Electronic Communications of the EASST

Volume 20 (2009)

Proceedings of the
Third International Workshop on
Foundations and Techniques for
Open Source Software Certification
(OpenCert 2009)

Understanding how OSS Development Models can influencessissmnt
methods

Richard Taylor

17 pages

Guest Editors: Luis Barbosa, Antonio Cerone, Siraj Shaikh

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Understanding how OSS Development Models can influence
assessment methods

Richard Taylor*

! ritaylor@gqjinetiq.comhttp://www.ginetiq.com/
QinetiQ Ltd.

Abstract: One of the most important aspects of OSS that distinguishfrem
COTS is both the variety and specific characteristics of nelbpment models
used. Understanding these development models will bealritd the effective de-
sign of assessment approaches. This paper documents thecaromon develop-
ment models used by OSS projects and explores the compldsdape of stake-
holders that these models expose.

Keywords: ECEASST, Open Source Software, Assessment Methods

1 Introduction

One of the most important aspects of OSS that distinguighfesnn COTS is both the variety
and specific characteristics of the development models. udaderstanding these development
models will be critical to the effective design of assessnamproaches. This paper the more
common development models used by OSS projects and explwwesomplex landscape of
stakeholders that these models expose.

For an OSS project to be successful, it must attract deviedagoed other contributors. This
paper also explores what are the common factors in sucte3Sf8 projects that attract and
retain contributors.

The open OSS development environments provide many optrrignovative assessment
metrics. A description of this 'anatomy of OSS projects’ isgented as a vehicle to explore the
tools and techniques that successful OSS projects employ.

2 Comparisonto COTS

COTS development models are opaque to most of the stakebadidéhe COTS market place.
Most software vendors closely guard the details of how thegpmise their software develop-
ment activities. In contrast, OSS development is conduictéide open. This disparity provides
an advantage for understanding OSS development. Ther&aletb be very many different
internal organisational patterns for COTS developmentsesé development patterns can af-
fect the through-life properties of the applications tletyt produce. When assessing the COTS
applications that are proposed for a system it would be uszhe able to assess the characteris-
tics of the development model that was used in their devedompnHowever, in many cases it is
not possible to include the development model of a COTS egibin in its assessment because
of the secrecy that the closed development model entails.OSS, the ability to explore the

1/17 Volume 20 (2009)

mailto:rjtaylor@qinetiq.com
http://www.qinetiq.com/

£

different approaches to development and the routes by wWbie8 projects find their way into
widespread use may help to achieve an accurate assessment.

COTS development models rarely involve collaborativevgafe development between mul-
tiple vendors (there are exceptions to this but they areuaiusin contrast, OSS development
almost always involves collaborative software developmdDdistributed, collaborative, devel-
opment requires specific architectural approaches that &avimpact on the organisation and
processes that OSS projects use. Assessment approachés afalg to exploit these aspects of
OSS projects to gain more insight into the projects chariatitss than would be possible with
closed development models.

3 Different Models

OSS projects emerge and develop in many different ways. tdtadaling these different pat-
terns of project evolution can help to explain some of théediig properties that these projects
exhibit. The following list characterises a number of lifele models that can be observed. The
list is not exhaustive but it does provide a reasonable eqeer

e Over the fenceThese projects start their life as conventional COTS agraknts within
software companies. At some point (often after a period ofmab software sales), the
company decides that it is no longer in their interest to iooiet with development of the
application or that the ongoing development would be bstered by a different business
model. At this point the application license is changed t@&$§ license; the source code
is released and the company walks away (sometimes the cgnyilhoontinue with some
low level support for the code base). If there is sufficietgriast in the application, a new
OSS development community can form to continue its deve@gmExamples of OSS
projects that have started in this way include Firebirds(thias originally the InterBase
application developed by Borland) and Firefox (which catérits development back to
the Netscape web suite that was released as OSS by the NeGoggoration).

e Corporate R&D These projects are initially developed by the R&D depantimef large
corporations. At some point, the company has to decide whdthstop work on the
research work or to move to full production. In recent yeaosne companies have chosen
OSS as a third path for some of their research prototypes s been typified by IBM.
Examples of this are the Eclipse rich desktop developmexttgoin that started life as an
IBM R&D project and Derby, an embedded Java database thaamH3M product called
Cloudscape.

