Electronic Communications of the EASST

Volume 20 (2009)

Proceedings of the
Third International Workshop on
Foundations and Techniques for
Open Source Software Certification
(OpenCert 2009)

Automatic Analysis of Applications for Portability Acrogsnux
Distributions

Vladimir Rubanov

9 pages

Guest Editors: Luis Barbosa, Antonio Cerone, Siraj Shaikh

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Automatic Analysis of Applications for Portability Across Linux
Distributions

Vladimir Rubanov !

Lvrub@ispras.ru
Institute for System Programming of the Russian Academycidriges,
Russian Linux Verification Center
http://linuxtesting.org/

Abstract: Problems with portability of applications across variousux distribu-
tions is one of the major sore spots of independent softwamdars (ISVs) wishing
to support the Linux platform in their products. The sourt#ne problem is that dif-
ferent distributions have different sets of system lilesuthat vary in the interfaces
(APIs) provided, with respect to both composition and b&ravAnd the critical
guestions arise such as which distributions my applicationld run on or what
can | specifically do to make my application run on a greatenher of distribu-
tions. This article presents an approach and the Linux &pptin Checker tool that
help to answer such questions by automatically analyziagatget application and
confronting collected data with the internal knowledgeebesntaining information
about the various real world distributions. Additionallynux Application Checker
is an official tool approved by the Linux Foundation for dgitig applications for
compliance with the Linux Standard Base (LSB) standardlgading effort for the

single Linux specification.

Keywords: Linux, Application portability

1 Introduction

There are more than 500 public Linux distributions in the srodworld (see for example
http://lwn.net/Distributiong. And each of these distributions represents a unique auatibn of
versions/modifications of the base upstream componenksasukernel, shared libraries, system
commands, etc. In this article, we consider Linux distiimg mainly as system platforms en-
abling operation of third-party applications. In this pestive, the main components of a Linux
distribution are the kernel itself and a set of system liesathat provide application program-
ming interfaces (APIs — functions or global data) to the &ayions.

The problem comes from the fact that different distribusi@an provide different versions of
libraries (including custom modifications introduced bydfic distribution developers). This
can result in different sets of interfaces both from the cositppn (entire libraries or some in-
terfaces within the same library may be missing in someiligions) and from the behavioral
(the same interface can behave differently on differentriigions) points of view. That is
why it becomes so difficult to create a portable applicattwat tan be run on any distribution
out-of-the-box. The task becomes even more difficult if tppliaation vendors want to have

1/9 Volume 20 (2009)

mailto:vrub@ispras.ru
http://linuxtesting.org/
http://lwn.net/Distributions/

Automatic Analysis of Applications for Portability Across Linux Distributions @

their applications portable in the binary form (which igically important for commercial ven-
dors). That is why applications that work on one distribatinay fail on another and supporting
multiple distributions becomes a serious problem for aagilon developers. Of course, it is pos-
sible to develop specific versions of an application foripalar distributions but this is rather
expensive and may not be affordable for some developersasdhily might completely reject
supporting Linux platform. This inhibits growth of Linux plications and the adoption of the
platform itself as developers want to develop applicati@nd.inux not just for RedHat or Suse.

Distribution developers try to mitigate these problems bgplying several versions of the
same shared library in their distributions so that appleest could find and use appropriate
versions. Efforts to standardize some common subset @frids and their interfaces that can
be found in most of the modern distributions also help to détl the portability problems (see
Linux Standard Base (LSB)[LSB], [Rub07).

However, application developers still have to separatehee each specific distribution that
they want to target their application at to check which litgs and interfaces it provides. And
then manually extract the common subset in all the targéillisions to understand which func-
tions can be relied upon by the application. The applicati@m needs to be developed/modified
to use only this subset of libraries and interfaces. Autamgahis process of portability analysis
and decision support is a critical step to help developersdate portable applications that can
be run out-of-the-box on a wide variety of Linux distributi

In this article, we present results of tReissian Linux Verification Center [LVC] at thelnsti-
tute for System Programming of the Russian Academy of Scieres (ISPRAS)[ISH. Under
cooperation with thé.inux Foundation [LF] we collected data about main Linux distributions
in a central knowledge base and developed a toolux Application Checker) for automatic
analysis of application portability across these analydistfibutions. The data in the knowledge
base is constantly updated to be in synch with the state dfithe art.

The article contains two sections. The first one introdubesknowledge base about mod-
ern Linux distributions maintained under the auspices efltmux Foundation — the leading
consortium dedicated to fostering growth of Linux. The seteection presents the Linux Ap-
plication Checker tool designed for automated analysisagszdistribution portability of Linux
applications.

