Electronic Communications of the EASST

Volume 20 (2009)

Proceedings of the
Third International Workshop on
Foundations and Techniques for
Open Source Software Certification
(OpenCert 2009)

Model-based Testing and Analysis of Coordinated Compa@nent
Gabriel Ciobanu and Dorel Lucanu

11 pages

Guest Editors: Luis Barbosa, Antonio Cerone, Siraj Shaikh

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Model-based Testing and Analysis of Coordinated Componest

Gabriel Ciobanu! and Dorel Lucanu?

1 gabriel@info.uaic.ro
Institute of Computer Science, Romanian Academy
and A.l.Cuza University of lasi, Romania
2 dlucanu@info.uaic.ro
Faculty of Computer Science, A.l.Cuza University
lasi, Romania

Abstract: Software components are common in the open source community
These components can be specified in model languages liké AsdML by using
contracts (preconditions, postconditions). Startingnfran integrated specification
(components, coordinating process, wrapper), a modetanogs defined and used

to define the formal semantics of the whole system. The osligliip between co-
ordinator and components are expressed as a bisimulatiemmbdel program can

be used for conformance testing and generating test cass selien working with
closed systems, and for scenario-based testing when vgorkith reactive systems.

Keywords: components, coordination, process algebra, model prqgesting

1 Introduction

We refer to components interacting with each other and vhigtir tenvironment according to a
coordinating process. Languages like Java can model thisd€i coordination at a low level of
abstraction (threads communicate through shared vasial$eich a low level approach does not
allow the composition of different coordination policiestiout changing the implementation
of the coordinated entities. If the level of abstraction ighler, the integration of the coordina-
tion and computation modules becomes non-trivial, and favlygood programmers are able to
handle it. These difficulties are triggered by no separatioctoncerns (expressing coordination
abstraction is difficult because the code of coordinatiastrisngly tied to the implementation of
the coordinated objects), by the absence of abstractioddnlarative means to specify coordi-
nation), and by the lack of compositionality and flexibility

As a possible solution, we have introduced and studied afgpagion formalism for coordi-
nated concurrent objectd,[5, 6, 9]. This formalism allows explicit specifications for classe
and objects, quite similar to the existing object-orienpedgramming notation. A process al-
gebra (CCS) is used to describe the coordination betweecoth&urrent objects; a coordinator
describes the global goal of the system, orchestratingah®plexity of the local computational
goals provided by the objects. Such an approach supporesaa stparation between the co-
ordinated objects and their coordinator. Coordinatiorcess and coordinated components are
rather independent; the coordinator can be composed alateepeasily, some objects working
under the same coordinator can be refined or modified. Théc@xgbtscription of coordination
between components can define various interaction patsragolicies. In 4] we have de-

1/11 Volume 20 (2009)

mailto:gabriel@info.uaic.ro
mailto:dlucanu@info.uaic.ro

Model-based Testing and Analysis of Coordinated Components @

fined a formal framework for systems of components coordihaly a process. The components
(objects) are specified in hidden algebta)][the coordinating process is described in process
algebra 1], and a wrapper is expressed as a function mapping the e@iajj process actions
to sequences of method calls. The integrated semantice ebtinponents, coordinating process
and wrapper is given by a bisimulation relation which exisitsiow the transitions of the coor-
dinating process are related to the transitions betweenahfgurations given by components.
Such an approach is independent of the way how the compoaenspecified.

This paper describes formal methods that can be used tottifecetion of component-based
software systems; we consider components specified in allimgdanguage like Asmt (see
http://www.codeplex.com/Asmlor JML (seéehttp://sourceforge.net/projects/jmlspgdsoth con-
sidered as open source tools. An advantage of a modellinméaye is given by the use of con-
tracts (preconditions, postconditions). Such a contrataldishes both the obligations of the
method caller (precondition) and what a method guaranteea €torrect call (postcondition).
The design by contracts of the object oriented systems aksg the class invariants. In order to
keep the presentation as simple as possible, the invadaatsot considered in this paper. We
specify the components via pre- and post-conditions oncbbjethods, a coordination process
via a CCS process algebra, and the wrapper as a mapping afr(ptarized) pairs of actions to
sequences of components methods.