e Escape from academiaMany OSS projects begin life in academia or some other gov-
ernment sponsored research organisation. The motivaitomsleasing these projects as
OSS are varied. Often it is because there is no obvious coamheath to exploiting the
application. Other reasons include: a researchers wishritnzie the development of a
project after a research grant has completed; a desirelaboohte with other researchers;
or a desire to make results available to a wide community.rd’hee a huge number of
projects that started in this way, notable examples aretgRe3QL, a enterprise class re-
lational database system that is based on work started &trtiversity of California and

Proc. OpenCert 2009 2/17

@ ECEASST

the BSD family of UNIX Operating Systems. These include B®P, OpenBSD and
NetBSD. The BSD family all derive from the Berkeley Softwd@stribution (BSD), an
early version of UNIX that was released as OSS by the Uniyeos$iCalifornia.

From little acorns These projects often start as small hobbies for a singleldeer. He
(and it almost always is he) releases his work under an O&8s&in the hope that it
might be useful to someone else. Over time a group of likeedngeople gather around
the project and it starts to gain more users. Sometimes firegects can grow into very
large initiatives. The most widely know example of this tygfeOSS project is the Linux
Kernel. The Linux Kernel was started as a hobby by Linus Tds/én April 1991. In
August of the same year he posted a message to an Internegrawsexplaining what
he was working on. Within a very few years the Linux Kernel badome one of the three
most popular Operating Systems.

Community PowerOccasionally projects are formed by an existing commuoityevelop

a particular application. Sometimes this is because soebas an idea that needs a
large team to realise it, so they set out to create the teanolahteers from the start.
Sometimes it is because the wider OSS community feels thatteylar problem needs
to be solved and there is sufficient will to form a large projedackle it. A good example
of this later motivation is the Mono project. The Mono pradja@s formed to provide an
implementation of the Microsoft .NET platform on the Linwp€&rating System. .NET
was seen as a threat to the continued growth of Linux becaamsieaions that use .NET
could not be used on Linux. The Mono project was specificailyned to address this
problem.

Start small stay smallThe majority of OSS projects start as small initiatives snaall
group of developers that share a common interest. The apiplrs are small enough that
they can be successfully developed and maintained by thal ssam. These teams might
comprise as many as 100 contributors or as few as just a loreoger. Typically, they
will be around 10 core developers. These projects will oftentinue to be developed at
this level of team size for many years.

Community releaseSome software companies are releasing their source catéy an
OSS license as a means to encourage a community of develofleese are many rea-
sons why this approach might be adopted. A common approafdr the company to
retain copyright ownership of the source code (or at leasttaia rights to re-license any
contributed code). This enables the company to release slogrce versions that can
be charged for along side the OSS "community” releases. Rhkesof this model are
widespread including Sun Microsystems OpenOffice.org.

The organisation of complex software developments is deartngihg problem. OSS projects
are faced with unique issues: internationally distributiegielopers; complex IPR frameworks;
extremely tight fiscal constraints; competing developetivations and user expectations; etc. It
is remarkable that any OSS projects are able to thrive aBallOSS projects rely so heavily on
volunteer effort (even though many contributors are paicivyemployer to work on a project,

3/17

Volume 20 (2009)

£

the project as no mechanism with which to compel them), tissved must be content with
the structure of the decision making process, otherwisg waild not continue to contribute.
There are almost as many different decision making strastas there are OSS projects but a
number of common organisational patterns can be observed:

e Dictatorship Some projects are controlled by a single individual. TRisammon among
the smallest of OSS projects but itis also a pattern that sviorkome of the very largest of
projects as well. The Linux Kernel is a good example: theesdiscussion forum for each
of the sub-systems of the kernel and any changes must bedatipeeigh consensus on
these lists first, then there are a small number of seniorlaleses that must be convinced
of the merit of the change. However, in the end the final decites with Linus Torvalds.
Dictatorship projects only thrive when the leader is redsgph by all the developers as the
main technical lead of the project.

