
Electronic Communications of the EASST
Volume 20 (2009)

Proceedings of the
Third International Workshop on
Foundations and Techniques for

Open Source Software Certification
(OpenCert 2009)

Towards a metric for Open Source Software Quality

Siraj A. Shaikh and Antonio Cerone

11 pages

Guest Editors: Luis Barbosa, Antonio Cerone, Siraj Shaikh
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Towards a metric for Open Source Software Quality

Siraj A. Shaikh1 and Antonio Cerone2

1 s.shaikh@coventry.ac.uk
Department of Computing and the Digital Environment

Faculty of Engineering and Computing, Coventry University, Coventry, UK

2 antonio@iist.unu.edu, http://www.iist.unu.edu/∼antonio
International Institute for Software Technology
United Nations University, Macau SAR China

Abstract: Software quality is more than just conformance to a set of requirements
and represents many attributes related to each other that make up a piece of soft-
ware. An important part of this measure depends on the underlying processes and
methodologies used in the engineering of software. We present an early exposition
towards a quality model for open source software (OSS). We describe some basic
notions of quality for OSS and present a basic model, where quality notions consist
of various factors that influence such quality. The purpose of this effort is ultimately
to develop a quantitative metric for software quality.

Keywords: Open source; software quality; quality model; software development

1 Introduction

Open source software (OSS) development has proved to be successful over the years and has
delivered some high-quality system and application software. This includes some popular oper-
ating systems, network services and high-end applications. Linux and BSD distributions, Apache
and MySQL serve to be shining examples, and are a testimony tothe success and resilience of
open source developers’ effort. A recent report commissioned by the United States Department
of Homeland Security into open source software finds that defect density has fallen by 16% over
the last two years to the extent that such software on averagecontains one defect for every 4000
lines of code [Cov08]. The reputation that such products have built up over the years gives the
industry leaders confidence that the open source community could deliver much more. They
are therefore increasingly looking to the open source community for critical software for use
in critical domains. Spiralling costs of traditional development, innovative developmental ap-
proaches, effective user testing and feedback, and better project durability and sustainability are
other motivating factors for the industry leaders to look atopen source development.

Systems designed for privacy and access control, real-timescheduling and industrial process
control in industries such as public transport, automobile, avionics, health and defence undergo
thorough modelling and design where each and every functional and operational property re-
ceives rigorous treatment. A standard approach to reduce the risks in deploying such critical
systems is to establish an independent certification process. Nowadays, this is increasingly en-
forced by laws, on the basis of international standards which define the quality of software in

1 / 11 Volume 20 (2009)

mailto:s.shaikh@coventry.ac.uk
mailto:antonio@iist.unu.edu
http://www.iist.unu.edu/~antonio


Towards a metric for Open Source Software Quality

terms of the level of technical rigour used in the design, developing, verification, validation and
documentation processes as well as the human processes involving project management, train-
ing and expertise of project teams, and the users community [Muf06]. However, today we lack
standards and methods to assess the quality of open source software. In fact, the lack of central
management in open source software projects [MHP05, Mic05] makes it difficult to define a
standard that could suggest indicators of the technical rigour used by a distributed community of
volunteers and identify the human processes involved in theproject.

While open source software has proved to be popular and is often found to be ofbetter quality
than propertiary software, it is still not clear what factors contribute, either directly or by proxy,
to this quality. For use in critical domains aforementioned, factors such as completeness, consis-
tency, maintanability, testability and reliability become necessary more than ever. Moreover, a
clearer understanding of the underlying factors is important if appropriate standards and methods
to assess quality are to be developed. A lack of central management in most open source soft-
ware projects [Mic05, MHP05] makes it particularly pertinent to examine available indicators
of technical rigour used by a distributed community of volunteers and identify human processes
involved in a typical project.

