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Abstract: We consider properties desirable for static analysis toolstargeted at find-
ing bugs in the real open source code, and review tools based on various approaches
to defect detection. A static analysis tool is described, that includes a framework
for flow-sensitive interprocedural dataflow analysis and scales to analysis of large
programs. The framework enables implementation of multiple checkers searching
for specific bugs, such as null pointer dereference and buffer overflow, abstracting
from the checkers details such as alias analysis.
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1 Introduction

Over the last decade, many tools for defect detection in source code of programs based on static
analysis have been developed. Building on different analysis techniques, they are optimized for
different usage scenarios, often inapplicable to the same task.

Static analysis tools may be used as a basis for program certification processes [BP08]. How-
ever, the nature of the open source development process makes it difficult to adopt many of the
approaches employed by the existing defect detection tools. The need for the ease of adoption
leads to a set of specific requirements for defect detection tools.

In this paper, we elaborate these requirements, and describe Svace, a static analysis tool that
implements them. Svace is based on a novel scalable interprocedural program analysis algorithm,
that allows to perform flow-sensitive dataflow analysis of 2,800,000 lines of code in 2.5 hours
on one PC. The algorithm is implemented in a program analysisframework, that is used by a
set of checkers, modules developed to search for specific kinds of defects in the source code of
programs. The checkers use unsound analysis heuristics, and are developed using feedback from
empirical evaluation of their performance on the analysis of a set of open source programs.

The rest of the paper is organized as follows. InSection 2, we develop a set of requirements
for a static analysis tool allowing the ease of adoption in the open source context. InSection 3,
we review different types of static analysis tools, and discuss areas of their applicability. In
Section 4, we describe our static analysis tool. The paper is concluded in Section 5.

2 Requirements for practical open source defect detection tools

What makes a defect detection tool useful and easy to adopt for an open source project? There
are several factors, but the central among them is the ability to automaticallyfind new bugs.

Many open source projects have a large code base, which was not written with static analysis or
testing in mind. Static analysis allows finding the violations of formal correctness rules without
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setting up testing environment, on execution paths and datanot covered by the tests. This allows
using static analysis not only for finding obscure bugs that are hard to catch with testing, but also
for finding bugs in poorly tested code.

Tools that check the source code of functions against their specifications are only as valuable as
available specifications, and writing the specifications for the entire code base may be infeasible.
The specifications written to catch one type of bugs using onetool will be unhelpful in catching
other types of bugs using other tools. Defect detection toolshould be able to search for bugs in
the source code itself, without requiring additional information.

Results of static defect detection usually include false positives, issues that are reported, but
are not really bugs. False positives are useless, and their prevalence in the report can significantly
reduce the value of the static analysis tool [God05]. Limitations of analysis algorithms and lack
of formal specifications of library or system functions leadto uncertainty, where reporting an
issue risks creating a false positive, and skipping it risksmissing a real bug. Static analysis tool
should be able to distinguish issues that are likely to be real bugs.

Another reason for avoiding issues that are likely to be false positives is difficulty in manually
assessing their correctness. Unlike a failed test, an issuereported by a static analysis tool cannot
be directly examined with a debugger. The tool report a bug based on information gathered
during analysis, and if that information is insufficient forthe tool to be sure that the bug is
real, the report may also be insufficient for programmer. Consider a warning about potential
null pointer dereference, which doesn’t explain how the dereferenced pointer can obtain a null
value: maybe it is possible, and maybe not. When a potential bug depends on values passed
interprocedurally across the whole program, the question may be hopeless.

Thus, the situations for which the static analysis tool is reasonably sure that they contain real
bugs, are good for two reasons: they are likely to indicate real bugs, and the tool can explain
its hypothesis in a report, so that it’ll be possible for the user to check the correctness of the
hypothesis. If the hypothesis is true, a bug is found, and if it’s false, maybe there is a bug in that
place for a different reason, but it falls outside the boundaries of issue reported by the tool.