We use a notion of wrapper to express the coordination, aitd foumally a model program
defining the state variables and the update rules of an abstede machine. The model program
can be used for conformance testing and generating tessudss for closed systems, and for
scenario-based testing for reactive systems. The synicatmn between components and the
coordinator can be defined as a bisimulation by using thdléab&ansition systems described as
coalgebras. The model together with the way how the compeream work concurrently under
the coordination of a process expressed in a process algsieaare illustrated by an example
describing the interaction between an ATM (Automatic TelMachine) and a bank.

2 Specification of Coordinated Components

We deal with systems consisting of three main parts: coatdthcomponents, a coordinator,
and a means by which the coordinator controls the activitthefcoordinated components. We
model the coordinator as a term of process algebra, the icabed components as objects, and
the means of coordination as a wrapper.

We consider an example where the interaction between an Aidlaabank is described.
The interaction between a customer and an ATM is not inclutkre; we abstractly represent
a customer by a card, a user PIN (personal identification euyrand a user amount. Using an
ATM, customers can access their bank accounts in order te roagh withdrawals and check
their account balances. Typically, a user inserts into #ehanachine a card encoded with
information on a magnetic strip. To prevent unauthorizeghgactions, a PIN must be entered
by the user. If the account is accessible, the bank and the édikblete the transaction; most
ATMs can dispense cash, and provide information on accaalanhbes.

1 AsmL is the specification language of Abstract State Machine

Proc. OpenCert 2009 2/11

http://www.codeplex.com/AsmL
http://sourceforge.net/projects/jmlspecs

@ ECEASST

2.1 Components Specified by Contracts

The component specification includes information about touse the component, and what it
does from the clients viewpoint. These aspects could beitlescby a collection of attributes
and methods. The attributes are represented by a colleativariables, and the methods are
specified by preconditions and postconditions.

We start by specifying an ATM component. An ATM has five atités: avai | Anount
= the amount of money available in the maching,Car dl nsert ed = a boolean attribute
which is true if and only if a card is inserted in the ATlar dPI N = the PIN number of the
inserted card (if any)car dNunmber = the number of the inserted card (if any), amgiount
= the amount of money introduced by a customer (if any). Aeoffossible attribute is given
by the messages displayed on the ATM screen. The interfateanéustomer is specified by
five methods. A method eadCar d describes the action performed by the machine when a
card is inserted; its precondition is given by thequi r e expression, and its postcondition is
given by the conjunction aénsur e expressions. A card is represented by a structure with two
fields: PI Nandnumnber . The other methods of the interface with a useremé er PI N() ,
askBal ance(),ent er Amount (), andr el easeCar d() . The full specification of these
methods is omitted here. On the other hand, the interfade avitank is specified by means of
four methods. Since in what follows we describe the intévacbetween an ATM and a bank,
we provide a full specification for these methodgheir description using the AsmL syntax is
almost self-explanatory.

class ATM
var avail Amount as | nteger
var insertedCard as Card?
var enteredAnount as | nteger
var enteredPin as |nteger

i sCardlnserted() as Bool ean
return insertedCard <> null

/1 interaction with a user
readCard(newCard as Card)
require isCardlnserted() = fal se
ensure resulting insertedCard = newCard
readPi n(newPi n as | nteger)
wr ongPi n()
askBal ance()
di spl ayBal ance()
reédArmunt(newArmunt as | nteger)
rel ééseCard()
/1 interaction with a bank
di spl ayMessage(nsg as MessageType)
require isCardlnserted() = true
di spl ayBal ance(bal as |nteger)

require isCardlnserted() = true
ensure resulting enteredAnmount = 0

3/11 Volume 20 (2009)

Model-based Testing and Analysis of Coordinated Components @

cash()

require isCardlnserted() = true

requi re enteredAnmount <= avail Anount

ensure resulting avail Amount = avail Anbunt - enteredAnpunt
A bank is abstractly specified as a set of accounts. The speg@ifn of an account is given by a
structure with three fields: the card number, the balanatadimolean attributes Accessi bl e
which is true if and only if the account is not blocked or clds&he value of this attribute can
be changed by the interaction with other components (natdec here).

