Electronic Communications of the EASST

Volume 20 (2009)

Proceedings of the
Third International Workshop on
Foundations and Techniques for
Open Source Software Certification
(OpenCert 2009)

Towards a metric for Open Source Software Quality
Siraj A. Shaikh and Antonio Cerone

11 pages

Guest Editors: Luis Barbosa, Antonio Cerone, Siraj Shaikh

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Towards a metric for Open Source Software Quality

Siraj A. Shaikh® and Antonio Cerone?

1 s.shaikh@coventry.ac.uk
Department of Computing and the Digital Environment
Faculty of Engineering and Computing, Coventry Universigventry, UK

2 antonio@iist.unu.edthttp://www.iist.unu.edu/antonio
International Institute for Software Technology
United Nations University, Macau SAR China

Abstract: Software quality is more than just conformance to a set diirements
and represents many attributes related to each other tHat opaa piece of soft-
ware. An important part of this measure depends on the undgrprocesses and
methodologies used in the engineering of software. We ptegeearly exposition
towards a quality model for open source software (OSS). VBerd® some basic
notions of quality for OSS and present a basic model, wheaditgunotions consist
of various factors that influence such quality. The purpdshis effort is ultimately
to develop a quantitative metric for software quality.

Keywords: Open source; software quality; quality model; softwareeti@yment

1 Introduction

Open source software (OSS) development has proved to bessfictover the years and has
delivered some high-quality system and application safwahis includes some popular oper-
ating systems, network services and high-end applicationsix and BSD distributions, Apache
and MySQL serve to be shining examples, and are a testimothetsuccess and resilience of
open source developers’ effort. A recent report commigsidoy the United States Department
of Homeland Security into open source software finds thaaefensity has fallen by 16% over
the last two years to the extent that such software on ave@gains one defect for every 4000
lines of code Cov0d. The reputation that such products have built up over ttegs/gives the
industry leaders confidence that the open source commuaithd aeliver much more. They
are therefore increasingly looking to the open source conitydior critical software for use
in critical domains. Spiralling costs of traditional demginent, innovative developmental ap-
proaches, effective user testing and feedback, and betigrcp durability and sustainability are
other motivating factors for the industry leaders to look@é¢n source development.

Systems designed for privacy and access control, realdtheduling and industrial process
control in industries such as public transport, automelaigonics, health and defence undergo
thorough modelling and design where each and every furaltiand operational property re-
ceives rigorous treatment. A standard approach to redweeigks in deploying such critical
systems is to establish an independent certification psodéswadays, this is increasingly en-
forced by laws, on the basis of international standards hvt&fine the quality of software in

1/11 Volume 20 (2009)

mailto:s.shaikh@coventry.ac.uk
mailto:antonio@iist.unu.edu
http://www.iist.unu.edu/~antonio

Towards a metric for Open Source Software Quality @

terms of the level of technical rigour used in the designgt®ing, verification, validation and

documentation processes as well as the human processasrigvyoroject management, train-
ing and expertise of project teams, and the users commumityOp]. However, today we lack

standards and methods to assess the quality of open sofiwarso In fact, the lack of central

management in open source software projebtsiP05 Mic05] makes it difficult to define a

standard that could suggest indicators of the technicalrigsed by a distributed community of
volunteers and identify the human processes involved iptbgct.

While open source software has proved to be popular andda @ftind to be obetter quality
than propertiary software, it is still not clear what fast@ontribute, either directly or by proxy,
to this quality. For use in critical domains aforementionf@dtors such as completeness, consis-
tency, maintanability, testability and reliability becemecessary more than ever. Moreover, a
clearer understanding of the underlying factors is imptrifaappropriate standards and methods
to assess quality are to be developed. A lack of central ngameagt in most open source soft-
ware projects Jic05, MHPO5 makes it particularly pertinent to examine available aadors
of technical rigour used by a distributed community of va&ers and identify human processes
involved in a typical project.