2 Linux Foundation Ecosystem Knowledge Base

To standardize, protect and promote Linux, the leadingdifyganies (IBM, Intel, HP, Novell,
Oracle and many others) formed an international non-profisortiumThe Linux Foundation
[LF], which now represents the main power in the World that sn@forts and expertise of
various organizations and persons that are interestedsimriag the further growth and success
of Linux as a platform. The consortium also provides a nédbraim to discuss various issues
and make collaborative decisions.

One of the main technical activities of the Linux Foundatisrdevelopment of th&inux
Standard Base (LSB)standard. The core idea of the standard is to describe atsafisiaux
interfaces provided by various libraries that constittie gingle Linux platform from the appli-
cation developer point of view. This subset should be ptesemost Linux distributions and

Proc. OpenCert 2009 2/9

@ ECEASST

should provide the same functionality in each of them. Op#on in the standard should include
information about binary level symbols (i.e. names of ELkg&utable Link Format) symbols)
of all interfaces and API-level information (parameteeturn values and corresponding types)
including behavior specification of the interfaces.

LSB is a living standard, which means it is regularly regdiand new versions are released.
Usually, each LSB version corresponds to one generatioheofrtain Linux distributions (e.g.
LSB 3.0 is for RHEL 4 and SLES 10, while LSB 4.0 is for RHEL 5 arldES 11). So one of the
key success factors for developing and supporting an ater§tandard like LSB (covering more
than 30,000 interfaces!) is a proper technical infrastmgcthat automates the main processes
for maintaining the standard itself and that brings thedsaa closer to real developers.

The Linux Foundation (formerly Free Standards Group) dlyedeveloped a basic infrastruc-
ture for the first LSB versions in the early 2000s. But with grewth of the standard, it was
realized that a next-generation infrastructure is neetatighould include many more compo-
nents and automate many more processes in the standardspaeset. In 2006, the Linux
Foundation jointly with ISPRAS launched a n&8B Infrastructure Program [Inf].

In context of this paper, the important direction of this naagram was building a neeentral
databas€MySQL based), which became the backbone of the entire tealrSB infrastructure.
The database contains integrated information about thedt&®lard itself, about its surrounding
Linux ecosystem and various operational matters like ad@rtifications. The current database
contains 97 tables with over 89 million records. There aredlparts of the database:

1. The standardizationpart includes information about LSB elements that cortstithe
essence of the standard itself.

2. Thecommunitypart contains information about real-world modern Linustdbutions and
applications.

3. Thecertificationpart keeps information about the certification status oiover products,
audit operations, fee payments, etc.

The second part of the database (also knowhiagx Foundation Ecosystem Knowledge
Basg is most interesting for the topic of this paper because this part that enabled creation
of the Linux Application Checker tool for automated anadysf cross-distribution portability
of Linux applications. Basically, the information in thianp represents the structure of popular
Linux distributions in terms of specific libraries and thieiterfaces provided by each distribution
to applications. As of March 2009 the database includesnmition about 88 versions of Linux
distributions.

The contents of the database are open to the community armbdanowsed in a user-friendly
way using thd.SB Navigator [Nav] web-portal.

3 Linux Application Checker

Collecting information about the structure of popular bindistributions in a central database
was the principal step to enable automated cross-comiigtitnalysis of applications. But in

3/9 Volume 20 (2009)

Automatic Analysis of Applications for Portability Across Linux Distributions @

order to effectively implement this analysis, it was impmitto create a tool that automates
corresponding further steps:

1. Understandxternal dependencidexternal libraries and interfaces needed) of the target
application.

2. Compare the applications dependencies with the infeomaboutibraries and interfaces
provided by each Linux distributiomom the knowledge base.

3. Visualizethe resultsand provide additional hints on how to fix some issues.

TheLinux Application Checker tool (or App Checker in short) developed jointly by ISPRAS
and Linux Foundation serves this purpose. Additionallyghiecks some other compatibility
issues (e.g. names of ELF sections in binary files) but the paint remains in the match of the
libraries/interfaces required by application with thedities/interfaces provided by distributions.