The interface of a bank with an ATM uses an auxiliary functget Account which re-
turns the bank account corresponding to a given card nurilherfirst two methods are rather
constraints than operations: they can be executed onlgiif fiieconditions are satisfied by the
current state. They do not change the state, and neithen iztalue.
cl ass Bank

var accounts as Set of BankAccount

/1 auxiliary nethods
get Account (aCar dNunber as I nteger) as BankAccount
return the A| Ain accounts where A nunmber = aCardNunber

/1 interface with an ATM
not Accessi bl e(aCar dNunber as | nt eger)
requi re get Account (aCar dNunber).i sAccessi ble = fal se

not EnoughMoney(aCar dNunber as | nteger, anAnmount as |nteger)
requi re get Account (aCar dNunber). bal ance < anAnount

get Bal ance(aCar dNunber as Integer) as Integer
requi re get Account (aCardNunber).i sAccessible = true
ensure result = get Account (aCar dNunber) . bal ance

gr ant Money(aCar dNunber as | nteger, anAmpbunt as | nteger)
requi re get Account (aCar dNumnber) . bal ance >= anAnobunt and
get Account (aCar dNunber) . i sAccessi ble = true
ensure resul ting get Account (aCar dNunmber) . bal ance =
get Account (aCar dNunber) . bal ance - anount
Preconditions and postconditions describe propertiesdiVidual methods. Additional infor-

mation is necessary with respect to the global properti¢gseointeraction between objects.

2.2 Coordinating Process Specification

The state of the art in coordination models for systems ohtgis presented i3] 13]. Our
model is a channel-based coordination model; Manift)dga prototype for this class. Manifold
is based on the Ideal Worker Ideal Manager (IWIM) model, drfibs basically two kinds of
processes: manager and worker. The manager coordinatesitkers and the communications
among them. The workers are computational processes whéchoa aware of who needs the
results of their work, or to whom they communicate to. Maldifie also event-driven: managers
wait for some specific event to trigger some actions; thesierecdetermine the manager to
change its state.

We use a coordinator providing a high level description @f ithteraction between objects.
Its syntax is inspired by process algebras as CCSraaalculus [L1]. Interaction with the en-
vironment is given by some global actions, and interactietwben components is given by a
nondeterministic matching between complementary lod@b@e. Each process is described by

Proc. OpenCert 2009 4/11

@ ECEASST

some equations, as you can see in Figur®rocessA corresponds to an arbitrary ATM. Inter-
action is started by inserting the card, i.e. by an equalienins.A; meaning that an actioims

is followed by a process expressién. A; is a nondeterministic choiael .A+ ep.Ay, where the
first expression is releasing the card (when the user detida®ss “Cancel” button) followed
by starting a new procegs and the second expression describes the aepai entering a PIN
followed by a processy,. A, represents a nondeterministic choice betwaA, rel A, wp.Aq,
ab.Az andea.A4. This means that it is possible to get either a non-accesaittount message
(na), or to cancel the whole proces®l(), or to enter a wrong pinAp), or to ask balanceab), or
to enter an amount in order to cashet). Both actionsha andrel are followed byA, while ab

is followed by an actiorgb of getting the balance and then executing pro@esagain. Finally
ea is followed by a nondeterministic choice between eithan action of receiving a message
“Not Enough Money” or getting moneyin). A local actionact can involve the existence of its

A=insA and B=naB+ gb.B+nem.B-+gmB

where

A =re . A+epA Az = (na+rel). A+wp.A; +ab.Az + ea. Ay
Az =gb.A, Aq=nemA,+gmAs As=re A

Figure 1: Coordinating process for an ATM and a bank

complementary local action denoteddyf (also, the complementary actionait is act). These
two complementary local actions establish a synchromimatietween components. Proc&ss
represents a bank. In our description, a bank can either&&Nodt Accessible” messaged),
offering the balancegb), send a message “Not Enough Monegér), or offering the required
amount gm).

The interaction between an arbitrary ATM and an arbitrargkbs described byA|B. We
prefer to see the above process specification rather as m@@i@one. Given a concrete ATM
denoted byatm and a concrete barbank, then their interaction is given b&(atm) | B(bank).

A coordinating process specification is finally given by doures of parametric process expres-
sions. For example, the specification At ins.A; related to a specific cash machiaen is
given by A(atm) = ins(atm). A (atm). This allows to extend the specification of many ATMs
and one bank byA(atmy) | A(atmy) | ... |B(bank). The case of two banks and their ATMs can
be described agA(atmy) | ... |B(bank)) + (A(atm))| ... |B(bank’)). Assuming that we have a
specification for an arbitrary usk, then the interaction between a specifger, a specificatm,
and a specifidank is given byU (user) | A(atm) | B(bank). The evolution of such a system is
described by a labelled transition system defined by theatipeal semantics of the process
algebra [L1].

