
Electronic Communications of the EASST
Volume 20 (2009)

Proceedings of the
Third International Workshop on
Foundations and Techniques for

Open Source Software Certification
(OpenCert 2009)

Model-based Testing and Analysis of Coordinated Components

Gabriel Ciobanu and Dorel Lucanu

11 pages

Guest Editors: Luis Barbosa, Antonio Cerone, Siraj Shaikh
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Model-based Testing and Analysis of Coordinated Components

Gabriel Ciobanu1 and Dorel Lucanu2

1 gabriel@info.uaic.ro
Institute of Computer Science, Romanian Academy

and A.I.Cuza University of Iaşi, Romania
2 dlucanu@info.uaic.ro

Faculty of Computer Science, A.I.Cuza University
Iaşi, Romania

Abstract: Software components are common in the open source community.
These components can be specified in model languages like AsmL or JML by using
contracts (preconditions, postconditions). Starting from an integrated specification
(components, coordinating process, wrapper), a model program is defined and used
to define the formal semantics of the whole system. The relationship between co-
ordinator and components are expressed as a bisimulation. The model program can
be used for conformance testing and generating test case suites when working with
closed systems, and for scenario-based testing when working with reactive systems.

Keywords: components, coordination, process algebra, model program, testing

1 Introduction

We refer to components interacting with each other and with their environment according to a
coordinating process. Languages like Java can model this kind of coordination at a low level of
abstraction (threads communicate through shared variables). Such a low level approach does not
allow the composition of different coordination policies without changing the implementation
of the coordinated entities. If the level of abstraction is higher, the integration of the coordina-
tion and computation modules becomes non-trivial, and onlyfew good programmers are able to
handle it. These difficulties are triggered by no separationof concerns (expressing coordination
abstraction is difficult because the code of coordination isstrongly tied to the implementation of
the coordinated objects), by the absence of abstraction (nodeclarative means to specify coordi-
nation), and by the lack of compositionality and flexibility.

As a possible solution, we have introduced and studied a specification formalism for coordi-
nated concurrent objects [4, 5, 6, 9]. This formalism allows explicit specifications for classes
and objects, quite similar to the existing object-orientedprogramming notation. A process al-
gebra (CCS) is used to describe the coordination between theconcurrent objects; a coordinator
describes the global goal of the system, orchestrating the complexity of the local computational
goals provided by the objects. Such an approach supports a clear separation between the co-
ordinated objects and their coordinator. Coordination process and coordinated components are
rather independent; the coordinator can be composed and replaced easily, some objects working
under the same coordinator can be refined or modified. The explicit description of coordination
between components can define various interaction patternsand policies. In [4] we have de-

1 / 11 Volume 20 (2009)

mailto:gabriel@info.uaic.ro
mailto:dlucanu@info.uaic.ro

Model-based Testing and Analysis of Coordinated Components

fined a formal framework for systems of components coordinated by a process. The components
(objects) are specified in hidden algebra [10], the coordinating process is described in process
algebra [11], and a wrapper is expressed as a function mapping the coordinating process actions
to sequences of method calls. The integrated semantics of the components, coordinating process
and wrapper is given by a bisimulation relation which exhibits how the transitions of the coor-
dinating process are related to the transitions between theconfigurations given by components.
Such an approach is independent of the way how the componentsare specified.

This paper describes formal methods that can be used to the certification of component-based
software systems; we consider components specified in a modelling language like AsmL1 (see
http://www.codeplex.com/AsmL) or JML (seehttp://sourceforge.net/projects/jmlspecs), both con-
sidered as open source tools. An advantage of a modelling language is given by the use of con-
tracts (preconditions, postconditions). Such a contract establishes both the obligations of the
method caller (precondition) and what a method guarantees for a correct call (postcondition).
The design by contracts of the object oriented systems also uses the class invariants. In order to
keep the presentation as simple as possible, the invariantsare not considered in this paper. We
specify the components via pre- and post-conditions on object methods, a coordination process
via a CCS process algebra, and the wrapper as a mapping of (parameterized) pairs of actions to
sequences of components methods.