The development of software is very often as much a human process as a structured technical
process [Muf06]. Software developers and engineers organise their code using various means,
including programming styles and language-specific conventions, and software design and docu-
mentation. While a computer may not acknowledge the subjective notions of a well-written code
or software design, such factors contribute to software quality, which is more than just confor-
mance to a set of requirements or expectations. Such a notionrepresents many attributes, some
constant some variable, related to each other and often entangled that come together to make a
piece of software. An important part of this measure also depends on the underlying processes
and methodologies used in the engineering of software. Programming styles, language-specific
conventions, software design and documentation are among the factors that directly contribute
towards the development of quality attributes of software but their precise role is not always
understood or appreciated. The role of such factors then becomes even more blurred when we
consider that the software is open sourced.

The rest of this paper is organised as follows. Section2 introduces different quality metrics
to represent the various types of factors that contribute tosoftware quality. Section3 shows how
such factors are related to each other. Section4 discusses related work and Section5 concludes
the paper.

2 Software Quality Metrics

Software quality metrics are measures of the quality of software based on a number of factors
such as software correctness and recognised and industry-standard attributes. Example of such
attributes are the ones suggested by the ISO 9126 model: functionality, reliability, usability,
maintainability, portability and efficiency, which are assessed and judged through acceptable
means. Software correctness is an important factor, which is aimed to be directly achievable by
formal design and construction using refinement techniques, or verified using formal methods,
along with validation using manual and automated testing.

Proc. OpenCert 2009 2 / 11



ECEASST

When dealing with OSS, however, some factors that are uniqueto the OSS development pro-
cess must be included within the characterisation of such metrics. In particular OSS has a wider
and unrestricted availability to an open community of peer developers, code reviewers, contrib-
utors and end-users, who freely engage and employ a diverse range of development practices
and methodologies. These factors are unique to OSS and come together to facilitate code release
early and often.

We describe three main notions of quality in the context of open source software development,
namely,quality by access, quality by developmentandquality by design.

2.1 Quality by Access

Open access to source code is fundamental to the OSS development process. For peer developers
and code reviewers to contribute to the development process, and therefore quality, it is necessary
that access to software is as open as it possibly could be. Theopenness of access here implies
availability of source code (and files) from an easily accessible medium such as the Internet. In
particular, availability is unrestricted in a way that

- it requires no authorisation and is least exclusive in terms of membership of mailing lists,
working groups or a formal organisation;

- the source code is in a format that is deemed suitable and workable for the purposes of
review and development, and appropriate for free distribution.

Our notion ofquality by accessis essentially a measure of these provisions, which allow the
very basis for further development and maintenance of software in an open source environment.

2.2 Quality by Development

While open access lays it all down, it is the actual executionand review of the source code that
allows bug detection, and hence reporting and fixing, new feature and functionality develop-
ment, and eventually evolution. The idea ofquality by developmentis an attempt to measure
the efficiency of such processes and the interaction betweenthem. We break this down into five
identifiable factors,

- precise and explicit understanding of software goals and requirements;
- choice of methodologies for testing, debugging and error and bug reporting;
- choice of programming languages and development environments;
- tools to provide effective communication, coordination and overall management of the

project;
- facilitation of rapid frequency of beta releases.

While all these factors work together, the overall management of the project plays a more central
role, with communication and coordination being the two keyaspects of this. It helps developers
understand the requirements of the software and allows themto choose appropriate development
and debugging techniques. Moreover, it helps coordinate all the activities throughout the devel-
opment phase of the software, which in turn eventually helpsin frequent releases of the software.
We demonstrate this relationship explicitly in Figure3.

3 / 11 Volume 20 (2009)



Towards a metric for Open Source Software Quality

2.3 Quality by Design

The availability and development factors provide only the right environment. The end quality
is inevitably judged by the design and implementation of theactual software and the code that
underlies it. Our idea ofquality by designcorresponds to the more traditional notion of software
quality. Two definitions somewhat indicative of this traditional notion include the definition of
quality by IEEE [IEE99]:

“the degree to which a system, component, or process meets (1) specified require-
ments, meets (2) customer or user needs or expectations,”

and another more recent by Pressman [Pre00]:

“conformance to explicitly stated functional and performance requirements, explic-
itly documented development standards, and implicit characteristics that are ex-
pected of all professionally developed software.”