To achieve precision and soundness, some static analysis methods require source code to sat-
isfy certain restrictions. For example, complex data structures, C unions and recursion can be
prohibited, and source code can be required to be presented in its entirety and use only known
standard libraries. The focus on finding likely bugs and not on verification allows using unsound
algorithms for analysis, which greatly simplifies the task of analyzing real programs without
change.

Many bugs hiding in the code are interprocedural, and are caused by incorrect use of func-
tions (including standard ones). Finding them requires interprocedural analysis. On the other
hand, analyzing large programs requires analysis to be scalable. Summary-based analysis is a
robust method for scalable interprocedural analysis. In summary-based analysis, each function
of the program is assigned a summary, data structure of limited size that summarizes its behavior
along dimensions important for analysis. Analysis of each function uses summaries of functions
immediately called by it, and builds a summary for function itself.

Unsound summary-based analysis allows analyzing incomplete programs, which can, for ex-
ample, use nonstandard libraries or system functions unknown to the tool. If a function uses
inline assembler code that the tool can’t analyze, it can locally exclude the analysis of the of-
fending function.
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Even if the analysis can proceed without specifications, having specifications for certain li-
brary or even program-specific functions can increase the quality of results. Some defects, such
as format string vulnerability and SQL injection, are naturally formalized using taintedness prop-
erty assigned to values, or using source-sink sequences. Ineither case, specific library functions
will need to be given a specification, or be included in a property to be checked by the static
analysis tool. In other cases, having a specification for a library function instead of incorrect
default assumption may help to avoid false positives, or to not lose track of a bug. A certain non-
library function in a large program can systematically confuse analysis algorithm, leading to big
number of similar false positives. Thus, static analysis tool needs to provide a means of adding
specifications where necessary, both for library and user functions, while trying to perform as
good as possible without them.

3 Static defect detection tools

Static defect detection faces serious technical difficulties, and as a result, there are multiple
specialized kinds of static analysis tools. These tools aretargeted at their particular use cases,
or limited by chosen technologies. Even though the properties listed inSection 2seem to be
desirable for most applications, many of the existing static analysis tools don’t have them.

We will examine the existing tools, focusing primarily on tools for checking C programs,
based on how they specify the situations in the source code that indicate the presence of bugs,
and on the limitations imposed by algorithms for finding these situations in the source code.

Simple source code analysis tools, such as ITS4 [VBKM00], RATS and Flawfinder, are used
to help with manual code audit. Such systems find certain template situations, such as potentially
dangerous function calls, and list them exhaustively. Simplicity of analysis algorithms results in
most of the reported issues not corresponding to real bugs.

Tools used to verify the absence of bugs of a certain type without requiring specifications
usually impose restrictions on the source code of analyzed programs. Restrictions follow from
inability of the existing sound analysis algorithms to workwith arbitrary data structures (and,
correspondingly, code constructions), and from the requirement to have correct, even if incom-
plete, information about library functions. One group of such tools in based on abstract inter-
pretation techniques, and includes PolySpace (see comparison with other systems in [ZLL04])
and ASTŔEE [CCF+05]. These tools verify runtime safety and other properties ofsource code
and were applied to check embedded software in aviation and device drivers. Another group
of tools is based on counterexample guided abstraction refinement algorithm, which uses the-
orem proving to efficiently work with abstraction of state space. This group is represented
by BLAST [HJMS02] and SLAM [BBC+06], applied to verification of runtime safety of de-
vice drivers. Limitations imposed by these tools make it difficult to apply them to regular open
source programs, requiring either heavy revision of the source code, or isolation of parts of the
code from incompatible features in preparation for checking.

Systems for user specification checking allow finding defects in more complex situations, and
without restricting the source code, but require big numberof manually written specifications to
be effective. Cqual allows to add qualifiers to C types, and was used to find format string vulner-
abilities [STFW01] and other bugs. LCLint [EGHT94], Splint [EL02] and CSSV [DRS03] use
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user-written specifications to find buffer overflow and otherdefects. These tools may achieve
verification of source code, proving the absence of certain kinds of bugs, if sufficient specifica-
tion coverage is provided. However, as was mentioned earlier, providing the sufficient number
of specifications may be infeasible for a large program, and specifications won’t be useful for
finding new kinds of bugs.