e Cabal Probably the most common structure is characterised byadl gmoup (usually less
than 10) of developers acting as a collective decision ngalsody. Entry into the group is
controlled; acceptance of a new member usually requiresrtrant to demonstrate their
commitment and technical competence through regular ibotibns to the source code.
The decision making process within the controlling grouifeds between projects, some
projects have formal voting procedures; others find agreetineough informal discus-
sions.

e Corporate governanceMany of the largest OSS projects have developed formalrgove
nance structures. These typically include marketing asgdions, IPR ownership bodies,
steering groups etc. Many projects have discovered thaethguctures are required as
the number of people involved starts to grow and especiatgmcorporate interests start
to get involved. A good example of this is the developmenthef K Desktop Environ-
ment (KDE). KDE began as an informal OSS project organisedgthe lines of the
cabal model. As the project grew, many of the developersestdo voice concerns that
their voices were not being heard. The motivation of one efdbmpanies behind part
of the project (Trolltech, now owned by Nokia) was also gisestd. To address these
concerns and to put the project on a firm footing the projeadédes established the KDE
Free Qt Foundation and the KDE e.V (a registered associatider German law). Simi-
lar patterns can be seen in other projects, and the commaorethef these organisational
structures are discussed further below.

e Company controlProjects that are driven by a single company are often albedrexclu-
sively by that company. These projects often require doutior's to assign their copyright
over to the company if they wish to submit changes. Why wowddraributor be prepared
to provide a company with such free work? The key to gettingtrioutors to give their
effort to such projects lies in the ability of any disgruntleontributor to fork the project.
The importance of the ability to fork is covered in more detglow. There are many
examples of these company controlled projects; MySQL islakmewn example.

An assessment the whole-life-cost implications of usin@&$ application as part of a larger
system should use knowledge of the development model ad mtthat assessment. Modifia-

Proc. OpenCert 2009 4117

@ ECEASST

bility is an important element of whole-life-cost. The onggational structure of the project will
affect the cost of getting changes made.

Regardless of which organisational model is adopted there@mmon issues that must be
dealt with by all OSS projects:

e Clear IPR ownership Many OSS projects choose to leave the copyright ownerskitp w
the contributor, others require contributors to assigrir tbepyright to either a not-for-
profit body or the company backing the development. Whichapgroach is used, it is
important that it is clear to all contributors exactly wheopyright ownership will reside.

e Rigidly controlled project lifecycle rules: release cygl¢éesting etc.All projects live and
die by the project lifecycle management. Each of the orgdioisal models described
above have different decision making structures. All bt ¥iery smallest have formal
lifecycle management processes. These processes maywaysabe well documented
but they are formal nonetheless.

e Strong reliance on configuration control toolét the very heart of just about every OSS
project is the Source Control System (SCS). The SCS pro@deshnical mechanism for
the control of the application lifecycle. It is the touchstofor all the developers on the
project. The decision about which SCS tool should be usedeaxtremely contentious.
For example, the long running arguments over the use of Bitkkefor the Linux Kernel
became quite divisive and in the end led to the developmeatefv SCS called GIT.

One of the key features of the OSS licenses is that they allenpbssibility for disaffected
developers to 'fork’ the project. A fork is the establishinfja rival project to continue the
development of the same source code. A group of developears tacopy of the projects source
code and sets up a new source code repository under a new Adfoek’ is often brought about
because some developers are unhappy with the organidatiodal or some technical decisions
that a project has adopted. This ability to 'fork’ providegsaaverful counter balance to the power
of the organisational and technical leaders of a projecnyMantributors are reassured that their
contributions are in safe hands because they can see thbaeli$@fails they can simply carry
on development in a new fork of the project. This freedom fi¢tpengender a culture of trust
amongst the development team.

There is a fine balancing act that needs to be played by any @&fopgment. If the rules of
the project, governed by the license regime, enables prégeking’ then the project organisa-
tion must achieve broad consensus on any decisions otteetiadsdisaffected might simply go
off on their own. If the rules of the project do not allow 'fanky’ it will not be seen by most
developers as an OSS project at all and the benefits of coditi® development will be signifi-
cantly reduced. An assessment of OSS projects might useitfterd, or otherwise, of forks as
a proxy measure for effective organisational management.