The development of software is very often as much a humarepso&s a structured technical
process Iluf06]. Software developers and engineers organise their cddg uarious means,
including programming styles and language-specific cammes, and software design and docu-
mentation. While a computer may not acknowledge the sutagenbtions of a well-written code
or software design, such factors contribute to softwardityuavhich is more than just confor-
mance to a set of requirements or expectations. Such a nejiwasents many attributes, some
constant some variable, related to each other and oftenglaththat come together to make a
piece of software. An important part of this measure alsaddp on the underlying processes
and methodologies used in the engineering of software. rBnoging styles, language-specific
conventions, software design and documentation are anmenfattors that directly contribute
towards the development of quality attributes of softwane their precise role is not always
understood or appreciated. The role of such factors theonbes even more blurred when we
consider that the software is open sourced.

The rest of this paper is organised as follows. Sec#iamtroduces different quality metrics
to represent the various types of factors that contribusottware quality. Sectio shows how
such factors are related to each other. Secdtidiscusses related work and Sect®ooncludes
the paper.

2 Software Quality Metrics

Software quality metrics are measures of the quality ofvei based on a number of factors
such as software correctness and recognised and indtsiryasd attributes. Example of such
attributes are the ones suggested by the ISO 9126 modeltidnality, reliability, usability,
maintainability, portability and efficiency, which are assed and judged through acceptable
means. Software correctness is an important factor, wiiciined to be directly achievable by
formal design and construction using refinement techniqoieserified using formal methods,
along with validation using manual and automated testing.

Proc. OpenCert 2009 2/11

@ ECEASST

When dealing with OSS, however, some factors that are urimtiee OSS development pro-
cess must be included within the characterisation of sudhiecaeln particular OSS has a wider
and unrestricted availability to an open community of pemretbpers, code reviewers, contrib-
utors and end-users, who freely engage and employ a divenge of development practices
and methodologies. These factors are unique to OSS and cgether to facilitate code release
early and often.

We describe three main notions of quality in the context @ropource software development,
namely,quality by accesgquality by developmerandquality by design

2.1 Quality by Access

Open access to source code is fundamental to the OSS dewlbprocess. For peer developers
and code reviewers to contribute to the development proaedsherefore quality, it is necessary
that access to software is as open as it possibly could be opéeness of access here implies
availability of source code (and files) from an easily acitéssnedium such as the Internet. In

particular, availability is unrestricted in a way that

- it requires no authorisation and is least exclusive in seofrmembership of mailing lists,
working groups or a formal organisation;

- the source code is in a format that is deemed suitable ankialler for the purposes of
review and development, and appropriate for free disiobut

Our notion ofquality by accesss essentially a measure of these provisions, which all@v th
very basis for further development and maintenance of soévn an open source environment.

2.2 Quality by Development

While open access lays it all down, it is the actual execugiod review of the source code that
allows bug detection, and hence reporting and fixing, newufeaand functionality develop-
ment, and eventually evolution. The ideaafality by developmeris an attempt to measure
the efficiency of such processes and the interaction betthesn. We break this down into five
identifiable factors,

- precise and explicit understanding of software goals agdirements;

- choice of methodologies for testing, debugging and emadrtaug reporting;

- choice of programming languages and development envieotsn

- tools to provide effective communication, coordinatiamdeoverall management of the
project;

- facilitation of rapid frequency of beta releases.

While all these factors work together, the overall managerogtthe project plays a more central

role, with communication and coordination being the two &spects of this. It helps developers
understand the requirements of the software and allows thetmoose appropriate development
and debugging techniques. Moreover, it helps coordindthelkctivities throughout the devel-

opment phase of the software, which in turn eventually hieliequent releases of the software.
We demonstrate this relationship explicitly in Figie

3/11 Volume 20 (2009)

Towards a metric for Open Source Software Quality @

2.3 Quality by Design

The availability and development factors provide only thgtr environment. The end quality
is inevitably judged by the design and implementation ofdbtial software and the code that
underlies it. Our idea dduality by desigrcorresponds to the more traditional notion of software
quality. Two definitions somewhat indicative of this traalital notion include the definition of
quality by IEEE JEE99:

“the degree to which a system, component, or process meetpétified require-
ments, meets (2) customer or user needs or expectations,”

and another more recent by Pressmare(q:

“conformance to explicitly stated functional and perforroa requirements, explic-
ity documented development standards, and implicit atarestics that are ex-
pected of all professionally developed software.”