We use a notion of wrapper to express the coordination, and build formally a model program
defining the state variables and the update rules of an abstract state machine. The model program
can be used for conformance testing and generating test casesuites for closed systems, and for
scenario-based testing for reactive systems. The synchronization between components and the
coordinator can be defined as a bisimulation by using the labelled transition systems described as
coalgebras. The model together with the way how the components can work concurrently under
the coordination of a process expressed in a process algebrastyle are illustrated by an example
describing the interaction between an ATM (Automatic Teller Machine) and a bank.

2 Specification of Coordinated Components

We deal with systems consisting of three main parts: coordinated components, a coordinator,
and a means by which the coordinator controls the activity ofthe coordinated components. We
model the coordinator as a term of process algebra, the coordinated components as objects, and
the means of coordination as a wrapper.

We consider an example where the interaction between an ATM and a bank is described.
The interaction between a customer and an ATM is not includedhere; we abstractly represent
a customer by a card, a user PIN (personal identification number) and a user amount. Using an
ATM, customers can access their bank accounts in order to make cash withdrawals and check
their account balances. Typically, a user inserts into the cash machine a card encoded with
information on a magnetic strip. To prevent unauthorized transactions, a PIN must be entered
by the user. If the account is accessible, the bank and the ATMcomplete the transaction; most
ATMs can dispense cash, and provide information on account balances.

1 AsmL is the specification language of Abstract State Machines.

Proc. OpenCert 2009 2 / 11

http://www.codeplex.com/AsmL
http://sourceforge.net/projects/jmlspecs

ECEASST

2.1 Components Specified by Contracts

The component specification includes information about howto use the component, and what it
does from the clients viewpoint. These aspects could be described by a collection of attributes
and methods. The attributes are represented by a collectionof variables, and the methods are
specified by preconditions and postconditions.

We start by specifying an ATM component. An ATM has five attributes: availAmount
= the amount of money available in the machine,isCardInserted = a boolean attribute
which is true if and only if a card is inserted in the ATM,cardPIN = the PIN number of the
inserted card (if any),cardNumber = the number of the inserted card (if any), andamount
= the amount of money introduced by a customer (if any). Another possible attribute is given
by the messages displayed on the ATM screen. The interface with a customer is specified by
five methods. A methodreadCard describes the action performed by the machine when a
card is inserted; its precondition is given by therequire expression, and its postcondition is
given by the conjunction ofensure expressions. A card is represented by a structure with two
fields: PIN andnumber. The other methods of the interface with a user areenterPIN(),
askBalance(), enterAmount(), andreleaseCard(). The full specification of these
methods is omitted here. On the other hand, the interface with a bank is specified by means of
four methods. Since in what follows we describe the interaction between an ATM and a bank,
we provide a full specification for these methods− their description using the AsmL syntax is
almost self-explanatory.
class ATM
var availAmount as Integer
var insertedCard as Card?
var enteredAmount as Integer
var enteredPin as Integer

isCardInserted() as Boolean
return insertedCard <> null

// interaction with a user
readCard(newCard as Card)

require isCardInserted() = false
ensure resulting insertedCard = newCard

readPin(newPin as Integer)
...

wrongPin()
...

askBalance()
...

displayBalance()
...

readAmount(newAmount as Integer)
...

releaseCard()
...

// interaction with a bank
displayMessage(msg as MessageType)

require isCardInserted() = true

displayBalance(bal as Integer)
require isCardInserted() = true
ensure resulting enteredAmount = 0

3 / 11 Volume 20 (2009)

Model-based Testing and Analysis of Coordinated Components

cash()
require isCardInserted() = true
require enteredAmount <= availAmount
ensure resulting availAmount = availAmount - enteredAmount

A bank is abstractly specified as a set of accounts. The specification of an account is given by a
structure with three fields: the card number, the balance, and a boolean attributeisAccessible
which is true if and only if the account is not blocked or closed. The value of this attribute can
be changed by the interaction with other components (not included here).