Automatic defect detection tools search for complex defects in source code of big programs,
trying to satisfy the requirements listed in the introduction. One of the approaches to this prob-
lem is searching for a big number of specific templates of situations in source code, indicating
possible bugs or violations of source code conventions. Such tools include FindBugs [HP04]
and KLOCwork. The quality of analysis can be improved if a small number of user-written
specifications is allowed. Splint [EL02] and ARCHER [XCE03] use unsound heuristics in a way
that improves the quality of issues they report. MC [ECC01] (later developed into a commercial
system Coverity) and Saturn [DDA07] look for local inconsistencies in the code, thus avoiding
most of the false positives even given the imprecision in analysis. Commercial tools Coverity
and CodeSonar find defects and security vulnerabilities using moderately general templates.

The diversity of approaches to static defect detection makes the comparison of static analysis
tools very difficult. Tools belonging to different categories may be incompatible even where
they emit warnings for the same bugs, due to different areas of applicability. There are usually
only few tools falling in each category. The defect types detected by the different tools are often
idiosyncratic, so that, for example, the kinds of situations in which the buffer overflow bug is
detected by one tool are significantly different from those detected by the other tools. As a
result, there are only few, mostly qualitative comparativestudies, such as [ZLL04, EN08].

4 Our static analysis tool

We developed Svace, a static analysis tool for C programs (with limited support for C++) based
on design choices presented inSection 2. Svace doesn’t impose restrictions on the analyzed
program, and collects its representation during executionof normal program build script, using
a modified version of GCC compiler.

Svace consists of a framework that implements most of the work on program analysis, and a
set of checkers that use that framework to implement simplerheuristic algorithms to search for
specific defects.

The framework implements flow-sensitive interprocedural summary-based analysis. The summary-
based analysis operates in a bottom-up fashion, as described in Section 2. Each function of the
program is analyzed only once, using summaries of the functions called from it, and computing
a summary of the function itself. The analysis doesn’t use global information about the program,
information is used interprocedurally only through application of the summaries of functions
at their call sites. For a high-level review of various strategies for interprocedural analyses,
see [CC02].

The analysis of each function proceeds on three levels. On the first level, Svace performs
alias analysis [Hin01], associating abstract memory locations with the variables (names) of the
program, including the variables accessed indirectly. Thestrategy for allocating abstract memory
locations is similar to that used in [LH01]. Like in [LH01], the new identifiers are created lazily
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where needed, but in Svace, the analysis in flow-sensitive, which requires some modifications
(see [WL95] for a description of another related alias analysis algorithm). Since some of the
memory locations are visible from multiple functions, the identifiers of memory locations are
assigned locally, and translated during summary applications at call sites. Since each function is
analyzed without information of its call sites, the alias information for the function parameters
and global variables passed by the callers is unavailable. Following [LL03], we assume that the
parameters of the functions are not aliased. This assumption is unsound, but empirically, it never
introduced any problems for defect detection.

On a second level, Svace performsvalue analysis. The value analysis shares some characteris-
tics and algorithms with def-use analysis or SSA analyses [CFR+91], but it has a different goal.
Whereas SSA constructs new names, so that each name (variable) has only one definition, value
analysis constructs identifiers for values that have only one definition. For example, if the same
value is copied from one variable to another, it retains the same value identifier, and the same
value identifier becomes shared by different abstract memory locations. Value identifier analysis
allows to track equal values of variables along program execution paths.

Similarly to memory locations during alias analysis, valueidentifiers are assigned locally, and
are translated between different namespaces during summary applications at call sites. This level
of parameterization in summaries allows to approximate theeffect of function calls at each call
site in a context-sensitive manner [LH01], which improves the precision of analysis [Hin01]. At
the same time, functions themselves are analyzed in a context-insensitive way, which guarantees
scalability of the interprocedural analysis.