2.3 Wrapper

We introduce and use a notion of wrapper in order to speciyftimctionality of a system of
coordinated components. Usually the software wrappirmalithe data flowing in and out of
the components to be intercepted and described. Also coioatiom with other components
is examined before passing through. Our wrapper specifeesnteraction between the com-
ponents by using their methods and the coordinating actidheoprocess. We get a desirable

5/11 Volume 20 (2009)

Model-based Testing and Analysis of Coordinated Components @

separation of concerns, offering a suitable abstract lrefiesigning large component-based
systems without losing the details of low level implemeotatof components. Such a spec-
ification has similarities with an orchestra, where indejeet players are synchronized by a
conductor. The link between the players and the coordigatonductor is given by certain en-
try moments and orchestral scores. The wrapper instruetplétyers according to the scores in
order to implement the desired resulting music. Therefoeentrapper instructs the components
by using necessary information for their executions in ptdeealize a coordinated interaction.
An interaction realized by two complementary actions isaded byt. For instance, we denote
by 7(gb(atm),gb(bank)) the interaction between an actigh of getting the balance atm and

its complementary actiogb of providing the balance bigank. For instance, the wrapper for
the system of coordinated components described previtasiyhe following definitions for the
interactions betweeatm andbank:

w[T(gb(atm), gb(bank))] = atm.displayBalance(bank.getBalance))

w(T(na(atm),na(bank))] = bank.notAccessible(); atm.displayNotAccessible();
atm.release()

w(T (nem(atm), nem(bank))] = atm.displayNotEnoughMoney()

w[T(gm(atm),gm(bank))] = bank.grantMoney(); atm.cash()

Formally, a wrappew(c;, .. .,Cy) for a proces$(c,...,C,) = Pi(c1) | |P(C2) | ... | Pa{Cn) as-
sociates a programvjact] for each action labedct such that there is a labelled transitipnelci q
in the operational semantics Bfcy,...,c,). The programw(act] is expressed in terms of the
components involved in such a transition (they do not depmmdhe particular processqs
andq). Recall thatact is either of the forma(c;) (actiona of componentc;) or of the form
T(a(ci),a(c;)) (interaction between componermsandc; according to their complementary ac-
tionsa anda). Such a wrapper provides a computational meaning to eaanauf the coor-
dinating process. According to the computational meanigigino each action, an interaction
between two components can be a synchronization or a corsationi. A synchronization is
provided by the sequential or concurrent executions of otttirom the two components, and
a communication consists in using the attributes of a corapbas parameters for methods of
the other component (it appears as an interaction betweeetlzothand an attribute). Essen-
tially the wrapper binds the actions of the coordinatingcpss to the components methods. For
instance,w(t(gm(atm),gm(bank))] corresponds to the sequence of method calls, namely the
methodgrantMoney() of the componenbank, followed bycash() andrelease() of the compo-
nentatm.

2.4 Formal Semantics

The semantics of a system of coordinated components is giyeneans of a model program
[16]. A model program defines the state variables and update rules of an abstaéethsachine
[2]. A state of a model prograd is a first-order structure which captures a snapshot of bimsa
values at a given step. A stepdfis given by araction method which describes an update rule
of the abstract state machine. An action methodhas formal parameters a precondition
Pre(am), and an update patipdate(am). Mathematically, an action methaun is a function
which for a given stats and some actual parameters which satRfg(am), it produces a new

Proc. OpenCert 2009 6/11

@ ECEASST

states where some state variables have changed. A model prograrbecawritten using a
high level program language as Asmiitp://www.codeplex.com/Asm). A model programvi
defines a labelled transition syst&miS(M) obtained by unwindind (see [L6] for more details).