The interface of a bank with an ATM uses an auxiliary functiongetAccount which re-
turns the bank account corresponding to a given card number.The first two methods are rather
constraints than operations: they can be executed only if their preconditions are satisfied by the
current state. They do not change the state, and neither return a value.
class Bank
var accounts as Set of BankAccount

// auxiliary methods
getAccount(aCardNumber as Integer) as BankAccount

return the A | A in accounts where A.number = aCardNumber

// interface with an ATM
notAccessible(aCardNumber as Integer)

require getAccount(aCardNumber).isAccessible = false

notEnoughMoney(aCardNumber as Integer, anAmount as Integer)
require getAccount(aCardNumber).balance < anAmount

getBalance(aCardNumber as Integer) as Integer
require getAccount(aCardNumber).isAccessible = true
ensure result = getAccount(aCardNumber).balance

grantMoney(aCardNumber as Integer, anAmount as Integer)
require getAccount(aCardNumber).balance >= anAmount and

getAccount(aCardNumber).isAccessible = true
ensure resulting getAccount(aCardNumber).balance =

getAccount(aCardNumber).balance - amount

Preconditions and postconditions describe properties of individual methods. Additional infor-
mation is necessary with respect to the global properties orthe interaction between objects.

2.2 Coordinating Process Specification

The state of the art in coordination models for systems of agents is presented in [3, 13]. Our
model is a channel-based coordination model; Manifold [1] is a prototype for this class. Manifold
is based on the Ideal Worker Ideal Manager (IWIM) model, and it has basically two kinds of
processes: manager and worker. The manager coordinates theworkers and the communications
among them. The workers are computational processes which are not aware of who needs the
results of their work, or to whom they communicate to. Manifold is also event-driven: managers
wait for some specific event to trigger some actions; these actions determine the manager to
change its state.

We use a coordinator providing a high level description of the interaction between objects.
Its syntax is inspired by process algebras as CCS andπ-calculus [11]. Interaction with the en-
vironment is given by some global actions, and interaction between components is given by a
nondeterministic matching between complementary local actions. Each process is described by

Proc. OpenCert 2009 4 / 11

ECEASST

some equations, as you can see in Figure1. ProcessA corresponds to an arbitrary ATM. Inter-
action is started by inserting the card, i.e. by an equationA = ins.A1 meaning that an actionins
is followed by a process expressionA1. A1 is a nondeterministic choicerel.A+ ep.A2, where the
first expression is releasing the card (when the user decidesto press “Cancel” button) followed
by starting a new processA, and the second expression describes the actionep of entering a PIN
followed by a processA2. A2 represents a nondeterministic choice betweenna.A, rel.A, wp.A1,
ab.A3 andea.A4. This means that it is possible to get either a non-accessible account message
(na), or to cancel the whole process (rel), or to enter a wrong pin (wp), or to ask balance (ab), or
to enter an amount in order to cash it (ea). Both actionsna andrel are followed byA, while ab
is followed by an actiongb of getting the balance and then executing processA2 again. Finally
ea is followed by a nondeterministic choice between eithernem action of receiving a message
“Not Enough Money” or getting money (gm). A local actionact can involve the existence of its

A = ins.A1 and B = na.B + gb.B + nem.B + gm.B
where
A1 = rel.A + ep.A2 A2 = (na+ rel).A + wp.A1+ ab.A3 + ea.A4

A3 = gb.A2 A4 = nem.A2 + gm.A5 , A5 = rel.A

Figure 1: Coordinating process for an ATM and a bank

complementary local action denoted byact (also, the complementary action ofact is act). These
two complementary local actions establish a synchronization between components. ProcessB
represents a bank. In our description, a bank can either senda ”Not Accessible” message (na),
offering the balance (gb), send a message “Not Enough Money” (nem), or offering the required
amount (gm).

The interaction between an arbitrary ATM and an arbitrary bank is described byA |B. We
prefer to see the above process specification rather as a parametric one. Given a concrete ATM
denoted byatm and a concrete bankbank, then their interaction is given byA〈atm〉 |B〈bank〉.
A coordinating process specification is finally given by equations of parametric process expres-
sions. For example, the specification ofA = ins.A1 related to a specific cash machineatm is
given byA〈atm〉 = ins〈atm〉.A1〈atm〉. This allows to extend the specification of many ATMs
and one bank byA〈atm1〉 |A〈atm2〉 | . . . |B〈bank〉. The case of two banks and their ATMs can
be described as(A〈atm1〉 | . . . |B〈bank〉)+ (A〈atm′1〉 | . . . |B〈bank′〉). Assuming that we have a
specification for an arbitrary userU , then the interaction between a specificuser, a specificatm,
and a specificbank is given byU〈user〉 |A〈atm〉 |B〈bank〉. The evolution of such a system is
described by a labelled transition system defined by the operational semantics of the process
algebra [11].

