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Abstract: We consider properties desirable for static analysis teotgeted at find-

ing bugs in the real open source code, and review tools basedrimus approaches
to defect detection. A static analysis tool is describedf thcludes a framework
for flow-sensitive interprocedural dataflow analysis analesc to analysis of large
programs. The framework enables implementation of meltgiieckers searching
for specific bugs, such as null pointer dereference and bafferflow, abstracting

from the checkers details such as alias analysis.
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1 Introduction

Over the last decade, many tools for defect detection incgocmde of programs based on static
analysis have been developed. Building on different amatgehniques, they are optimized for
different usage scenarios, often inapplicable to the sasie t

Static analysis tools may be used as a basis for progranfiicaitin processes8[P0g. How-
ever, the nature of the open source development processsrtalifficult to adopt many of the
approaches employed by the existing defect detection.tddie need for the ease of adoption
leads to a set of specific requirements for defect detectiols.t

In this paper, we elaborate these requirements, and des$vifice, a static analysis tool that
implements them. Svace is based on a novel scalable inéeqiucal program analysis algorithm,
that allows to perform flow-sensitive dataflow analysis &0®,000 lines of code in 2.5 hours
on one PC. The algorithm is implemented in a program anafyaimework, that is used by a
set of checkers, modules developed to search for specifils kihdefects in the source code of
programs. The checkers use unsound analysis heuristitsramleveloped using feedback from
empirical evaluation of their performance on the analy$& et of open source programs.

The rest of the paper is organized as follows Skrtion 2 we develop a set of requirements
for a static analysis tool allowing the ease of adoption @dpen source context. Bection 3
we review different types of static analysis tools, and uscareas of their applicability. In
Section 4 we describe our static analysis tool. The paper is condliri&ection 5

2 Requirementsfor practical open source defect detection tools

What makes a defect detection tool useful and easy to adopnfopen source project? There

are several factors, but the central among them is theyatwlautomaticallyfind new bugs.
Many open source projects have a large code base, which wasitien with static analysis or

testing in mind. Static analysis allows finding the violagof formal correctness rules without
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setting up testing environment, on execution paths andraateovered by the tests. This allows
using static analysis not only for finding obscure bugs thahard to catch with testing, but also
for finding bugs in poorly tested code.

Tools that check the source code of functions against thetiications are only as valuable as
available specifications, and writing the specificationgtie entire code base may be infeasible.
The specifications written to catch one type of bugs usingtoolewill be unhelpful in catching
other types of bugs using other tools. Defect detectiongbolld be able to search for bugs in
the source code itself, without requiring additional imh@tion.

Results of static defect detection usually include falssityes, issues that are reported, but
are not really bugs. False positives are useless, and tlesalpnce in the report can significantly
reduce the value of the static analysis td®bf09. Limitations of analysis algorithms and lack
of formal specifications of library or system functions ldaduncertainty, where reporting an
issue risks creating a false positive, and skipping it riskssing a real bug. Static analysis tool
should be able to distinguish issues that are likely to bEegs.

Another reason for avoiding issues that are likely to beefalssitives is difficulty in manually
assessing their correctness. Unlike a failed test, an igfgeted by a static analysis tool cannot
be directly examined with a debugger. The tool report a bugpthaon information gathered
during analysis, and if that information is insufficient fitre tool to be sure that the bug is
real, the report may also be insufficient for programmer. <tisr a warning about potential
null pointer dereference, which doesn't explain how thesfigenced pointer can obtain a null
value: maybe it is possible, and maybe not. When a potentigldepends on values passed
interprocedurally across the whole program, the questiay loe hopeless.

Thus, the situations for which the static analysis tool asmmably sure that they contain real
bugs, are good for two reasons: they are likely to indicas bbags, and the tool can explain
its hypothesis in a report, so that it'll be possible for trs®uto check the correctness of the
hypothesis. If the hypothesis is true, a bug is found, antsifalse, maybe there is a bug in that
place for a different reason, but it falls outside the bouiedaof issue reported by the tool.