A simple example is given by a model progréiic) for a component. The state variables
are given by the component attributes, and the action msthgda subset of) the component
methods.Pre(c.m) is the precondition of the methad, andUpdate(c.m) includes the updates
of the attributes according to the postconditions. Fominsg, the postcondition &TM::cash()
produces the updatevai | Anopunt : = avail Amount - ent er edAnount . We assume
that the postconditions of the methods can be expresseddasespof the attributes; modelling
languages like AsmL are powerful enough to satisfy this irequent for many practical cases.
We consider the specification of a component as a non-maasd,dle., the only constraints over
the methods calls sequences are those given by the methamshditions. In other words, the
call of a method is allowed in any state satisfying its prefiton.

Another example is given by a model progréhiw, cy, . .., ¢,) given by a wrappew|c;, .. ., Cy].
The state variables are given by, ...,c,, and the action methods are given by the guarded
programs corresponding te[act]. Pre(w[act]) is given by either the weakest precondition
wp(w(act],true) or by a verification condition12, 14]. Update(w[act]) modifies the individ-
ual state of eacls; according to postconditions of the involved methods. Leassume that
w(act] is written using method calls, parallel compositipand sequential composition ;. For
a method calt;.m(z), Update(c;.m(z)) is the same as that for the model defined by component
¢;. For a parallel compositior)pdate(S; ||) = Update(S;) || Update(S,), and for a sequential
compositionUpdate(S;;) = Update(S;); Update(S,).

*i~A5Bfixren)

tgm() o el
- EE -
o ~ A1B j s
(a4B =2l /WP~ -
T tnem() (A2B '1*_—tg—i0-_:’___\ A3B) (__),,f;f_%/’
R S -ak () e //

Figure 2: Transition graph for the coordinating process

We describe now the model progravh= M(%,P,w,cy,...,C,) defined by a specificatiod
of components, a coordinating procé%s;, .. .,c,) for the components, ..., c,, and a wrapper
w for P(cy,...,Cq) with €. We proceed in a reversed order: first we define a labelleditiam
systemLTS, and then we build the model over the skeleton of tHi§S. The specification of a
processP(c,...,C,) defines a finitd TS(P) [8]. The transition graph corresponding to the in-
teraction betweeatm andbank is given in Figure2, whereAB corresponds té(atm) | B(bank),

7111 Volume 20 (2009)

http://www.codeplex.com/AsmL

Model-based Testing and Analysis of Coordinated Components @

A1Bto Al(atm) | B(bank), and so on. The transitidgm() corresponds to(gm(atm),gm(bank));
similar for tgh(), tna(), andtnem().

LTS(P) can be easily described as a model progtdii®) with a single state variablep
ranging over the states (as an enumerating type), and wéthattion methods correspond-
ing to the ones irP. If act is such an actionPre(act) is Vpcgca)VP = p and Update(act) is

+oetar(@VP = 0, whereSrc(act) = {p| p &% g€ LTS(P)}, Tar(act) = {q| p 2 q € LTS(P)},

and+ denotes the nondeterministic choice operator. The stateblas ofM (¢, P,w,c,...,Cn)

are those fromM(w,cy,...,C,) together withvp. The action methods are the onesh{P)

enriched with the preconditions and updates of the corregipg action fromM(w,cy,...,Cq):

Prev (act) = Preyp)(act) A Pre(wlact]), andUpdatey (act) = Updatey, g (act) || Update(w(act]).
The relationship betweed, M(P) andM(w,c,...,c,) can be expressed in terms of bisimu-

lations, as it is also presented #].[We just mention here the main construction and result. We

consider the labelled transition systems as coalggbras— T 1s(X), where

Tits : Set — Set is the functor given byl 15(X) = {Y C Ax X |Y finite},

Set is the category of sets,

Alis the set of action names,

y is the labelled transition system given byaﬂ y iff (ay) € y(X).

The fact thatM is a bisimulation betweeM(P) andM(w,c;,...,c,) is expressed by the com-

mutativity of the following diagram:

Sate L Sate x Proc LN Proc

LTS(M(W,cl,m,cn))l lLTS(M) lLTS(P)

Tirs(Sate) «——— T rs(Sate x Proc) ——— T t5(Proc)
Tirs(m) Tirs(m®)

We exemplify the construction d¥l by considering the actiotgm. Recall thatw(tgm] =
bank.grantMoney(); atm.cash(). The method actiotgm() in M is obtained from the correspond-
ing one given irMM(P):