For the purpose of OSS, we definequality by designas a specific measure of

- the use of recognised software design notations, such as UML, formal notations, such as
logics and process calculi/algebras, and engineering techniques, such as object-orientation,
component-based design and reuse, to provide correctness with respect to explicitly de-
sired safety, security and non-functional properties, such as reliability and fault-tolerance,
and

- the production and frequent update of appropriate and explicit documentation that helps
both the users and future developers.

Design and engineering techniques should present a high degree of formality in order to facilitate
verification using established formal methods and techniques such as theorem-proving, model-
checking and model-based testing. Other contributions to this measure include attributes of
quality, such as those specified by ISO 9126.

3 Relationships among Quality Factors for OSS

In this section we delve further into the three notions of quality by highlighting the factors that
contribute to the overall quality of the OSS and by defining relationships between such factors.
The overall quality of software due to each factor may be enhanced or undermined due to another
related factor. We illustrate this relationship by using abox that represents quality provided by
a quality factor and anarrow to denote that quality provided by a factor is dependent on the
quality provided by another factor. So, for example, Figure1 illustrates that quality provided by
Factor 2 is dependent on quality provided by Factor 1. Thisdependencyrelation may be defined
in both directions to indicate two quality factors complementing each other.

The main factors that contribute toquality by accessare

- suitable format for the purposes of review, development and free distribution;
- accessible mediumsuch as the Internet;

Proc. OpenCert 2009 4 / 11



ECEASST

Factor 1 - Factor 2

Figure 1: Dependency relation between factors

suitable
format

- accessible
medium

- unrestricted
access

Figure 2: Quality by access

- unrestricted accessto existing software code and documentation.

The relationships between these factors are shown in Figure2. The use of a suitable format
helps the quality provided by the use of an accessible medium, shown hereby with the help of
an arrow between these two factors. Similarly, the use of an accessible medium helps with the
accessability due to an absence of authorisation.

The five main factors that contribute toquality by development, as already mentioned in Sec-
tion 2.2, are shown in Figure3. The various relations centre aroundeffective communication,
coordination and management. This factor helps the quality provided by all other factors,
and in particular, facilitatesfrequent beta releases. How much does effective communication
and coordination helps the quality of the software is critically depedent on theunderstanding
of goals and requirements, either directly, at the higher abstraction levels in the development
process, or through achoice of methodologies for testing and debuggingand achoice of pro-
gramming languages and environmentat the lower abstraction levels.

Note that coordination and communication lie at the heart ofany open source software de-
velopment, regardless of the hierarchy [GA04] of a project, as it serves to bring together and
manage the various developmental activites in what is usually a widely dispersed community.

The main factors that contribute toquality by designare

- use of recognised design and engineering techniques;
- correctness;
- formal analysis and verification;
- frequently updated documentation.

As shown in Figure4, software quality in terms of correctness of the code is helped by all
other factors present here. The practice of recognised design and engineering techniques goes
hand in hand with formal analysis and verification. Formal techniques allow more rigorous and
automated support to assure safety and dependability attributes amongst others. Requirements
engineering, software design and development, revision, maintenance and documentation are
all to benefit from the use of formal methods. Suitability of some such methods is already
demonstrated for open source software development [BP08]. Good updated documentation is
also an important factor that only serves to help with the correctness of code, especially during

5 / 11 Volume 20 (2009)



Towards a metric for Open Source Software Quality

effective communication,

coordination and management

frequent beta release

6

understanding of goals and requirements
?

6

choice of programming

languages and environment

?

6

user testing and

bug fixes

?

6

6 6

Figure 3: Quality by development

use of recognised design

and engineering techniques
- frequently updated

documentation

correctness
??