2.3 Wrapper

We introduce and use a notion of wrapper in order to specify the functionality of a system of
coordinated components. Usually the software wrapping allows the data flowing in and out of
the components to be intercepted and described. Also communication with other components
is examined before passing through. Our wrapper specifies the interaction between the com-
ponents by using their methods and the coordinating action of the process. We get a desirable

5 / 11 Volume 20 (2009)

Model-based Testing and Analysis of Coordinated Components

separation of concerns, offering a suitable abstract levelfor designing large component-based
systems without losing the details of low level implementation of components. Such a spec-
ification has similarities with an orchestra, where independent players are synchronized by a
conductor. The link between the players and the coordinating conductor is given by certain en-
try moments and orchestral scores. The wrapper instructs the players according to the scores in
order to implement the desired resulting music. Therefore the wrapper instructs the components
by using necessary information for their executions in order to realize a coordinated interaction.
An interaction realized by two complementary actions is denoted byτ . For instance, we denote
by τ(gb(atm),gb(bank)) the interaction between an actiongb of getting the balance atatm and
its complementary actiongb of providing the balance bybank. For instance, the wrapperw for
the system of coordinated components described previouslyhas the following definitions for the
interactions betweenatm andbank:

w[τ(gb(atm),gb(bank))] = atm.displayBalance(bank .getBalance))
w[τ(na(atm),na(bank))] = bank.notAccessible();atm.displayNotAccessible();

atm.release()
w[τ(nem(atm),nem(bank))] = atm.displayNotEnoughMoney()
w[τ(gm(atm),gm(bank))] = bank.grantMoney();atm.cash()

Formally, a wrapperw(c1, . . . ,cn) for a processP(c1, . . . ,cn) = P1〈c1〉 | |P2〈c2〉 | . . . |Pn〈cn〉 as-

sociates a programw[act] for each action labelact such that there is a labelled transitionp
act
−→ q

in the operational semantics ofP(c1, . . . ,cn). The programw[act] is expressed in terms of the
components involved in such a transition (they do not dependon the particular processesp
and q). Recall thatact is either of the forma〈ci〉 (action a of componentci) or of the form
τ(a〈ci〉,a〈c j〉) (interaction between componentsci andc j according to their complementary ac-
tions a anda). Such a wrapper provides a computational meaning to each action of the coor-
dinating process. According to the computational meaning behind each action, an interaction
between two components can be a synchronization or a communication. A synchronization is
provided by the sequential or concurrent executions of methods from the two components, and
a communication consists in using the attributes of a component as parameters for methods of
the other component (it appears as an interaction between a method and an attribute). Essen-
tially the wrapper binds the actions of the coordinating process to the components methods. For
instance,w[τ(gm(atm),gm(bank))] corresponds to the sequence of method calls, namely the
methodgrantMoney() of the componentbank, followed bycash() andrelease() of the compo-
nentatm.

2.4 Formal Semantics

The semantics of a system of coordinated components is givenby means of a model program
[16]. A model program defines the state variables and update rules of an abstract state machine
[2]. A state of a model programM is a first-order structure which captures a snapshot of variables
values at a given step. A step ofM is given by anaction method which describes an update rule
of the abstract state machine. An action methodam has formal parametersx, a precondition
Pre(am), and an update partUpdate(am). Mathematically, an action methodam is a function
which for a given states and some actual parameters which satisfyPre(am), it produces a new

Proc. OpenCert 2009 6 / 11

ECEASST

states′ where some state variables have changed. A model program canbe written using a
high level program language as AsmL (http://www.codeplex.com/AsmL). A model programM
defines a labelled transition systemLTS(M) obtained by unwindingM (see [16] for more details).

A simple example is given by a model programM(c) for a componentc. The state variables
are given by the component attributes, and the action methods by (a subset of) the component
methods.Pre(c.m) is the precondition of the methodm, andUpdate(c.m) includes the updates
of the attributes according to the postconditions. For instance, the postcondition ofATM::cash()
produces the updateavailAmount := availAmount - enteredAmount. We assume
that the postconditions of the methods can be expressed as updates of the attributes; modelling
languages like AsmL are powerful enough to satisfy this requirement for many practical cases.
We consider the specification of a component as a non-modal class, i.e., the only constraints over
the methods calls sequences are those given by the methods preconditions. In other words, the
call of a method is allowed in any state satisfying its precondition.