To achieve precision and soundness, some static analyfi®dserequire source code to sat-
isfy certain restrictions. For example, complex data $tm&s, C unions and recursion can be
prohibited, and source code can be required to be presamitidantirety and use only known
standard libraries. The focus on finding likely bugs and moterification allows using unsound
algorithms for analysis, which greatly simplifies the tagkanalyzing real programs without
change.

Many bugs hiding in the code are interprocedural, and areezhby incorrect use of func-
tions (including standard ones). Finding them requiresrprocedural analysis. On the other
hand, analyzing large programs requires analysis to batdeal Summary-based analysis is a
robust method for scalable interprocedural analysis. mrsary-based analysis, each function
of the program is assigned a summary, data structure oflhsiize that summarizes its behavior
along dimensions important for analysis. Analysis of earftfion uses summaries of functions
immediately called by it, and builds a summary for functitseif.

Unsound summary-based analysis allows analyzing incdmpl®grams, which can, for ex-
ample, use nonstandard libraries or system functions wmkrio the tool. If a function uses
inline assembler code that the tool can’t analyze, it caallp@xclude the analysis of the of-
fending function.
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Even if the analysis can proceed without specificationsjnigaspecifications for certain li-
brary or even program-specific functions can increase thétgwf results. Some defects, such
as format string vulnerability and SQL injection, are natlyrformalized using taintedness prop-
erty assigned to values, or using source-sink sequenceghér case, specific library functions
will need to be given a specification, or be included in a prigp be checked by the static
analysis tool. In other cases, having a specification fobmaly function instead of incorrect
default assumption may help to avoid false positives, ootdase track of a bug. A certain non-
library function in a large program can systematically cmef analysis algorithm, leading to big
number of similar false positives. Thus, static analysa teeeds to provide a means of adding
specifications where necessary, both for library and usastifons, while trying to perform as
good as possible without them.

3 Static defect detection tools

Static defect detection faces serious technical diffiesjtiand as a result, there are multiple
specialized kinds of static analysis tools. These tooldangeted at their particular use cases,
or limited by chosen technologies. Even though the propeitsted inSection 2seem to be
desirable for most applications, many of the existing statialysis tools don’t have them.

We will examine the existing tools, focusing primarily orote for checking C programs,
based on how they specify the situations in the source catdrtticate the presence of bugs,
and on the limitations imposed by algorithms for finding theguations in the source code.

Simple source code analysis tools, such as IT&KMO00], RATS and Flawfinder, are used
to help with manual code audit. Such systems find certain lEmpituations, such as potentially
dangerous function calls, and list them exhaustively. $uity of analysis algorithms results in
most of the reported issues not corresponding to real bugs.

Tools used to verify the absence of bugs of a certain typeowttihequiring specifications
usually impose restrictions on the source code of analyregrams. Restrictions follow from
inability of the existing sound analysis algorithms to wevkh arbitrary data structures (and,
correspondingly, code constructions), and from the reguént to have correct, even if incom-
plete, information about library functions. One group oftstiools in based on abstract inter-
pretation techniques, and includes PolySpace (see cosopanith other systems irZ[[L04])
and ASTREE [CCF"05]. These tools verify runtime safety and other propertiesafrce code
and were applied to check embedded software in aviation axidel drivers. Another group
of tools is based on counterexample guided abstractioneragnt algorithm, which uses the-
orem proving to efficiently work with abstraction of stateasp. This group is represented
by BLAST [HIMS03 and SLAM [BBC'06], applied to verification of runtime safety of de-
vice drivers. Limitations imposed by these tools make ficlift to apply them to regular open
source programs, requiring either heavy revision of thec®uode, or isolation of parts of the
code from incompatible features in preparation for chegkin

Systems for user specification checking allow finding defatmore complex situations, and
without restricting the source code, but require big nundf@nanually written specifications to
be effective. Cqual allows to add qualifiers to C types, ansl uged to find format string vulner-
abilities [STFWO01] and other bugs. LCLINtEGHT94, Splint [EL02] and CSSV PRS03 use
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user-written specifications to find buffer overflow and ottefects. These tools may achieve
verification of source code, proving the absence of certaidskof bugs, if sufficient specifica-
tion coverage is provided. However, as was mentioned eaplieviding the sufficient number
of specifications may be infeasible for a large program, getifications won't be useful for
finding new kinds of bugs.