4 Legal Bodies

The larger, higher profile, OSS projects tend to adopt theop@ate Governance or Company
Control models. These projects usually create a legal bbdi tiolds the ownership of the

5/17 Volume 20 (2009)

£

source code and provides organizational, legal and finesaport. This is usually a not-for-
profit organisation but may be a normal commercial companke [Egal framework differs
depending on which country the body is created in. Examplelside the Eclipse Foundation,
the GNOME Foundation and the Apache Foundation

These legal bodies provide a clear separation that makesdtieations of the people involved
explicit. The IPR owning body can be a 'not-for-profit’ bodyacompany. The choice of who
owns the IPR makes a clear statement about the intentiohe girbject. A 'not-for-profit’ body
will generally be trusted not to use the IPR ownership for omrtial purposes that go against
the wishes of the developers. However, if it is a company téi@tins the IPR ownership, it is
clear to everyone that their contributions might be usednlay tompany for commercial gain.
Both models can be successful. For example, contributiodyiSQL are owned by MySQL
AB whereas contributions to GCC are owned by the FSF (a ‘oepfofit’ body).

Not all large OSS projects have an IPR owning body but it isavgrg trend in the largest
projects. Projects that do not have such a body leave thershipeof the code in the hands of
whoever wrote each line. For many projects this means tleaotity way that the license on
the code can be changed is to trace the author of each linelefarad ask them to agree to the
license change. For many projects this is not a practicgdgsition. The implication of this is
that any sizable project that does not have an IPR owning badgot change its license.

0SS assessment methods may be able to use the status of IRRlojwras a measure. How-
ever, it is not clear how this measure should be interpreted.

5 Stakeholders

The OSS development model has a significantly more compl@ngement of stakeholders
when compared to a conventional COTS development. Thestarld diagrams below show
these stakeholders and their relationships to one anoffiegse are the stakeholders as seen
from the perspective of those outside of the developmealtf.itdf you were inside a COTS
development, as a developer for instance, you would see ofahg stakeholder roles that are
present in the OSS model. However, these roles are puragnadtto the COTS development
model. The exposure of these roles in OSS models may proyigertunities for assessment
measures.

Figurel shows a general model of the stakeholder landscape in aty@@TS marketplace.

Table1 describes each of the COTS stakeholder roles.

In a conventional COTS development model, the stakeholidfertswould typically seek to
apply assessment methods (e.g. CMM) are the Integrator ecasionally the End User. The
relatively simple stakeholder landscape limits the nunadfexxposed interactions and provides
few opportunities for the gathering of direct assessmerasmes. However, it does have the
merit that the interactions between the stakeholders altamaerstood and clear to all parties.

Figure2 shows the complex interactions of the stakeholders in th® @8&rketplace. This is a
general model intended to expose all of the different rdi&st.all OSS projects will have people
fulfilling each of these roles.

Table 3 describes each of the OSS stakeholder roles.

Proc. OpenCert 2009 6/17

@ ECEASST

Figure 1: COTS Stakeholders

Figure 2: OSS Stakeholders

7117 Volume 20 (2009)

£

Table 1: COTS Stakeholders

Stake Holder

Role / Motivation

Investor

Provides financial backing to vendor. Primarily interes
in medium/long term return. Will influence vendor to €
ploit maximum value from COTS applications.

ted
X_

Vendor

Primary owner of software copyright. Motivation is
build a profitable business from the development the C(
application. Will concentrate on largest / most profita
users needs.

[0
DTS
ble

Developer

Employed by vendor to develop an application. Profes-

sionally motivated relationship with project.

Author

Authors books about application. Often a professional
thor writing for a large user community.

au-

Reseller

Pre-sales support and distribution channel for vend
Profits from margin on application sales price.

Oors.

End User

User of application. May provide some feedback to ven

lor,

sometimes via Reseller, Integrator or User group. Rarely

has a direct contact with Developers.