[Action]

ton()
require (vp = A4B)
vp := A5B

by adding the conjunction of the preconditions of the metiBank: : gr ant Money() and
ATM : cash() together with the updates given by their postconditions.
The new obtained method is:

tgn() o
/'l precondition
require (vp = A4B)
requi re atm ent eredAnount <=
bank. get Account (at m i nsertedCard. nunber). bal ance
require atm ent eredAnount <= atm avai | Anmount
require bank. get Account (atminsertedCard. nunber).i sAccessi ble = true
/'l updat es
get Account (at mi nsertedCard. nunber) . bal ance : =
get Account (at mi nsert edCard. nunber) . bal ance - at m ent er edAnount
atm avai | Anount : = atm avai | Anobunt - atm ent er edAnount
vp := A5B

Proc. OpenCert 2009 8/11

@ ECEASST

In order to respect the encapsulation principle, we mayahelthe updates of the balance and
available amount in the two metho@ank: : gr ant Money() andATM : cash(), respec-
tively. Then, we replace the two updates in the actgn() with the calls of the two methods.

3 Testing and Analysis

Asystem? = (¢,P,w,cy,...,C,) of coordinated components is calledsed if the specification
of P does not include global actions. This means that#of P(cy,...,c,) has only decorated
silent transitiong (a,a). The corresponding action methodsvinare calledcontrollable [2, 16].

In other words, in a closed system we have only controllabt®ias. For instance, the system
described in our examples becomes closed if a compdggantis added. The coordinator indi-
cating how a user can interact with an ATM is

U= ﬁ.Ul U = re.U +ep.Uz
Uy = re.U +Wp.U; +a_b.U2 +ealUs Uz= re.U

The wrapper gives a model program for each interaction ¢grgl (atm),rel (user)). For these
closed systems, the model progrddn= M (%", P,w,cy, ..., cn) can be used foronformance test-

ing and generating test case suites. Both tests are lying on the same basic technique: define a
subset ofacceptance states in M, and compute all the paths connecting the initial state aiith
acceptance state. Such a path is calléthee. An example of such a trace i81() (insert a
card),tep() (enter a pin)tea() (enter an amountinem() (the bank sends “not enough money”),
trel() (release the card). In conformance testing, the implertientander test (IUT) is checked

if it is able to follows all the traces. Of course, we considety implementations built with
components satisfying the specificatizh To generate a test case suite, we have to find for
each trace suitable instances for components..,c, such that IUT having as “input” these
instances follows exactly the corresponding trace. Fotrd@e mentioned above, the test case
must include auser, anatm, and abank such that the user has correctly introduces the pin, has
an account at thbank, but the balance is less than the required amount. This casalsbed by
computing thepath condition [15] for the trace, and then using an automated prover for finding
a satisfiability witness for this condition.

Given some components, ..., Cn, LTS(M(%,P,w,c,...,Cpn) is usually a subsystem &f S(P)
because of the methods preconditions. Thus the traces &nedl@ccording td. TS(P). A
problem appears when for each trace we can find suitable.,c, such that the trace is in
LTS(M(%,P,w,c,...,Cy). We refer to this problem asansistency problem between the spec-
ification ¥ of the components and the specification of the coordinatinggssP, because it is
equivalent to checking whether the components are ablerforpeall the interactions specified
by the coordinator. This problem can be solved in a similar twahat of the test case generation.

A system. = (¢,P,w,cy,...,C,) of coordinated components igeactive system if the spec-
ification of P includes local actions. For instance, if the user is not iipelcthen the system
described in our examples is reactive. This means thdtBeof P(cy,...,c,) could have tran-
sitions decorated with local actions (e.igs() - which describes only the ATM behaviour when
a card is inserted). The action methodsvircorresponding to local actions ihare calledob-
servable [2, 16]. Thus, in a reactive system we have both controllable astend observable

9/11 Volume 20 (2009)

Model-based Testing and Analysis of Coordinated Components @

actions. The modeVi(¢",P,w,c,...,Cy) for a reactive system could be used $oenario-based
testing using the technique described ibd]. For instance, the scenario suggested above must
be explicitly given by describing the “reactions” of the ubg setting the values famteredPin
andenteredAmount.