Linux Application Checker provides visual user interfagséd on a simple embedded web-
server. At the starting page (Application Check), useraighselect a set of components that
constitute the target application package. The leaf compisrnto be analyzed are single binary
files in ELF format (executables or .so libraries). Also, Appecker checks Perl, Python and
shell scripts for compatibility issues. To facilitate thedextion process for complex applications,
it is possible to indicate groups of components by seleammyegate entities:

e whole directories(all executable files and .so libraries as well as Perl, Rytnd shell
scripts in the directory will be considered as belongingh®adpplication);

e installation packagesr tarballs in RPM, DEB, tar.gz, tar.bz2 formats (all files of the
proper types in the packages will be considered as belorgitige application);

e packages already installeid the system.

During analysis, App Checker inspects all the componenlisated as belonging to the appli-
cation (both directly and through the aggregate entities) @erforms a number of checks. All
the checks can be divided into two groups:

e cross-distribution compatibility analystsased on the Linux Foundation Knowledge Base
(LF KB);

e certification check®n compliance with th& SB standard

The first kind of checks is for the general audience of Linupliaption developers interested
in maximizing portability of their products. App Checkeopides a number of reports concern-
ing specific compatibility issues that can prevent the apgitbn from running on certain Linux
distributions. The most common reason is libraries or fatas required by the application but
missing in some distributions. Information about requiibcaries is taken from ELF-files of the
application by filtering DTNEEDED records of the .dynamic section. Required intedfaare
taken by filtering ELF-symbols from the .dynsym and .symtattisns. Internal dependencies

Proc. OpenCert 2009 4/9

@ ECEASST

between the components of the application itself are erduddom the list of external depen-
dencies.

If available and appropriate, App Checker provides addgionformation and recommenda-
tions on how to fix detected compatibility issues. Thesemeuoendations are taken from the
known issues sections in the Linux Foundation KnowledgesBfs example, advice on replac-
ing some deprecated interfaces by more portable moderrtarpants or recommendations to
include some missing library as a part of the applicatiorkpge).

LSB checks are more specific. Their main purpose is to analgrepliance of the appli-
cation with the LSB standard in the context of formal cerdifion. The report generated by
these checks serves as the main input on which to base decisbmut LSB certification of
applications. Analysis of external dependencies of thdietjpn is performed as well but the
dependencies are confronted with the libraries and irdesfancluded in the LSB, not in any
specific distribution. Basically, it is checked that the laggiion uses only those libraries and
interfaces that are standardized by the LSB. Also, App Céreelksures compliance of other as-
pects like binary structure of ELF-files and .rpm packageage of the specific dynamic loader,
etc.

3.1 Using Linux Application Checker Reports to Analyze Applcations

At the end of the analysis, Linux Application Checker prasda report structured into a few
subsections shown in separate tabs. The general look okfiwtris presented at Figude
There is a short summary at the top of the report starting svitiolor coded one-line compat-
ibility verdict (green — no compatibility issues, yellow erse issues, red — numerous issues)
supplemented with a few lines of statistics on the numbeowoifid issues of different kinds like
the number of incompatible distributions, unused libsri@on-LSB elements, etc. There are 5
tabs/reports below that present detailed information tboupatibility issues in different views.
The sections below discuss each of these reports in morit deta

3.1.1 Distribution Compatibility Report

This tab is open by default and contains information abontpatibility of the analyzed applica-
tion with particular Linux distributions (information onhich is present in the LF KB). The data
is presented as a table with each line corresponding to atébdition. Each line is color coded
in green (the application is fully portable), yellow (thene minor issues) or red (there are seri-
ous compatibility issues). It is important to understarat tompatibility verdicts actually mean
possibility to successfully run application but they do gofarantee that the application will
actually behave correctly. The compatibility analysis igimy based on confronting available
in each distribution libraries and interfaces with thosguieed by the application. By leaving
the mouse pointer over specific lines in the table, it is gmsgd see a hint that contains more
detailed information on the number of compatibility isseéwarious kinds for corresponding
distributions. By clicking on the table it is possible to exg the table and see detailed infor-
mation for all lines at once (in additional columns). Thexaispecial type of unknown libraries
— the presence of these libraries is not guaranteed to labeknalyzed in all the distributions.
This is because the LF KB contains information about presefust a selected set of so called

5/9 Volume 20 (2009)

Automatic Analysis of Applications for Portability Across Linux Distributions ﬁ

E'EN Ux QP APPLICATIBCEJT:I
FOUNDATION v CHECKER

Application Check | Result History | Help | About Administration

; s Please upload info about your application to the LSE Mavigator &
Analysis Results for alsa-1.0.11-32.7 on x86

There are 5 of 28 distributions (see below) that provide all the required libraries and interfaces.