Integrator

Integrates application into larger systems on behalf
clients. Often has a large role in providing feedback
vendor. Isolates end user from support and integratiof
sues.

of
to
N is-

User group

Collective voice of end users. Sometimes organised
run by the Vendor sometimes run as a not-for-profit bg
by highly motivated end users. Lobbies Vendors. U
group often voices the concerns of End Users when
Vendor is not looking after existing customers whilst ie#ri
to drive sales to new clients.

and

ndy
ser
the

Standards Body

Sets standards that Vendors then implement. Usu
not-for-profit bodies, either independently constituted(
ISO, IETF etc.) or run by a consortium of End Use
The level of implementation of standards by a Vendo
strongly influenced by the strength of the user commur
If there is good competition in a market segment and

user community demonstrates its desire for standards ¢

pliance, the Vendor will often have to comply. Where thg¢
is a de-facto monopoly or a few large Vendors, stand
compliance is usually much less.

ally

rs.
ris
ity.
the
om-
Bre
ards

Proc. OpenCert 2009

8/17

E

ECEASST

Table 2: OSS Stakeholders

Stake Holder

Role / Motivation

Architect

Controls the direction of development, lays down ov
arching structure and guiding principles. Often acts as
nal decision maker. All OSS projects have at least ong
chitect. They may also be amongst the most prolific
velopers but this is not always the case. Small proje¢
will typically have just one person who performs this ro
larger projects will have architects who control varig
sub-systems and may well have formalised decision n
ing structures.

er-
5 fi-
ar-
de-
pCts
le,

us

nak-

Paid / Volunteer Develope

r The developer fulfils the most important role in an O
project. Without the developer, there is no code. The
jority of developers are motivated by a personal interes
the application or the particular problem that it is tryi
to solve. The complex motivation of volunteer develg
ers has been addressed by a number of academic stl
Many developers are paid for their work by Sponsors {
wish to influence the direction of development. A go
example are developers that work on the Linux kernel
are employed by IBM. IBM have a direct interest in the (
velopment of the Linux kernel because they use it on t
own products so they deploy their own employees on
project. It must be presumed that having developers w
ing on the software and respected in the project gives |
the best chance of influencing the development.

SS
ma-
tin
g
p_
udies.
hat
od
hat
le-
heir
the
ork-
BM

9/17

Volume 20 (2009)

£

Release manager

OSS projects are often highly distributed. They will fr
quently have developers working on different continer
on different timescales and these developers have
never met one another. Their development work car
sporadic, as volunteer developers find the time to work
tasks. OSS projects also often have complex interde

e_
nts,
nften
be
on
ben-

dencies with other OSS projects. An end user application

will depend on many OSS libraries, and those libraries
themselves depend on other lower-level libraries and sq
Also, as with conventional software development, ther
usually the need to maintain multiple lines of developm
and support beta-testing. Large projects usually have

ple that are dedicated to coordinating this release proc

The process happens completely in the open so that an
can follow what it going on and everyone can see precis
what software makes it into a release. Release man
ment has developed in the OSS community to be abl
deal with these large, complex distributed organisatig
structures. The competence of the Release Manager
be a significant feature in the ability of OSS projects
scale.

will
on.
e s
ent
peo-
ess
yone
sely
age-
e to
nal
5 can
to

Documenter

Project documentation, including web site manageme
often performed by people that want to contribute to

project but do not have technical programming skills. D
umentation is seen by many OSS projects as vital to
panding their user base. Other projects are much less i
ested in end user documentation. Attracting and retaif
skilled technical documentation people on OSS project

ntis
the

0C-

ex-
nter-
ning
S is

something that many projects find a challenge.