6

formal analysis

and verification

-

Figure 4: Quality by design

code debugging and updating.
We extend our dependency relation from Figure1 to express this dependency between each of

the three quality measures.Quality by developmentandquality by designboth play an essential
role in providing software quality and complement each other for this purpose. Underlying both
measures isquality by accessrepresenting availability and openness of source code development,
a principle that lies at the heart of open-source philosophy. These relationships are shown in
Figure5.

4 Related Work

The literature on quality for open source software is limited but varied. In this section we review
some of this literature and discuss issues in relation to ourmodel. Most of the work undertaken so
far broadly divides into comparative case studies that focus on quality issues in particular open

Proc. OpenCert 2009 6 / 11



ECEASST

quality by

development

quality by

design

quality by access

-

�

66

Figure 5: Relationships between quality metrics

source projects [MFH02], surveys of general quality assurance practices [ZE00, ZE03, HS02,
YM06, Mic05] and particular aspects and issues of quality of open sourcesoftware [YM06,
Mic05, McC99, MHP05].

Zhao and Elbaum [ZE00] undertake a small survey to examine the factors underlyingquality
assurance methods of open source developers. Their work characterises the general attitude and
practices of the open source community towards quality, realising quality assurance practices are
somewhat different to those prevalent in traditional software development. The survey highlights
the choice of programming languages and the availability ofcorresponding debugging tools as
one of the factors in this respect. C, Perl and C++ are the three most commonly used languages
(among the sample surveyed), with the GDB [SPS02], Perl Debugger [Fol04] and Electric Fence
[EF0] as three most commonly used debugging tools. Interestingly, the survey also reveals wider
tool support for longer a language has existed (with Java being an exception), where the avail-
ability corresponds to its widespread usage.

McConnell [McC99] acknowledges the efficiency of extensive field testing and peer review,
along with an emphasis on the need for a comprehensive methodology for open source devel-
opment. This is important if open source development is to beused for producing high quality
complex software for use in critical domains.

Halloran and Scherlis [HS02] review a number of notable quality practices on some popu-
lar open source projects, of which good project communication and management is highlighted.
This includes software bug and issue tracking, compositionand configuration control, build man-
agement and computer and tool-assisted mediation. They also introduce the notion of a project
wall that surrounds the project server, with the purpose of maximising outgoing information flow
and controlling incoming information flow. The strength of this wall is then critical to the quality
of the software produced.

Effective communication and management, the choice of programming languages and the
choice of testing strategy emerge as the three most prominent factors affecting quality. These
three factors form the core of thequality by developmentmeasure (see Figure3) in our model.
The three factors combine to become essential to the qualityof the actual software code and
the resulting product. Hedberget al [HIRH07] emphasise the role good communication and
management play in the production of good quality open source software. They portray open
source development as essentiallydeveloper-centric, where the task of managing the project
requiresgood social and communication skills. Such skills allow core developers to

7 / 11 Volume 20 (2009)



Towards a metric for Open Source Software Quality

- manage and motivate volunteers to review code and deliver patches,
- encourage users to test the software, with the aim to find andreport bugs, and
- ensure that as a result of such “beta-testing” code is fixed.

Undoubtedly developers involved in open source projects doinfluence many critical aspects
of the software that results, including most importantly the software architecture, as Ariefet
al [AGL01] highlight.

We model frequent beta release as a quality factor that is singularly dependent on effective
communication and management. Software release, in an opensource environment, requires ef-
fective control and coordination amongst the developer community. Michlmayr [Mic05] draws
attention to this particular issue, and attributes the problems associated with release manage-
ment to a lack of such skills in this community, who are mostlyprogrammers and volunteers as
opposed to dedicated managers.

Michlmayr [Mic05] goes further to note that the developer community may not always heed to
user requirements for this purpose, resulting in software releases that do not meet their intended
goals and purposes. Our model takes this into account and places the understanding of goals and
requirements as a complementing factor to effective coordination and management.