For the purpose of OSS, we defigeality by desigras a specific measure of

- the use of recognised software design notations, such ds, fiivinal notations, such as
logics and process calculi/algebras, and engineeringitgeés, such as object-orientation,
component-based design and reuse, to provide correctridssespect to explicitly de-
sired safety, security and non-functional propertieshagreliability and fault-tolerance,
and

- the production and frequent update of appropriate andaixgbcumentation that helps
both the users and future developers.

Design and engineering techniques should present a highele§formality in order to facilitate
verification using established formal methods and teclesicguch as theorem-proving, model-
checking and model-based testing. Other contributionsit rheasure include attributes of
quality, such as those specified by ISO 9126.

3 Relationships among Quality Factors for OSS

In this section we delve further into the three notions ofliggay highlighting the factors that
contribute to the overall quality of the OSS and by definirigtienships between such factors.
The overall quality of software due to each factor may be robd or undermined due to another
related factor. We illustrate this relationship by usingox that represents quality provided by
a quality factor and amarrow to denote that quality provided by a factor is dependent en th
quality provided by another factor. So, for example, Figlitustrates that quality provided by
Factor 2 is dependent on quality provided by Factor 1. dbgendencyelation may be defined
in both directions to indicate two quality factors complerigg each other.

The main factors that contribute ¢mality by accesare

- suitable format for the purposes of review, development and free distidioiti
- accessible mediunsuch as the Internet;

Proc. OpenCert 2009 4/11

@ ECEASST

Factor 1 Factor 2

Figure 1: Dependency relation between factors

suitable accessible unrestricted
format medium access

Figure 2: Quality by access

- unrestricted accesgo existing software code and documentation.

The relationships between these factors are shown in Figjuidne use of a suitable format
helps the quality provided by the use of an accessible medshiown hereby with the help of
an arrow between these two factors. Similarly, the use ofcapssible medium helps with the
accessability due to an absence of authorisation.

The five main factors that contribute quality by developmenas already mentioned in Sec-
tion 2.2, are shown in Figur&. The various relations centre aroueffective communication,
coordination and management This factor helps the quality provided by all other factors
and in particular, facilitatefrequent beta releases How much does effective communication
and coordination helps the quality of the software is alticdepedent on thenderstanding
of goals and requirements either directly, at the higher abstraction levels in theettgpment
process, or through éhoice of methodologies for testing and debuggingnd achoice of pro-
gramming languages and environmenat the lower abstraction levels.

Note that coordination and communication lie at the hearryf open source software de-
velopment, regardless of the hierarcliy404] of a project, as it serves to bring together and
manage the various developmental activites in what is lysaabidely dispersed community.

The main factors that contribute tmality by desigrare

- use of recognised design and engineering techniques
- correctness

formal analysis and verification;

- frequently updated documentation

As shown in Figuret, software quality in terms of correctness of the code isdutlpy all
other factors present here. The practice of recognisedmesid engineering techniques goes
hand in hand with formal analysis and verification. Formahteques allow more rigorous and
automated support to assure safety and dependabilithuts amongst others. Requirements
engineering, software design and development, revisiaintenance and documentation are
all to benefit from the use of formal methods. Suitability ofree such methods is already
demonstrated for open source software developni2R0f. Good updated documentation is
also an important factor that only serves to help with theeminess of code, especially during

5/11 Volume 20 (2009)

Towards a metric for Open Source Software Quality @

frequent beta release

effective communication,
coordination and management

choice of programming user testing and
languages and environment bug fixes

A A

understanding of goals and requirements

Figure 3: Quality by development

use of recognised design frequently updated
and engineering techniques documentation
formal analysis correctness
and verification

Figure 4: Quality by design

code debugging and updating.