4 Conclusion and Related Work

The paper presents a technique that can be used to applyl foretlaods to the certification
of component-based software systems, e.g. for conformastieg and generation of test case
suites. A model for a given specification is defined by the comepts contracts, a specifica-
tion of the coordinating process, and a wrapper binding tdoedination action to sequences of
the components method calls. We use a notion of wrapper ier dodexpress the coordination
between components. The formal semantics is given by a npsdgtam, and the relationship
between coordinator and components can be expressed asnaléi®n. Such a model can
benefit from the practical model-based testing tools. Thdehprogram can be used for confor-
mance testing and generating test case suites for clostahssand for scenario-based testing
for reactive systems. We exemplify our approach by a systamisting of an ATM and a bank.

Previously the authors have introduced and used hidden@{&S6] as a formal specification
framework based on hidden algebra and CCS. Such a spedcifieatiends the object specifica-
tion with synchronization and communication elements eased with methods and attributes
of the objects. Then hiddenCCS is extended4htp a specification language with a syntax
closer to object-oriented languages. We use Maudd]ito[give an algebraic semantics of this
specification language, and show how this semantics candzbtasverify the system against
temporal properties. The specification of the componemta fmmunication protocol by using
a language having strong features of the object-orientedramming is presented i9]f We
also describe the extraction of a Kripke structure from thec#ication of a system of coordi-
nated objects, and we use it to verify the correctness of araamication protocol.

Bibliography

[1] F. Arbab, I. Herman, P. Spilling. An Overview of Manifolehd its ImplementatiorCon-
currency: Practice and Experience 5(1), pp.23—70, 1993.

[2] E. Borger, R. StarkAbstract State Machines A Method for High-Level System Design and
Analysis, Springer, 2003.

[3] N. Busi, P. Ciancarini, R. Gorrieri, G. Zavattaro. Comation Models: A Guided Tour.
Coordination of Internet Agents. Models, Technologies, and Applications, Springer, pp.6—
24, 2001.

[4] G. Ciobanu, D. Lucanu. A Specification Language for Camaited Objects. ACM S G-
SOFT Software Engineering Notes 31(2), ACM Press, 2006.

[5] G. Ciobanu, D. Lucanu. Specification and Verification gh&hronizing Concurrent Ob-
jects. Integrated Formal Methods, LNCS vol.2999, Springer, pp.307-327, 2004.

Proc. OpenCert 2009 10/11

@ ECEASST

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

G. Ciobanu, D. Lucanu. Communicating Concurrent OlgjentHiddenCCSElectronic
Notes in Theor. Comp. Sci. 117, pp.353-373, 2005.

E.M. Clarke, O. Grumberg, D.A. Peledlodel Checking. MIT Press, 2000.

R. Cleaveland, J. Parrow, B. Steffen. The ConcurrencykidMench: a semantics-based tool
for the verification of concurrent system&CM TOPLAS 15(1), ACM Press, pp.36—72,
1993.

M. Danes, G. Ciobanu, D. Lucanu. Specification of Cooatitd Objects and Verification
of Their Temporal Propertiegth SYNASC, IEEE Computer Society, pp.259-266, 2005.

J. Goguen, G. Malcolm. A Hidden Agendaheoretical Computer Science 245(1), pp.55—
101, 2000.

R. Milner. Communicating and Mobile Systems: the r-calculus. Cambridge University
Press, 1999.

G. Nelson. A Generalization of Dijkstra’s CalculuBCM Transactions on Programming
Languages and Systems, 11(4)m pp. 517-561, 1989.

G.A. Papadopoulos. Models and Technologies for therdipation of Internet Agents:
a Survey. Coordination of Internet Agents: Models, Technologies, and Applications,
Springer, pp.25-56, 2001.

C. Pierika, F. S. de Boer A Proof Outline Logic for Objgatiented ProgrammingTheo-
retical Computer Science 343(3), pp.413-442, 2005.

G. Snelting , T. Robschink , J. Krinke. Efficient Path @dions in Dependence Graphs for
Software Safety AnalysisACM Transactions on Software Engineering and Methodol ogy
15(4), pp.410-457, 2006.

M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, NnTdlnn, L. Nachmanson. Model-
Based Testing of Object-Oriented Reactive Systems witlcByaorer. Formal Methods
and Testing, pp.39-76, Springer, 2008.

11/11 Volume 20 (2009)

	Introduction
	Specification of Coordinated Components
	Components Specified by Contracts
	Coordinating Process Specification
	Wrapper
	Formal Semantics

	Testing and Analysis
	Conclusion and Related Work