® The Application uses 2 external libraries incompatible with LSB 3.2,

J [Distribution Compatibility | 22 App Components | | @ External Libraries | | # External Interfaces | |) LSB Certification

The table below shows the compatibility status of your application with the distributions analyzed by the Linux Foundation. Your Application will run on the
"green” distributions without loader problems. Compatibility with the " " distributions can be easily achieved by excluding unneeded libraries from the
dependencies of your application. Making the Application compatible with the "red" distributions may require more effort to avoid using missing libraries/interfaces
or by supplying them as a part of your application package. Please note that functional correctness is not guaranteed by this analysis

Summary Missing Libraries Missing Interfaces
Comments
Distribution Status C 2| Unk 2| G 2 Unk

SLES 107 0K none none none none

Figure 1: Linux Application Checker Report Header

approved libraries as it would consume too much space if wedtinformation about all li-
braries present in each distribution. Meanwhile, the lfishjmproved libraries covers those that
are most widely-used by applications and currently incluti€77 names. This list was formed
by analyzing more than a thousand popular applications egating a union of all the libraries
required by these applications. And we continue adding edlih as we come across new li-
braries needed by new applications.

So, the first report allows easy understanding of which @algr distributions contain all the
necessary libraries and interfaces for the applicatiodendliowing the user to choose to see the
list of missing entries for incompatible distributionsétist is shown in separate window when
clicking on a proper links inside the table).

Another interesting aspect that App Checker can also disteotcalled unused libraries. Such
libraries are included in the external dependencies of sgpkcations components but no actual
interfaces are then used from these libraries. Usuallysemlibraries can be easily eliminated
by just correcting build options of the application, whichgroves portability of the application.

3.1.2 Application Components Report

The next tab presents information about particular compisnef composite applications (see
Figure?2) like executable files, shared .so libraries and Perl, Rytdmal shell scripts. For each
component, compatibility status is shown — the number dfilligions this component is com-
patible with (this helps easily identifying problematicneponents) with the next two columns
providing detailed information about the number of probd¢imlibraries and interfaces from the
components external dependencies (those ones not prawjdsdme distributions). The num-

Proc. OpenCert 2009 6/9

@ ECEASST

2% App Components | | @ External Libraries | | External Interfaces | |) LSB Certification
Distribution | Missing Missing Unneeded LSB 3.2
Component - o - . Comments
Compatibility | Libraries Interfaces Libraries Compatibility
. ’ 3 interfaces are since
PKG:fustbinfaconnect 26 of 28 (list..) none Jaf 14100 LSE 40
X . . . 1 non-LSE library,
PKG:Austbin/alsamixer 220f28 (list..) (1 ofa () 25afd5 () 6 non-LSE interfaces

Figure 2: Application Components Report

2% App Components | | @ External Libraries | | & External Interfaces | |) LSB Certification

The table below lists all external libraries required by your Application (based on DT_NEEDED ELF section). LSB and Distribution presence statuses are provided
for each library. You can adjust distributions of interest and the report will be updated appropriately

Select distributions. .. {28 of 28 selected)

Dependent Interfaces Presence in
i 2
ey Application Components Actually Used Distributions lESHE.Z MelSlinie
libc.s0.6 & 26 components (L) 114 28 of 28 (list..) Yes Details...
libdl.s0.2 &7 20 components (...) 4 28 of 28 (list..) Yes Details...

Figure 3: External Libraries Report

ber of unused libraries is shown for each component (if ang)aspecial column summarizes
LSB-compliance status of the components. Any cell in théetabn be clicked to see the list of
specific entries behind the summary numbers shown.

3.1.3 Reports on External Libraries and Interfaces

The third and the fourth tabs (see Figiepresent information about the applications external
libraries and external interfaces respectively (the ufdorll app components excluding internal
dependencies).

For each library, the following information is shown:

¢ the list of app components that require this library;

e the actual number of interfaces that are used by the app fi@ntitirary (unused libraries
have red 0 in this column);

e the number of distributions that provide this library;

e LSB status of the library.

The fourth tab with external interfaces is quite similarjust contains the list of interfaces
instead of libraries and a couple of additional columns:

719 Volume 20 (2009)

Automatic Analysis of Applications for Portability Across Linux Distributions @

e interfaces version (like GLIBR.3);

e name of the library that provides this interface.

At both tabs, there are a number of filters that allow the views limited to only interesting
records. For example it is possible to define specific digtidns that are of interest for analysis
(e.g. by excluding old distributions) — the compatibilitglemn will be recalculated accordingly
including the color coding. Also, it is possible to limit tiveew to only those entries that are
relevant to a specific app component or library (in case efiates). A special filter allows the
view to be focused on entries concerning particular probtgmes (entries with compatibility
problems, unused libraries, non-LSB entries, deprecaitres, etc.).