Automatic defect detection tools search for complex dsfetsource code of big programs,
trying to satisfy the requirements listed in the introdasti One of the approaches to this prob-
lem is searching for a big number of specific templates ofsitus in source code, indicating
possible bugs or violations of source code conventions.h $a@ls include FindBugsHP04
and KLOCwork. The quality of analysis can be improved if a Bmamber of user-written
specifications is allowed. SplinE[02] and ARCHER KCEO0J use unsound heuristics in a way
that improves the quality of issues they report. MEC|CO] (later developed into a commercial
system Coverity) and SaturidPA07] look for local inconsistencies in the code, thus avoiding
most of the false positives even given the imprecision inyasm Commercial tools Coverity
and CodeSonar find defects and security vulnerabilitiesgusioderately general templates.

The diversity of approaches to static defect detection m#hke comparison of static analysis
tools very difficult. Tools belonging to different categesimay be incompatible even where
they emit warnings for the same bugs, due to different aréapmlicability. There are usually
only few tools falling in each category. The defect typesded by the different tools are often
idiosyncratic, so that, for example, the kinds of situagidgm which the buffer overflow bug is
detected by one tool are significantly different from thos¢edted by the other tools. As a
result, there are only few, mostly qualitative comparasuaies, such aZ[L04, ENO§.

4 Our static analysistool

We developed Svace, a static analysis tool for C progranth (imited support for C++) based
on design choices presented Sction 2 Svace doesn't impose restrictions on the analyzed
program, and collects its representation during execufarormal program build script, using

a modified version of GCC compiler.

Svace consists of a framework that implements most of thé& womprogram analysis, and a
set of checkers that use that framework to implement sinferistic algorithms to search for
specific defects.

The framework implements flow-sensitive interprocedusahsary-based analysis. The summary-
based analysis operates in a bottom-up fashion, as deddnitsection 2 Each function of the
program is analyzed only once, using summaries of the fomgtcalled from it, and computing
a summary of the function itself. The analysis doesn’t usballinformation about the program,
information is used interprocedurally only through apgtion of the summaries of functions
at their call sites. For a high-level review of various sgis for interprocedural analyses,
see [CCO02.

The analysis of each function proceeds on three levels. @fiit$t level, Svace performs
alias analysisHlin01], associating abstract memory locations with the varglgfemes) of the
program, including the variables accessed indirectly. Strategy for allocating abstract memory
locations is similar to that used ihIiH01]. Like in [LHO1], the new identifiers are created lazily
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where needed, but in Svace, the analysis in flow-sensitimchwequires some modifications
(see WL95] for a description of another related alias analysis athor). Since some of the
memory locations are visible from multiple functions, tlientifiers of memory locations are
assigned locally, and translated during summary applicatat call sites. Since each function is
analyzed without information of its call sites, the aliakbimation for the function parameters
and global variables passed by the callers is unavailaldkoviing [LLO3], we assume that the
parameters of the functions are not aliased. This assumistisnsound, but empirically, it never
introduced any problems for defect detection.

On a second level, Svace performaue analysisThe value analysis shares some characteris-
tics and algorithms with def-use analysis or SSA analy§&$ 91], but it has a different goal.
Whereas SSA constructs new names, so that each name (@ahiablonly one definition, value
analysis constructs identifiers for values that have onby aefinition. For example, if the same
value is copied from one variable to another, it retains #maesvalue identifier, and the same
value identifier becomes shared by different abstract mginoations. Value identifier analysis
allows to track equal values of variables along program &ea paths.

Similarly to memory locations during alias analysis, vallentifiers are assigned locally, and
are translated between different namespaces during synapplications at call sites. This level
of parameterization in summaries allows to approximateeffext of function calls at each call
site in a context-sensitive manné&HO01], which improves the precision of analysidin01]. At
the same time, functions themselves are analyzed in a densensitive way, which guarantees
scalability of the interprocedural analysis.