We extend our dependency relation from Figlite express this dependency between each of
the three quality measureQuality by developmergndquality by desigrboth play an essential
role in providing software quality and complement each iofbethis purpose. Underlying both
measures iguality by acceseepresenting availability and openness of source coddafawent,

a principle that lies at the heart of open-source philosopHyese relationships are shown in
Figure>b.

4 Related Work

The literature on quality for open source software is limhibeit varied. In this section we review
some of this literature and discuss issues in relation tormdel. Most of the work undertaken so
far broadly divides into comparative case studies thatdamuquality issues in particular open

Proc. OpenCert 2009 6/11

@ ECEASST

quality by quality by
development design

quality by access

Figure 5: Relationships between quality metrics

source projectsNIFHO0Z], surveys of general quality assurance practic&s00, ZE03 HS02
YMO6, Mic05] and particular aspects and issues of quality of open soswftevare Yy MO06,
Mic05, McC99, MHPO0S.

Zhao and ElbaumZ4EOQ0Q undertake a small survey to examine the factors underlgiragity
assurance methods of open source developers. Their workatbases the general attitude and
practices of the open source community towards qualityisieg quality assurance practices are
somewhat different to those prevalent in traditional safendevelopment. The survey highlights
the choice of programming languages and the availabilitgoofesponding debugging tools as
one of the factors in this respect. C, Perl and C++ are the tmest commonly used languages
(among the sample surveyed), with the GEEPES02, Perl Debuggerfol04 and Electric Fence
[EFQ as three most commonly used debugging tools. Interegtitigt survey also reveals wider
tool support for longer a language has existed (with Javagban exception), where the avail-
ability corresponds to its widespread usage.

McConnell McC99 acknowledges the efficiency of extensive field testing aeer peview,
along with an emphasis on the need for a comprehensive natgydfor open source devel-
opment. This is important if open source development is tadea for producing high quality
complex software for use in critical domains.

Halloran and ScherlisHS0J review a number of notable quality practices on some popu-
lar open source projects, of which good project commurocadind management is highlighted.
This includes software bug and issue tracking, composéimhconfiguration control, build man-
agement and computer and tool-assisted mediation. Theyrdteduce the notion of a project
wall that surrounds the project server, with the purposeafimising outgoing information flow
and controlling incoming information flow. The strength bitwall is then critical to the quality
of the software produced.

Effective communication and management, the choice ofrprogiing languages and the
choice of testing strategy emerge as the three most proiniaetors affecting quality. These
three factors form the core of tlgpiality by developmenheasure (see Figuf® in our model.
The three factors combine to become essential to the qualitge actual software code and
the resulting product. Hedbergt al [HIRHO7] emphasise the role good communication and
management play in the production of good quality open sosoftware. They portray open
source development as essentialgveloper-centricwhere the task of managing the project
requiresgood social and communication skillSuch skills allow core developers to

7111 Volume 20 (2009)

Towards a metric for Open Source Software Quality @

- manage and motivate volunteers to review code and delatehps,
- encourage users to test the software, with the aim to findematt bugs, and
- ensure that as a result of such “beta-testing” code is fixed.

Undoubtedly developers involved in open source projectsnfluence many critical aspects
of the software that results, including most importantlg goftware architecture, as Ariet
al [AGLO01] highlight.

We model frequent beta release as a quality factor that gakirly dependent on effective
communication and management. Software release, in ansmpeoe environment, requires ef-
fective control and coordination amongst the developermanity. Michlmayr Mic05] draws
attention to this particular issue, and attributes the lgrob associated with release manage-
ment to a lack of such skills in this community, who are moptiggrammers and volunteers as
opposed to dedicated managers.

Michlmayr [Mic05] goes further to note that the developer community may nedygd heed to
user requirements for this purpose, resulting in softwaleases that do not meet their intended
goals and purposes. Our model takes this into account andgpthe understanding of goals and
requirements as a complementing factor to effective coattin and management.

