual Modeling and Transformation System website. 2009.
http://vmts.aut.bme.hu

[ZKP0O] B.P. Zeigler, T. G. Kim, H. Prachofer. Theory of Modeling and Simulation. Academic
Press, Inc., Orlando, FL, USA, 2000.

Proc. MPM 2009 10/10

http://msdn.microsoft.com/en-us/library/650ax5cx.aspx
http://vmts.aut.bme.hu

	Introduction
	Background
	The VMTS Animation Framework (VAF)
	Generated source files

	Transformation Models
	Processing the state machines
	Processing the states
	Processing transitions

	Generating the configuration class file

	Termination Analysis of the Transformation
	Conclusion