Function summaries parameterized by value identifiersvalfor example, to express and
automatically extract a property of a function to return d@niés arguments. At each call site,
the return value will be assigned the same value identifighatsargument (value identifiers are
local, different at each of the different callers). The sl@nalysis, running on the level below
value identifiers, allows to do the same for dynamic datactires, where values are assigned
through sequences of dereferences.

On athird level, the analysis framework allows to asso@étéuteswith the value identifiers.
The analysis framework implements propagation of attebutver control flow graph, within
each function during intraprocedural analysis, and betweeactions using summaries. For
each checker, we define necessary attributes and attribopagation rules allowing to find
situations we are looking for. These attributes track prige of values in the program, such
as interval of possible integer values, possibility of lgegmual to null, or dependence on input
from the network. This framework is analogous to the stashfl@mework of dataflow analysis,
but doesn’t enforce the sound semantics on the attribuggageadion procedures implemented by
the checkers. Where possible, the checkers may implemandsemantics.

To summarize, the edges of the control flow graph of a fundiiarng its analysis, and the
summaries of the function that were analyzed, are assdcigth three mappings: a mapping
from names to abstract memory locations in the current npates a mapping from abstract
memory locations to value identifiers, and a mapping fronaevadientifiers to sets of attributes
associated with them. Through the intermediary of valuatiflers for pointers, and points-to
attributes defined on them, these mappings also define sgoigraph.

To our knowledge, the use of flow-sensitive summary-baststgrocedural dataflow (alias)
analysis as a basis for an automatic defect detection totié¢isense ddection 3 for C is novel,
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int printf(const char *format, ...) {
char dl1 = *format;
sf _use format (format);

A wWDN P

Figure 1: Example of library function specification

as is the use of summaries parameterized by value identifiers

We search for specific bugs using pluggable checkers. Eagtkehrecognizes a certain
situation in the source code, which indicates the presefieebag. Many checkers can detect
the same type of bugs in significantly different situatio®r example, buffer overflow bug
is present in a statement that writes to a buffer by a congtaletx that is out of bounds, so
checker for that situation can look at each statement anckdh¢hat's the case. At the same
time, buffer overflow can result from using a return valuarira library function as an index
without checking if function returned a negative error coBecognizing this situation requires
knowledge about the function, and about the fact that vadtiemed from that function is used
as an index in buffer access. Thus, implementing differbatkers requires gathering different
information about the program, and may require additioifahty function specifications.

Another merit of searching for bugs using specific checkgiis documenting the results of
analysis. Each checker has a description of situationsitthés to find, usual causes of false
positives, ways of getting rid of false positives, and so @ome checkers work on a given
program well, and some don't.

Svace supports specifications of library and user functim@sform of stub implementations
that use special functions to specify checker-specifithatis. For example, specification of
standard functiompr i nt f is implemented as presentedkigure 1 The dereference of argu-
mentf or mat shows that argument is being dereferenced, which is usetldnkers that search
for null pointer dereference bugs. Special functsfnuse _f or mat works as a hook during
analysis of specification, and allows format string vulbdity checker to set {JSE_FORVAT
flag on the formal argumentor mat , a fact that is reflected in the summary of functmi nt f,
and then used by the same format string vulnerability cheeken functionpr i nt f is called
in analyzed source code.

Let's consider, for example, a deference-of-null checkety(in intraprocedural case, to sim-
plify the description). Dereference-of-null checker sbas for situations in source code when
dereferenced pointer can only have null value. Implememtaif dereference-of-null essentially
consists in constant propagation starting in conditiotatiesnents. A flag S_.NULL is propa-
gated starting from the edge in the control flow graph wheraitimnal resolves the value of
pointer into null. If this flag meets a dereference operat@ra note in summary of called func-
tion stating that this value is dereferenced in it), warris;ygmitted. Our tool found dereference-
of-null situation in 21 places in 14 open source programs mayaed with this checker, and in
13 places there was a real bug. An example of this bug fouzetbr a- 0. 94 is presented in
Figure 2 Here, the last line can only be reached if structure pointeis equal to null, in which
case it'll be dereferenced there.
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1 if (rn)