While we acknowledge the link between frequent software release, enabling increased testing
and feedback, and software quality, Schmidt and Porter [SP01] find it as a serious hindrance
to quality assurance as it contributes to a serious rise in the cost of long-term maintenance and
evolution.

De Grootet al [GKAG06] define a Software Quality Observatory to evaluate and quantify the
quality of an open source project. The tool is based on a plugin-based SOA that supports the
mixing and matching of metrics extraction suits, source code repositories and transformational
filtres [GKS+07].

5 Discussion

Our effort ultimately aims to develop a quantitative metricfor quality. Such a metric could be
useful in formal assessment and comparison of open source development. While such a metric
also raises many questions about how various factors are to be measured, we discuss some early
ideas on our approach to deriving a quantitative metric for the moment, and leave measurement
issues to be dealt with later.

We consider each quality factor, as introduced in Section2, individually and assign it an index
value within a limited range [0.1,1]. The index denotes the quality provided by the factor for
a given development where the higher the value the higher thequality provided by a factor.
We assume every factor does contribute towards the overall quality, at least to correspond to a
minimum index of 0.1. For a factorF1 we write the index asI (F1).

For two factors related to each other, as shown in Figure6, we calculate the total metric of the
two factors,F1 andF2, as a product of their index values. But since quality provided byF2 is
enhanced by the quality provided byF1, we need to factor in this enhancement. This will allow
us to model the understandably varying degrees of dependency that exist between factors. We
calculate this by adding a proportionq of the quality provided byF1 to I (F2), which then helps
us to derive the total quality asI (F1) × (I (F2) + I (F1) × q).

Proc. OpenCert 2009 8 / 11



ECEASST

F1
Factor 1 -q

Factor 2
F2

Figure 6: Metric for dependency relation between factors

F1
Factor 1

-q

� r Factor 2
F2

Figure 7: Metric for dependency relation between complementing factors

For complementing factors, wherer is the proportion of quality provided byF2 to F1, we
calculate the total as (I (F1) + I (F2) × r) × (I (F2) + I (F1) × q), as shown in Figure7.

The calculations presented above allow us to sum up the totalcontribution of the various
factors and represent it as a quality metric. Such a metric could be useful to judge how different
factors influence the overall quality of software produced as a result of various strategies adopted
in open source developments. Further work aims to determineways to measure quality provided
by factors and demonstrate our approach by applying it to an existing open source project.

The ideas presented in this paper are preliminary, and are shaped to stimulate discussion and
promote further research in this area. Further work is underway to assess how effective is our
approach to model quality with respect to established OSS projects. Our particular focus is on
applying our model to existing projects and analyse the quality factor dependencies that emerge.
Some are likely to correspond to the ones we have in our model,while some may not; it is
the latter that are of interest to us. We hope to report back the results to the wider community.
The challenge is to develop a comprehensive model which is both well-defined, in order for it
to be precise and effective in judging the quality of OSS, andflexible to accommodate the yet
developing and emerging notions of quality.

Bibliography

[AGL01] B. Arief, C. Gacek, T. Lawrie. Software Architectures and Open Source Software -
Where can Research Leverage the Most? InProceedings of 1st Workshop on Open
Source Software Engineering, Toronto, Canada. Pp. 3–5. 2001.

[BP08] P. T. Breuer, S. Pickin. Approximate verification in an open source world.Inno-
vations in System and Software Engineering4(1):87–105, April 2008. Springer-
Verlag.

[Cov08] Open Source Report 2008. 2008. http://www.coverity.com.

[EF0] Electric Fence debugger. Last Accessed on 7th December 2006.
http://perens.com/FreeSoftware/ElectricFence/

9 / 11 Volume 20 (2009)

http://perens.com/FreeSoftware/ElectricFence/


Towards a metric for Open Source Software Quality

[Fol04] R. Foley.Perl Debugger Pocket Reference. O’Reilly Press, January 2004.