Another example is given by a model programM(w,c1, . . . ,cn) given by a wrapperw[c1, . . . ,cn].
The state variables are given byc1, . . . ,cn, and the action methods are given by the guarded
programs corresponding tow[act]. Pre(w[act]) is given by either the weakest precondition
wp(w[act], true) or by a verification condition [12, 14]. Update(w[act]) modifies the individ-
ual state of eachci according to postconditions of the involved methods. Let usassume that
w[act] is written using method calls, parallel composition‖ and sequential composition ; . For
a method callci.m(z), Update(ci.m(z)) is the same as that for the model defined by component
ci. For a parallel composition,Update(S1‖S2) = Update(S1)‖Update(S2), and for a sequential
composition,Update(S1;S2) = Update(S1);Update(S2).

Figure 2: Transition graph for the coordinating process

We describe now the model programM = M(C ,P,w,c1, . . . ,cn) defined by a specificationC
of components, a coordinating processP(c1, . . . ,cn) for the componentsc1, . . . ,cn, and a wrapper
w for P(c1, . . . ,cn) with C . We proceed in a reversed order: first we define a labelled transition
systemLTS, and then we build the model over the skeleton of thisLTS. The specification of a
processP(c1, . . . ,cn) defines a finiteLTS(P) [8]. The transition graph corresponding to the in-
teraction betweenatm andbank is given in Figure2, whereAB corresponds toA〈atm〉 |B〈bank〉,

7 / 11 Volume 20 (2009)

http://www.codeplex.com/AsmL

Model-based Testing and Analysis of Coordinated Components

A1B to A1〈atm〉 |B〈bank〉, and so on. The transitiontgm() corresponds toτ(gm(atm),gm(bank));
similar for tgb(), tna(), andtnem().

LTS(P) can be easily described as a model programM(P) with a single state variablevp
ranging over the states (as an enumerating type), and with the action methods correspond-
ing to the ones inP. If act is such an action,Pre(act) is ∨p∈Src(a)vp = p andUpdate(act) is

+q∈Tar(a)vp := q, whereSrc(act) = {p | p
act
−→ q ∈ LTS(P)}, Tar(act) = {q | p

act
−→ q∈ LTS(P)},

and+ denotes the nondeterministic choice operator. The state variables ofM(C ,P,w,c1, . . . ,cn)
are those fromM(w,c1, . . . ,cn) together withvp. The action methods are the ones ofM(P)
enriched with the preconditions and updates of the corresponding action fromM(w,c1, . . . ,cn):
PreM(act)= PreM(P)(act)∧Pre(w[act]), andUpdateM(act)= UpdateM(P)(act) ‖Update(w[act]).

The relationship betweenM, M(P) andM(w,c1, . . . ,cn) can be expressed in terms of bisimu-
lations, as it is also presented in [4]. We just mention here the main construction and result. We
consider the labelled transition systems as coalgebrasγ : X → TLTS(X), where

• TLTS : Set→ Set is the functor given byTLTS(X) = {Y ⊆ A×X |Y finite},
• Set is the category of sets,
• A is the set of action names,
• γ is the labelled transition system given byx

act
−→ y iff (a,y) ∈ γ(x).

The fact thatM is a bisimulation betweenM(P) andM(w,c1, . . . ,cn) is expressed by the com-
mutativity of the following diagram:

State
π1←−−−− State×Proc

π2−−−−→ Proc

LTS(M(w,c1,...,cn))





y





y

LTS(M)





y

LTS(P)

TLTS(State) ←−−−−−
TLTS(π1)

TLTS(State×Proc) −−−−−→
TLTS(π2)

TLTS(Proc)

We exemplify the construction ofM by considering the actiontgm. Recall thatw[tgm] =
bank.grantMoney();atm.cash(). The method actiontgm() in M is obtained from the correspond-
ing one given inM(P):