While we acknowledge the link between frequent softwareast, enabling increased testing
and feedback, and software quality, Schmidt and Po&&0[] find it as a serious hindrance
to quality assurance as it contributes to a serious risedredist of long-term maintenance and
evolution.

De Grootet al[GKAGO€] define a Software Quality Observatory to evaluate and dfyathe
quality of an open source project. The tool is based on a pbgsed SOA that supports the
mixing and matching of metrics extraction suits, sourceecagbositories and transformational
filtres [GKS™07).

5 Discussion

Our effort ultimately aims to develop a quantitative mefac quality. Such a metric could be
useful in formal assessment and comparison of open souvedopenent. While such a metric
also raises many questions about how various factors am neelasured, we discuss some early
ideas on our approach to deriving a quantitative metricHerrnoment, and leave measurement
issues to be dealt with later.

We consider each quality factor, as introduced in Se@jandividually and assign it an index
value within a limited range [0.1,1]. The index denotes thelity provided by the factor for
a given development where the higher the value the higheqtiadity provided by a factor.
We assume every factor does contribute towards the ovaralitg at least to correspond to a
minimum index of 0.1. For a factdf, we write the index as(F).

For two factors related to each other, as shown in Fiuree calculate the total metric of the
two factors,F, andF,, as a product of their index values. But since quality predithy F, is
enhanced by the quality provided By, we need to factor in this enhancement. This will allow
us to model the understandably varying degrees of dependbatexist between factors. We
calculate this by adding a proporti@nof the quality provided by to I (F,), which then helps
us to derive the total quality d¢F1) x (1(F2) + 1(Fy) x Q).

Proc. OpenCert 2009 8/11

@ ECEASST

F
! Factor 1 L Factor 2 P2

Figure 6: Metric for dependency relation between factors

F1

Factor 1 r Factor 2 P2

Figure 7: Metric for dependency relation between complaimgractors

For complementing factors, whereis the proportion of quality provided bk, to F;, we
calculate the total ag(F1) + [(F2) x r) x (I(F2) + I (F1) x @), as shown in Figuré.

The calculations presented above allow us to sum up the ¢otatibution of the various
factors and represent it as a quality metric. Such a metritddee useful to judge how different
factors influence the overall quality of software produce@ aesult of various strategies adopted
in open source developments. Further work aims to determays to measure quality provided
by factors and demonstrate our approach by applying it tocestirey open source project.

The ideas presented in this paper are preliminary, and apesho stimulate discussion and
promote further research in this area. Further work is umdgrto assess how effective is our
approach to model quality with respect to established O8feqts. Our particular focus is on
applying our model to existing projects and analyse theityualctor dependencies that emerge.
Some are likely to correspond to the ones we have in our medele some may not; it is
the latter that are of interest to us. We hope to report bagkedhults to the wider community.
The challenge is to develop a comprehensive model whichtls well-defined, in order for it
to be precise and effective in judging the quality of OSS, #iexible to accommodate the yet
developing and emerging notions of quality.

Bibliography

[AGLO1] B. Arief, C. Gacek, T. Lawrie. Software Architects and Open Source Software -
Where can Research Leverage the MostProceedings of 1st Workshop on Open
Source Software Engineering, Toronto, Canadp. 3-5. 2001.

[BPO8] P. T. Breuer, S. Pickin. Approximate verification in apen source worldnno-
vations in System and Software Engineer#(d):87—-105, April 2008. Springer-
Verlag.

[Cov08] Open Source Report 2008. 2008. http://www.coyaxim.