Function summaries parameterized by value identifiers allow, for example, to express and
automatically extract a property of a function to return oneif its arguments. At each call site,
the return value will be assigned the same value identifier asthat argument (value identifiers are
local, different at each of the different callers). The alias analysis, running on the level below
value identifiers, allows to do the same for dynamic data structures, where values are assigned
through sequences of dereferences.

On a third level, the analysis framework allows to associateattributeswith the value identifiers.
The analysis framework implements propagation of attributes over control flow graph, within
each function during intraprocedural analysis, and between functions using summaries. For
each checker, we define necessary attributes and attribute propagation rules allowing to find
situations we are looking for. These attributes track properties of values in the program, such
as interval of possible integer values, possibility of being equal to null, or dependence on input
from the network. This framework is analogous to the standard framework of dataflow analysis,
but doesn’t enforce the sound semantics on the attribute propagation procedures implemented by
the checkers. Where possible, the checkers may implement sound semantics.

To summarize, the edges of the control flow graph of a functionduring its analysis, and the
summaries of the function that were analyzed, are associated with three mappings: a mapping
from names to abstract memory locations in the current namespace, a mapping from abstract
memory locations to value identifiers, and a mapping from value identifiers to sets of attributes
associated with them. Through the intermediary of value identifiers for pointers, and points-to
attributes defined on them, these mappings also define a points-to graph.

To our knowledge, the use of flow-sensitive summary-based interprocedural dataflow (alias)
analysis as a basis for an automatic defect detection tool (in the sense ofSection 3) for C is novel,
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1 int printf(const char *format, ...) {
2 char d1 = *format;
3 sf_use_format(format);
4 }

Figure 1: Example of library function specification

as is the use of summaries parameterized by value identifiers.
We search for specific bugs using pluggable checkers. Each checker recognizes a certain

situation in the source code, which indicates the presence of a bug. Many checkers can detect
the same type of bugs in significantly different situations.For example, buffer overflow bug
is present in a statement that writes to a buffer by a constantindex that is out of bounds, so
checker for that situation can look at each statement and check if that’s the case. At the same
time, buffer overflow can result from using a return value from a library function as an index
without checking if function returned a negative error code. Recognizing this situation requires
knowledge about the function, and about the fact that value returned from that function is used
as an index in buffer access. Thus, implementing different checkers requires gathering different
information about the program, and may require additional library function specifications.

Another merit of searching for bugs using specific checkers is in documenting the results of
analysis. Each checker has a description of situations thatit tries to find, usual causes of false
positives, ways of getting rid of false positives, and so on.Some checkers work on a given
program well, and some don’t.

Svace supports specifications of library and user functionsin a form of stub implementations
that use special functions to specify checker-specific attributes. For example, specification of
standard functionprintf is implemented as presented inFigure 1. The dereference of argu-
mentformat shows that argument is being dereferenced, which is used by checkers that search
for null pointer dereference bugs. Special functionsf use format works as a hook during
analysis of specification, and allows format string vulnerability checker to set aUSE FORMAT
flag on the formal argumentformat, a fact that is reflected in the summary of functionprintf,
and then used by the same format string vulnerability checker when functionprintf is called
in analyzed source code.

Let’s consider, for example, a deference-of-null checker (only in intraprocedural case, to sim-
plify the description). Dereference-of-null checker searches for situations in source code when
dereferenced pointer can only have null value. Implementation of dereference-of-null essentially
consists in constant propagation starting in conditional statements. A flagIS NULL is propa-
gated starting from the edge in the control flow graph where conditional resolves the value of
pointer into null. If this flag meets a dereference operation(or a note in summary of called func-
tion stating that this value is dereferenced in it), warningis emitted. Our tool found dereference-
of-null situation in 21 places in 14 open source programs we analyzed with this checker, and in
13 places there was a real bug. An example of this bug found inzebra-0.94 is presented in
Figure 2. Here, the last line can only be reached if structure pointerrn is equal to null, in which
case it’ll be dereferenced there.
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1 if (rn)
2 {
3 route_unlock_node (rn);
4 zlog_info ("ifaddr_ipv4_add(): address %s is already added",
5 inet_ntoa (*ifaddr));
6 return;
7 }
8 rn->info = ifp;