[Action]
tgm()
require (vp = A4B)
vp := A5B

by adding the conjunction of the preconditions of the methods Bank::grantMoney() and
ATM::cash() together with the updates given by their postconditions.
The new obtained method is:
tgm()
// precondition
require (vp = A4B)
require atm.enteredAmount <=

bank.getAccount(atm.insertedCard.number).balance
require atm.enteredAmount <= atm.availAmount
require bank.getAccount(atm.insertedCard.number).isAccessible = true
// updates
getAccount(atm.insertedCard.number).balance :=

getAccount(atm.insertedCard.number).balance - atm.enteredAmount
atm.availAmount := atm.availAmount - atm.enteredAmount
vp := A5B

Proc. OpenCert 2009 8 / 11

ECEASST

In order to respect the encapsulation principle, we may include the updates of the balance and
available amount in the two methodsBank::grantMoney() andATM::cash(), respec-
tively. Then, we replace the two updates in the actiontgm() with the calls of the two methods.

3 Testing and Analysis

A systemS = (C ,P,w,c1, . . . ,cn) of coordinated components is calledclosed if the specification
of P does not include global actions. This means that theLTS of P(c1, . . . ,cn) has only decorated
silent transitionsτ(a,a). The corresponding action methods inM are calledcontrollable [2, 16].
In other words, in a closed system we have only controllable actions. For instance, the system
described in our examples becomes closed if a componentUser is added. The coordinator indi-
cating how a user can interact with an ATM is

U = ins.U1 U1 = rel.U + ep.U2

U2 = rel.U + wp.U1 + ab.U2 + ea.U3 U3 = rel.U

The wrapper gives a model program for each interaction (e.g,τ(rel(atm),rel(user)). For these
closed systems, the model programM = M(C ,P,w,c1, . . . ,cn) can be used forconformance test-
ing andgenerating test case suites. Both tests are lying on the same basic technique: define a
subset ofacceptance states in M, and compute all the paths connecting the initial state withan
acceptance state. Such a path is called atrace. An example of such a trace istins() (insert a
card),tep() (enter a pin),tea() (enter an amount),tnem() (the bank sends “not enough money”),
trel() (release the card). In conformance testing, the implementation under test (IUT) is checked
if it is able to follows all the traces. Of course, we consideronly implementations built with
components satisfying the specificationC . To generate a test case suite, we have to find for
each trace suitable instances for componentsc1, . . . ,cn such that IUT having as “input” these
instances follows exactly the corresponding trace. For thetrace mentioned above, the test case
must include auser, anatm, and abank such that the user has correctly introduces the pin, has
an account at thebank, but the balance is less than the required amount. This can bereached by
computing thepath condition [15] for the trace, and then using an automated prover for finding
a satisfiability witness for this condition.

Given some componentsc1, . . . ,cn, LTS(M(C ,P,w,c1, . . . ,cn) is usually a subsystem ofLTS(P)
because of the methods preconditions. Thus the traces are defined according toLTS(P). A
problem appears when for each trace we can find suitablec1, . . . ,cn such that the trace is in
LTS(M(C ,P,w,c1, . . . ,cn). We refer to this problem as aconsistency problem between the spec-
ification C of the components and the specification of the coordinating processP, because it is
equivalent to checking whether the components are able to perform all the interactions specified
by the coordinator. This problem can be solved in a similar way to that of the test case generation.

A systemS = (C ,P,w,c1, . . . ,cn) of coordinated components is areactive system if the spec-
ification of P includes local actions. For instance, if the user is not specified then the system
described in our examples is reactive. This means that theLTS of P(c1, . . . ,cn) could have tran-
sitions decorated with local actions (e.g.,ins() - which describes only the ATM behaviour when
a card is inserted). The action methods inM corresponding to local actions inP are calledob-
servable [2, 16]. Thus, in a reactive system we have both controllable actions and observable

9 / 11 Volume 20 (2009)

Model-based Testing and Analysis of Coordinated Components

actions. The modelM(C ,P,w,c1, . . . ,cn) for a reactive system could be used forscenario-based
testing using the technique described in [16]. For instance, the scenario suggested above must
be explicitly given by describing the “reactions” of the user by setting the values forenteredPin
andenteredAmount.