[EFO] Electric Fence debugger. Last Accessed on 7th DeceRtlis.
http://perens.com/FreeSoftware/ElectricFence/

9/11 Volume 20 (2009)

http://perens.com/FreeSoftware/ElectricFence/

Towards a metric for Open Source Software Quality @

[Folo4]
[GAO04]

[GKAGO6]

[GKS07]

[HIRHO7]

[HS02]

[IEE99]

[McC99]

[MFHO2]

[MHPO5]

[Mic05]

[Muf06]

[Pre00]

[SPO1]

R. Foley.Perl Debugger Pocket Referend@ Reilly Press, January 2004.

C. Gacek, B. Arief. The Many Meanings of Open Souté&E Software21(1):34—
40, January/February 2004.

A. de Groot, S. Kugler, P. Adams, G. Gousios. Opeurse software quality obser-
vation. InIFIP International Federation for Information Processingolume 203,
pp. 57-63. Springer, 2006.

G. Gousios, V. Karakoidas, K. Stroggylos, P. LouridasVWchos, D. Spinellis.
Software Quality Assessment of Open Source SoftwarBrdceedings of the 11th
Panhellenic Conference on Informatic07.

H. Hedberg, N. livari, M. Rajanen, L. Harjumaa. 8eére Architectures and Open
Source Software - Where can Research Leverage the Mogtdteedings of First
Workshop on Emerging Trends in FLOSS Research and Devetbpktianeapolis,
USA (FLOSS'07)Pp. 1-5. 2007.

T. J. Halloran, W. L. Scherlis. High Quality and Opesu&e Software Practices. In
2nd Workshop on Open Source Software Engineeiay 2002.

IEEE Std 610.12-1990 - IEEE Standard Glossary oh&afe Engineering Termi-
nology. February 1999.

S. McConnell. Open Source Methodology: Ready fomerTime?|EEE Software
16(4):6-8, july/august 1999. IEEE Computer Society.

A. Mockus, R. T. Fielding, J. D. Herbsleb. Two Casedeés of Open Source Soft-
ware Development: Apache and Mozill®CM Transactions on Software Engineer-
ing and Methodologyt 1(3):309-346, july 2002. ACM Press.

M. Michlmayr, F. Hunt, D. Probert. Quality Pract&@and Problems in Free Soft-
ware Projects. In Scotto and Succi (ed®Joceedings of the First International
Conference on Open Source SystelRs 24-28. Genova, Italy, 2005.

M. Michlmayr. Quality Improvement in Volunteer FeeSoftware Projects: Explor-
ing the Impact of Release Management. In Scotto and Sucsi)(@idoceedings of
the First International Conference on Open Source Syst@®ms309-310. Genova,
Italy, 2005.

M. Muffatto. Open Source — A Multidisciplinary Approadmperial College Press,
2006.

S. R. PressmaBoftware Engineering - A Practitioner's ApproadidcGraw-Hill
International, London, 2000.

D. C. Schmidt, A. Porter. Leveraging Open-Source @aomities to improve the
Quiality and Performance of Open-Source Softwar@rbteedings of 1st Workshop
on Open Source Software Engineering, Toronto, Can2@al.

Proc. OpenCert 2009 10/11

@ ECEASST

[SPS02] R. M. Stallman, R. Pesch, S. Shdbsbugging with GDB:The GNU Source-Level
Debugger Free Software Foundation, January 2002.

[YMO6] C.Yilmaz, A. Memon. Techniques and Processes forrmumg the Quality and Per-
formance of Open-Source Softwaf@oftware Process: Improvement and Practice
11(2):163-176, May 2006. John Wiley & Sons.

[ZEOO] L. Zhao, S. Elbaum. A survey on quality related atitdd in open sourceACM
SIGSOFT Software Engineering Not25(3):53-57, May 2000. ACM Press New
York, NY, USA.

[ZEO3] L. Zhao, S. Elbaum. Quality assurance under the operce development model.

Journal of Systems and Softwd#®(1):65—75, April 2003. Elsevier Science.

Acknowledgements:
Early ideas on quantitative metrics have benefitted froroudisions with Dr. Vasos Pavlika.

11/11 Volume 20 (2009)

	Introduction
	Software Quality Metrics
	Quality by Access
	Quality by Development
	Quality by Design

	Relationships among Quality Factors for OSS
	Related Work
	Discussion