Figure 2: Example of dereference-of-null bug

Table 1: Analysis results

Defect Total True
buffer overflow 23 8
C string error 13 10

null pointer dereference 119 59
TOCTTOU 32 30
chroot jail 9 5

Since the analysis is unsound, the development of checkers is guided empirically [HP04]. The
checker development process starts from formulating the situations in source code that might
indicate the presence of a certain kind of defect. The first implementation of the checker is
done to find sufficiently many situations that potentially contain the bug, even if it results in
a high false positive rate. Based on the test runs of the current implementation on a set of
programs, the situation in source code sought by the checkeris refined, to exclude as many
of the false positives as possible, without excluding the real bugs. Where the incompleteness
of library function specifications is found to confuse the checker, the library specification is
expanded. These steps are repeated as necessary, to refine the checker. If the resulting checker
becomes sufficiently accurate (in particular, on the analysis of the programs not tested during the
refinement), it is included as a part of the tool, otherwise itretains the “experimental” status.

According to the classification given inSection 3, Svace is an automatic defect detection tool.
The closest published tools are MC [ECC01] and Saturn [DDA07]. MC uses checkers, but its
intraprocedural analysis is based on simpler attribute propagation techniques. Saturn performs
summary-based analysis, but uses predicate abstractions and type inference, more theoretically
loaded and heavy-weight techniques that make the analysis more computationally intensive and
development of checkers more difficult, although the precision of such analysis is potentially
greater.

We implemented several checkers for Svace, detecting bugs such as buffer overflow, null
pointer dereference, format string vulnerability, doublefree, TOCTTOU. We tested the tool on
a collection of 63 open source programs, total size of 2,800,000 lines of source code in C (in-
cluding apache, putty, mysql, cvs, squid, ntp, openssh, lhttpd, bftpd, pound, ssmtp, troll-ftpd,
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cfingerd, gzip, thttpd, telnet, vsftpd, qmail, tar, wu-ftpd, openftpd, sendmail, proftpd). The run-
ning time of analysis depends on the number of enabled checkers; with all checkers enabled,
all 63 programs are analyzed in 2.5 hours, on one PC using one core of a Intel Pentium E2180,
2GHz processor.

Table 1lists the results obtained on a subset of 33 of these programsof about 500,000 lines
of source code, using a subset of checkers. The third column of Table 1lists the number of
true positives detected during analysis of these programs,determined by manual inspection of
analysis results.

In 2006, via grant from US Department of Homeland Security, Coverity and Stanford used a
restricted version of their static analysis tool to scan a significant number of open source projects,
and have given access to the results to the developers of those projects. The number of defects
per 1000 lines of code found by our tool (about 0.2 bugs/KLOC) is similar to that reported
by Coverity in their open source static analysis project (0.1 to 0.5 bugs/KLOC, depending on
analyzed program)1. KLOCwork is also known for publishing the bugs found by their tool in
open source programs. Static analysis tools can be used to create certification processes, based
on elimination of defects detected by those tools. For example, Coverity certifies a program as
“Coverity clean”, when its tool fails to find any defects in that program.

5 Conclusion

In this paper we considered the properties desirable for static analysis tools used to find bugs in
real code. A tool should focus on situations in which it can accurately recognize bugs, trading
soundness of analysis for relevance of results if necessary, it needs to allow specification of stan-
dard and user functions where possible without requiring it, it needs to avoid placing restrictions
on admissible source code. Detecting more bugs requires interprocedural analysis, but the anal-
ysis needs to scale to large programs. Not all tools choose tofollow these guidelines, as there
are use cases requiring use of technologies incompatible with the requirements.

A static analysis tool was presented, that satisfies these requirements and performs defect
search using a collection of checkers implemented in a framework for interprocedural attribute
propagation, based on dataflow analysis.
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