4 Conclusion and Related Work

The paper presents a technique that can be used to apply formal methods to the certification
of component-based software systems, e.g. for conformancetesting and generation of test case
suites. A model for a given specification is defined by the components contracts, a specifica-
tion of the coordinating process, and a wrapper binding the coordination action to sequences of
the components method calls. We use a notion of wrapper in order to express the coordination
between components. The formal semantics is given by a modelprogram, and the relationship
between coordinator and components can be expressed as a bisimulation. Such a model can
benefit from the practical model-based testing tools. The model program can be used for confor-
mance testing and generating test case suites for closed systems, and for scenario-based testing
for reactive systems. We exemplify our approach by a system consisting of an ATM and a bank.

Previously the authors have introduced and used hiddenCCS in [5, 6] as a formal specification
framework based on hidden algebra and CCS. Such a specification extends the object specifica-
tion with synchronization and communication elements associated with methods and attributes
of the objects. Then hiddenCCS is extended in [4] to a specification language with a syntax
closer to object-oriented languages. We use Maude in [4] to give an algebraic semantics of this
specification language, and show how this semantics can be used to verify the system against
temporal properties. The specification of the components for a communication protocol by using
a language having strong features of the object-oriented programming is presented in [9]. We
also describe the extraction of a Kripke structure from the specification of a system of coordi-
nated objects, and we use it to verify the correctness of a communication protocol.

Bibliography

[1] F. Arbab, I. Herman, P. Spilling. An Overview of Manifoldand its Implementation.Con-
currency: Practice and Experience 5(1), pp.23–70, 1993.

[2] E. Börger, R. Stärk.Abstract State Machines A Method for High-Level System Design and
Analysis, Springer, 2003.

[3] N. Busi, P. Ciancarini, R. Gorrieri, G. Zavattaro. Coordination Models: A Guided Tour.
Coordination of Internet Agents: Models, Technologies, and Applications, Springer, pp.6–
24, 2001.

[4] G. Ciobanu, D. Lucanu. A Specification Language for Coordinated Objects.ACM SIG-
SOFT Software Engineering Notes 31(2), ACM Press, 2006.

[5] G. Ciobanu, D. Lucanu. Specification and Verification of Synchronizing Concurrent Ob-
jects. Integrated Formal Methods, LNCS vol.2999, Springer, pp.307–327, 2004.

Proc. OpenCert 2009 10 / 11

ECEASST

[6] G. Ciobanu, D. Lucanu. Communicating Concurrent Objects in HiddenCCS.Electronic
Notes in Theor. Comp. Sci. 117, pp.353–373, 2005.

[7] E.M. Clarke, O. Grumberg, D.A. Peled.Model Checking. MIT Press, 2000.

[8] R. Cleaveland, J. Parrow, B. Steffen. The Concurrency Workbench: a semantics-based tool
for the verification of concurrent systems.ACM TOPLAS 15(1), ACM Press, pp.36–72,
1993.

[9] M. Daneş, G. Ciobanu, D. Lucanu. Specification of Coordinated Objects and Verification
of Their Temporal Properties.7th SYNASC, IEEE Computer Society, pp.259–266, 2005.

[10] J. Goguen, G. Malcolm. A Hidden Agenda.Theoretical Computer Science 245(1), pp.55–
101, 2000.

[11] R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge University
Press, 1999.

[12] G. Nelson. A Generalization of Dijkstra’s Calculus.ACM Transactions on Programming
Languages and Systems, 11(4)m pp. 517-561, 1989.

[13] G.A. Papadopoulos. Models and Technologies for the Coordination of Internet Agents:
a Survey. Coordination of Internet Agents: Models, Technologies, and Applications,
Springer, pp.25–56, 2001.

[14] C. Pierika, F. S. de Boer A Proof Outline Logic for Object-Oriented Programming.Theo-
retical Computer Science 343(3), pp.413–442, 2005.

[15] G. Snelting , T. Robschink , J. Krinke. Efficient Path Conditions in Dependence Graphs for
Software Safety Analysis.ACM Transactions on Software Engineering and Methodology
15(4), pp.410–457, 2006.

[16] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, L. Nachmanson. Model-
Based Testing of Object-Oriented Reactive Systems with SpecExplorer.Formal Methods
and Testing, pp.39–76, Springer, 2008.

11 / 11 Volume 20 (2009)

	Introduction
	Specification of Coordinated Components
	Components Specified by Contracts
	Coordinating Process Specification
	Wrapper
	Formal Semantics

	Testing and Analysis
	Conclusion and Related Work