2 {

3 rout e_unl ock_node (rn);

4 zlog_ info ("ifaddr_ipv4_add(): address % is al ready added",
5 inet_ntoa (*ifaddr));

6 return;

7}

8 rn->info = ifp;

Figure 2: Example of dereference-of-null bug

Table 1: Analysis results

Defect Total | True
buffer overflow 23 8
C string error 13 10
null pointer dereference 119 | 59
TOCTTOU 32 30
chroot jail 9 5

Since the analysis is unsound, the development of checkgrsded empiricallyfiP04. The
checker development process starts from formulating ttuatsdns in source code that might
indicate the presence of a certain kind of defect. The firglémentation of the checker is
done to find sufficiently many situations that potentiallynt@n the bug, even if it results in
a high false positive rate. Based on the test runs of the muimgplementation on a set of
programs, the situation in source code sought by the chask&fined, to exclude as many
of the false positives as possible, without excluding tre beigs. Where the incompleteness
of library function specifications is found to confuse thecker, the library specification is
expanded. These steps are repeated as necessary, to refomecker. If the resulting checker
becomes sufficiently accurate (in particular, on the aiigbyfsthe programs not tested during the
refinement), it is included as a part of the tool, otherwisetiins the “experimental” status.

According to the classification given Bection 3 Svace is an automatic defect detection tool.
The closest published tools are MEGCO0] and Saturn DDAQO7]. MC uses checkers, but its
intraprocedural analysis is based on simpler attribut@amyation techniques. Saturn performs
summary-based analysis, but uses predicate abstractidny@e inference, more theoretically
loaded and heavy-weight techniques that make the analysmis computationally intensive and
development of checkers more difficult, although the preci®f such analysis is potentially
greater.

We implemented several checkers for Svace, detecting hugfs & buffer overflow, null
pointer dereference, format string vulnerability, doutvee, TOCTTOU. We tested the tool on
a collection of 63 open source programs, total size of 2(&WD]ines of source code in C (in-
cluding apache, putty, mysq|, cvs, squid, ntp, openssitpdhbftpd, pound, ssmtp, troll-ftpd,
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cfingerd, gzip, thttpd, telnet, vsftpd, gmail, tar, wu-ftmgbenftpd, sendmail, proftpd). The run-
ning time of analysis depends on the number of enabled creckdth all checkers enabled,
all 63 programs are analyzed irbzhours, on one PC using one core of a Intel Pentium E2180,
2GHz processor.

Table 1lists the results obtained on a subset of 33 of these progodmisout 500,000 lines
of source code, using a subset of checkers. The third colunralde 1lists the number of
true positives detected during analysis of these progrdetermined by manual inspection of
analysis results.

In 20086, via grant from US Department of Homeland SecurityyeZity and Stanford used a
restricted version of their static analysis tool to scamgaificant number of open source projects,
and have given access to the results to the developers @& giogects. The number of defects
per 1000 lines of code found by our tool (abouf ®ugs/KLOC) is similar to that reported
by Coverity in their open source static analysis project @ 05 bugs/KLOC, depending on
analyzed program) KLOCwork is also known for publishing the bugs found by theiol in
open source programs. Static analysis tools can be useddtearertification processes, based
on elimination of defects detected by those tools. For exan@overity certifies a program as
“Coverity clean”, when its tool fails to find any defects irathprogram.

5 Conclusion

In this paper we considered the properties desirable ftic staalysis tools used to find bugs in
real code. A tool should focus on situations in which it caousately recognize bugs, trading
soundness of analysis for relevance of results if necessageds to allow specification of stan-
dard and user functions where possible without requirinigjieeds to avoid placing restrictions
on admissible source code. Detecting more bugs requirepiocedural analysis, but the anal-
ysis needs to scale to large programs. Not all tools choogaltov these guidelines, as there
are use cases requiring use of technologies incompatiltifeting requirements.

A static analysis tool was presented, that satisfies theggreenents and performs defect
search using a collection of checkers implemented in a frariefor interprocedural attribute
propagation, based on dataflow analysis.
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