[GA04] C. Gacek, B. Arief. The Many Meanings of Open Source.IEEE Software21(1):34–
40, January/February 2004.

[GKAG06] A. de Groot, S. Kügler, P. Adams, G. Gousios. Open source software quality obser-
vation. In IFIP International Federation for Information Processing. Volume 203,
pp. 57–63. Springer, 2006.

[GKS+07] G. Gousios, V. Karakoidas, K. Stroggylos, P. Louridas, V. Vlachos, D. Spinellis.
Software Quality Assessment of Open Source Software. InProceedings of the 11th
Panhellenic Conference on Informatics. 2007.

[HIRH07] H. Hedberg, N. Iivari, M. Rajanen, L. Harjumaa. Software Architectures and Open
Source Software - Where can Research Leverage the Most? InProceedings of First
Workshop on Emerging Trends in FLOSS Research and Development, Minneapolis,
USA (FLOSS’07). Pp. 1–5. 2007.

[HS02] T. J. Halloran, W. L. Scherlis. High Quality and Open Source Software Practices. In
2nd Workshop on Open Source Software Engineering. May 2002.

[IEE99] IEEE Std 610.12-1990 - IEEE Standard Glossary of Software Engineering Termi-
nology. February 1999.

[McC99] S. McConnell. Open Source Methodology: Ready for Prime Time?IEEE Software
16(4):6–8, july/august 1999. IEEE Computer Society.

[MFH02] A. Mockus, R. T. Fielding, J. D. Herbsleb. Two Case Studies of Open Source Soft-
ware Development: Apache and Mozilla.ACM Transactions on Software Engineer-
ing and Methodology11(3):309–346, july 2002. ACM Press.

[MHP05] M. Michlmayr, F. Hunt, D. Probert. Quality Practices and Problems in Free Soft-
ware Projects. In Scotto and Succi (eds.),Proceedings of the First International
Conference on Open Source Systems. Pp. 24–28. Genova, Italy, 2005.

[Mic05] M. Michlmayr. Quality Improvement in Volunteer Free Software Projects: Explor-
ing the Impact of Release Management. In Scotto and Succi (eds.),Proceedings of
the First International Conference on Open Source Systems. Pp. 309–310. Genova,
Italy, 2005.

[Muf06] M. Muffatto. Open Source — A Multidisciplinary Approach. Imperial College Press,
2006.

[Pre00] S. R. Pressman.Software Engineering - A Practitioner’s Approach. McGraw-Hill
International, London, 2000.

[SP01] D. C. Schmidt, A. Porter. Leveraging Open-Source Communities to improve the
Quality and Performance of Open-Source Software. InProceedings of 1st Workshop
on Open Source Software Engineering, Toronto, Canada. 2001.

Proc. OpenCert 2009 10 / 11



ECEASST

[SPS02] R. M. Stallman, R. Pesch, S. Shebs.Debugging with GDB:The GNU Source-Level
Debugger. Free Software Foundation, January 2002.

[YM06] C. Yilmaz, A. Memon. Techniques and Processes for Improving the Quality and Per-
formance of Open-Source Software.Software Process: Improvement and Practice
11(2):163–176, May 2006. John Wiley & Sons.

[ZE00] L. Zhao, S. Elbaum. A survey on quality related activities in open source.ACM
SIGSOFT Software Engineering Notes25(3):53–57, May 2000. ACM Press New
York, NY, USA.

[ZE03] L. Zhao, S. Elbaum. Quality assurance under the open source development model.
Journal of Systems and Software66(1):65–75, April 2003. Elsevier Science.

Acknowledgements:
Early ideas on quantitative metrics have benefitted from discussions with Dr. Vasos Pavlika.

11 / 11 Volume 20 (2009)


	Introduction
	Software Quality Metrics
	Quality by Access
	Quality by Development
	Quality by Design

	Relationships among Quality Factors for OSS
	Related Work
	Discussion