3.1.4 LSB Certification Report

The fifth (the last) tab is devoted to the official certificatieport on compliance of the target
application with the LSB standard (a specific LSB versioreigeasted at the initial screen when
specifying the application to check). The list of issuesnibuis displayed in subsections that
can be grouped either by application component or by isque tif there are no critical issues
then it is easily possible to apply for the formal certificatiright away by clicking a link in
the report, which will smoothly bring the user to the onlirertfication system at the Linux
Foundation server and will ensure all the data necessariit@ting the certification process
is transparently transferred to the server (first of all gehhical certification report). As soon
as the certification process is complete the applicationtisraatically included into the official
LSB-certified Product Registry.

3.2 Sharing Data about Applications with the Community

As a part of its Linux Ecosystem Knowledge Base, the Linuxritaiion maintains information
about real world applications. Thats why all ISVs (IndepamdSoftware Vendors) are invited to
provide information about their applications to the LinuouRdation, which then can be shared
with the community through the LSB Navigator web-portsh{].

Apart of the general information (name, home page, apjicaipe, etc.), this information
basically includes the list of external dependencies ofapglication. The information about
applications is useful to the Linux Foundation and the comitgufor understanding which li-
braries and interfaces are most popular among ISVs. Thiariticplar helps to make decisions
on which libraries and interfaces to include/exclude twffrthe LSB standard.

The Linux Application Checker is the easiest way to subnfiirimation about your applica-
tion to the Linux Foundation. There is a special Upload Infil lat the summary area of the
App Checker reports. Clicking this link brings a form redtires a few additional informational
items. After filling in these items it is possible to just med$pload button that will automatically
put all the necessary information about the app right awdkiéd_inux Foundation FTP-server.
Alternatively, for those highly concerned with privacy,istpossible to save a file with all the
necessary information, inspect it and then send to a speciail.

Proc. OpenCert 2009 8/9

@ ECEASST

4 Conclusion

Differences between Linux distributions regarding thevieess, libraries and the library inter-
faces provided to applications create serious difficultiedSVs, who have to create different
builds of their applications for different Linux distribahs. Fortunately, initiatives like Linux
standardization and efforts of distribution vendors topguplegacy applications help to form a
common basis that can be found in most of distributions. &ptibns that use only this basis
become portable across various distributions. The corbisfdasis is the LSB standard while
there are actually many different surrounding bases depgrah the target segment of distribu-
tions. That is why it is very important for ISVs to have autdetatools that can help them to
understand this basis in the case of their specific segmeatgut distributions in the context of
their particular application.

The leading IT-companies are committing significant resesir(partly through the Linux
Foundation) to making it possible to easily build portabpplecations for Linux. The Linux
Foundation Ecosystem Knowledge Base and the Linux AppdicaChecker tool presented in
this paper that help ISVs analyze (and consequently fix gpjately) their applications for
cross-distribution portability are the flagship achievatsdn this field at the moment. Addi-
tionally, Linux Application Checker is an official tool foectifying applications for compliance
with the various versions of the LSB standard. The latestigarof this open source tool can be
downloaded from the pages of the LSB Infrastructure Prodtafh

Bibliography

[Inf] LSB Infrastructure Program.
http://ispras.linuxfoundation.org/

[ISP] Institute for System Programming of the Russian Acaylef Sciences.
http://ispras.ru/

[LF] Linux Foundation.
http://linuxfoundation.org/

[LSB] Linux Standard Base Homepage.
http://www.linuxfoundation.org/en/LSB/

[LVC] Russian Linux Verification Center.
http://linuxtesting.org/

[Nav] LSB Navigator Portal.
http://linuxfoundation.org/navigator/

[Rub07] V. Rubanov. Linux Standard Base (LSB): Single Lir&pecification and Support In-
frastructure Proceedings of SECR 2002007.

9/9 Volume 20 (2009)

http://ispras.linuxfoundation.org/
http://ispras.ru/
http://linuxfoundation.org/
http://www.linuxfoundation.org/en/LSB/
http://linuxtesting.org/
http://linuxfoundation.org/navigator/

	Introduction
	Linux Foundation Ecosystem Knowledge Base
	Linux Application Checker
	Using Linux Application Checker Reports to Analyze Applications
	Distribution Compatibility Report
	Application Components Report
	Reports on External Libraries and Interfaces
	LSB Certification Report

	Sharing Data about Applications with the Community

	Conclusion