Proc. OpenCert 2009

10/

17

E

ECEASST

Standards body

These play a slightly different role in many OSS proje
than they do in a conventional COTS environment. G
developers view standards in a different light to conv
tional Vendors. This is primarily because OSS proje
gain little benefit from locking their users in with nof
standard interfaces. OSS developers view standards ir
of two ways: either as a means to achieve interoperab
with existing applications; or as free design work. Therlg
reason perhaps requires a little explanation. When fg
with implementing a new function, an OSS develope
generally interested in minimising the amount of work
quired. If there is a standard already written that expla
how to achieve the required functionality it is simpler
implement this standard rather than invest effort in des
ing an alternative approach. This is coupled with a cer
pride in following standards.

cts
SS
en-
cts
]_
1 one
ility
ite
iced
is
re-
S
to
gn
ain

Activist / organiser

Larger OSS projects need people that provide organisg
and coordination. These may not necessarily be deve
ers.

ition
lop-

Benefactor

There are many organisations that provide support to (
projects. Many companies allow their workers to use cq
pany infrastructure to work on OSS projects and many

versities allow their academics and students to do the s
There are also the occasional donors that contribute fi
cial support to an OSS project. Once example is the Go
Summer of Code, this Google led initiative funds stude
during their summer break to work on OSS projects.

2007 this program funded over 900 students to work|

DSS
M-
Lni-
ame.
han-
ogle
nts
In
on

more than 130 different OSS applications.

11717

Volume 20 (2009)

£

Tester

There are a number of types of testers that typically
a role in OSS projects. The current development vers
of the project is always available to anyone that wis
to try it out. This encourages those that have an in
est in the project to experiment with unstable versions
they provide feedback to the developers. Many develo
start their involvement with a project by test driving devi
opment versions and attempting to fix problems that t
find. Many projects release test versions for formal 1
cycles and encourage early adopters to report problem
fore stable releases are made. The people that use
test versions and report problems are vital to the qualit
the projects. Finally, OSS projects rely on their users g
port problems and to help with debugging activities. Us
are often encouraged to be actively involved in the tes
process.

ay
sion
hes
ter-
and
hers
el
hey
est

5 be-
these
y of
re
ers
ling

Contributor

Anybody that provides their time, infrastructure or mon
to an OSS project is a contributor.

ey

Evangelist

OSS as a movement has been established by people
feel strongly about the benefits that it brings. Some are
litically motivated, others are much more pragmatic. Sg
of the growth in OSS can be attributed to the evangelisn
these people. Activists such as Richard Stallman and
Raymond have travelled widely to educate users, con
nies and developers. As OSS has until recently lacked
significant marketing money, and still cannot compete v
the COTS vendors in marketing spend, it has relied heg
on individuals to spread the word.

2 that
po-
me

n of
Eric
npa-
any
vith
vily

Translator

An increasing number of OSS projects are translated
many different languages. For example, Abiword has b
translated into more than 50 languages. The major OSS
plication frameworks have developed mature infrastrict
to support translation of user interfaces. The translati
rely on native speakers volunteering to translate all tkie
used in the user interface. The translators are often U
rather than developers.

into
een
b ap-
ur
on
te
sers

Owner

The copyright owner of the source code. This may b
company, a not-for-profit body or it may be distribut
amongst all the authors of the individual lines of sou
code. Organisations like the FSF will accept copyri
ownership of some projects, which can be useful, if proj

e a
ed
rce
yht
ect

teams do not wish to set up their own not-for-profit bod

V.

Proc. OpenCert 2009

12/

17

E

ECEASST

Legal Resource

Some organisations offer legal support to OSS proje

cts.

Bodies such as the Apache Foundation provide legal sup-

port for those projects that are part of a specific collect

ve

Other bodies like the Electronic Frontier Foundation offer

support more broadly.

Publisher

The take-up of OSS applications has been helped by

the

availability of conventional printed technical books. The
publishers of these books, such as OReily, have played an

important role by supporting authors. These authors
often amongst the lead developers of the projects.

Author

There are many conventional print books that documn

are

ent

OSS applications. The authors of these books are often de-
velopers on the project, but many are professional technica

writers.

Infrastructure provider

Most OSS projects rely heavily on the availability of free

infrastructure for source code control, issue trackingj-m
ing lists etc. A number of organisations provide this

a
n-

frastructure. For example SourceForge, Inc, and BeriOS.
The funding model for these services is somewhat difficult

to work out. Some certainly make some money from ¢
rying advertising and some use the OSS infrastructure

ar-
Ser-

vice as a means of advertising other commercial services.

Some are simply altruistic and there may be some fing
ing coming from the major commercial players.

Vendor

The vendors (often called distributors), such as Redhat
and Novell, provide a conventional shop front for O
technology. They provide integrated collections of pa
ages, documentation and support contracts. Vendor
lationships with individual OSS projects can, at times,
fractious. Vendors need to find workable business m
els to ensure that they stay in business whilst at the s
time maintaining the support of the volunteer OSS de
opers. Vendors are amongst the most important Spor
and Employers of OSS developers.

Anc-

Inc
5S
ck-

5 re-
be
od-
ame
el-
sors

Integrator

Integrators work on behalf of customers to integrate O
as well as COTS, into larger systems. Integrators gene
have sulfficient technical resources to be able to tailor ¢
applications for their customers needs and, if required

SS,
rally
DSS
(o]

offer tailored support.

13717

Volume 20 (2009)

£

End User End users of OSS applications are no different from end

users of COTS applications. However, an OSS end user
can also choose to play one of the other stakeholder rples.
OSS projects are often sustained by a steady flow of|end
users that become interested in the way that the application
is developed and contribute as Documenters, Testers, etc.

Packager OSS projects release source code but End Users like the
convenience of nicely packaged applications that are pre-
compiled for their chosen Operating System. There are a
number of different packaging formats in the Linux world
as well as a different form of packaging for MS Windows
and for the Apple Mac. Most OSS projects do not have|the

resources to be able to produce all these packages. Instead
they rely on Packagers. Sponsor Organisations that require
particular features to be added to a project may sponsor a
developer to make the required changes. The distingtion

between a Sponsor and a benefactor is that a Sponsor is
providing support for specific business reasons, whereas a
benefactor is usually acting in a more philanthropic way.
Employer Many OSS developers are supported either explicitly| or
implicitly by their employers. A recent analysis of chandes

made in the last year to the Linux Kernel suggested that as
much as 70% came from developers working with at least
the tacit support of their employer.

The richness of the stakeholders, their motivations aresrbley play in the OSS development
model provides an opportunity for new assessment appreade a careful understanding of
how each of the stakeholders interacts within a given ptojemay be possible to design direct
measurements that shed light on its properties. There iark sbntrast with a closed COTS
development where the limited exposed stakeholder irtierecconstrains the scope of direct
measures.

6 Maximising Participation
OSS projects often live and die on their ability to attraattipgppants. Maintaining enthusiasm
and fostering a collaborative attitude is critical to thecss of a collaborative project. Studying

successful OSS projects shows that the following are comamoongst those that attract the
most developer effort:

e good code structure to help people understand the software;

Proc. OpenCert 2009 14 /17

@ ECEASST

e low cost of entry to participants i.e. no expensive tools,ctased networks, no com-
plicated signup procedures, extensive use of open souppoduools, restricted use of
meetings, deskilled build process;

e open communication channels, Mailing lists, News, IRC, sigd, wiki;

e perception of activity, people more likely to join if projds perceived as dynamic - release
early, release often, use open communication channelsf@abment discussion;

¢ friendly to newcomers;

e many levels of participation - user, bug submitter, docur@erranslator, occasional bug
fixer, coder, architect, etc.;

e Open requirements.

These project characteristics are rare amongst traditemfaware development projects be-
cause there is little need to attract participants. Howetiey are vital for OSS projects and can
form the bed rock of an successful assessment approach.

7 Anatomy of a Project

As OSS has evolved, it has developed a set of common supphbridiegies that provide an in-
frastructure to support the distributed collaborationrupdnich projects depend. These technolo-
gies need to provide a mechanism for geographically dispaeams to work closely together
both to develop the software and to organise the projects.

e Web site Most OSS projects have a web site. This provides: advegtifar the project;
documentation; tutorials; download and installationrinstions; descriptions of what the
project is trying achieve; contact points; and links to otfesources. The web site is
usually the first point of contact with new users and prospectontributors.

e Wiki. Many projects now also have a project wiki. A wiki is a weleghat can be altered
by anyone. OSS projects use a wiki as an informal repositbdysoussions, user oriented
documentation and a social networking centre for projentrdautors.

e Bug/Issue trackerBug/issue trackers are used to capture and record bugequdsted
features. Bug trackers used to be a feature of only large @§&cps but the ready avail-
ability of bug tracking software made available by siteshsas Sourceforge has led to
many smaller projects now relying heavily on the bug tradkehelp organise develop-
ment. End users can report bugs directly in to the bug traaker projects then often
have a formal process by which bugs undergo triage beforgylaesisigned to a developer.
In some projects, it is the developers responsibility tesethe bugs that they feel they
can address, in others bugs are assigned to developers.rdglgrs provide automatic
notification mechanisms so that everyone involved can tthelifecycle of a bug with
minimum effort. One aspect of OSS project bug trackers is dhgone can look at the

15/17 Volume 20 (2009)

£

current list of bugs / issues. This openness can be hard foe sorporate developers to
come to terms with.

e Mailing lists. OSS projects frequently have a number of email mailing.li€ommon lists
are 'announce’ (which only carries announcements of rekeatc.), 'user’ (which carries
discussions between users about how to use the softwaréjeadoper’ (which carries
discussion about development issues including futureitaathral developments). The
mailing lists are often the heart of the OSS development. udeeof mailing lists for this
purpose has grown out of the necessity to deal with discndsbtween groups of people
that cannot meet and are often in different time zones. Tlae Iproved to be a very
successful means of collaboration, but they do requireatigpants to be open and be
prepared to put their views in writing. This can be a chaleefy corporate developers
because of the potential legal issues that might arise frapgropriate correspondence.

e Instant messaginglnstant messaging (or chat) has been a feature of OSS devela
long before it became widely used by teenagers and corpbranets. OSS projects
often have chat rooms (usually using a chat technologyd#R€ (Internet Relay Chat)).
These are used to provide support to users and as a sociataedor developers. Chat
forums between developers help to cement personal redijos because they are much
less formal that mailing lists. It helps to engender a sefisermmunity.

e Source repository The source code repository is the most important part of &% O
project’s infrastructure. It provides the mechanism foliltiple developers to work simul-
taneously on a large software code base. The unique recgritsrof OSS projects have
driven the development of a number of source code contrbhtdogies in recent years.
The source code repository supports the separation ofestadal development branches
and, can in some cases enable a completely distributedogeneht model that does not
even require a central source code repository. As a genergifle, anyone can access
an OSS project’s source code repository; anyone can brdwesautrent state of the devel-
opment braches or download any previous version of the cage.However, only those
authorised by the development team can make changes to diecacal all changes are
accounted for by the source code repository software.

With all these supporting infrastructure components, thieaiive is to use open, multiplat-
form, standards. Most OSS projects have no resources thgme@roprietary products and most
contributors will be put off if they have to put their handstireir pockets before they can get
involved in the project. The principle is to make the bartteusing or contributing to the project
as low as possible. This provides a real opportunity formated assessment tools. The number
of infrastructure applications (e.g. Mailing List servessurce code control systems etc) that
these would need to work with are small and their interfaceopen.

8 Summary

OSS projects differ from COTS projects in their need to gfflety manage collaborative devel-
opment and attract participation in the project. While eaaject is unique, most OSS projects

Proc. OpenCert 2009 16/17

@ ECEASST

tend to fit one of a number of development models with commamaatteristics.

The OSS development model has a significantly more complaxgement of stakeholders
when compared to a conventional COTS development.

Many OSS projects employ a governing body independent afdlde developers. This body,
often known as a Foundation, is largely responsible for mtimg participation in the project
and ensuring successful evolution. The Foundation previc-software development activi-
ties such as IPR management, marketing, promoting the w&armalards, and support for imple-
mentation of a consistent, structured development process

To support collaborative development among geograpkicifiparate teams, OSS projects
typically deploy a standard set of supporting technolagld®se include a web site, mailing lists,
bug tracking facilities, a wiki and a source code repositdityese services are often managed by
the projects foundation body.

17 /17 Volume 20 (2009)

	Introduction
	Comparison to COTS
	Different Models
	Legal Bodies
	Stakeholders
	Maximising Participation
	Anatomy of a Project
	Summary

