Electronic Communications of the EASST

Volume 20 (2009)

Proceedings of the
Third International Workshop on
Foundations and Techniques for
Open Source Software Certification
(OpenCert 2009)

Open-DO: Open Framework for Critical Systems
José F. Ruiz and Cyrille Comar

12 pages

Guest Editors: Luis Barbosa, Antonio Cerone, Siraj Shaikh

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Open-DO: Open Framework for Critical Systems

José F. Ruiz and Cyrille Comar

AdaCore, 46 rue d’Amsterdam, 75009 Paris, France

Abstract: Critical systems development pushes software quality ¢oetttreme.
When human life depends on the correct operation of the aodtvstrict processes
are put in place to ensure, as much as possible, the absemceo in the air-
borne system. These processes are very tool-demandinghesltools also need
to follow stringent and rigorous guidelines to provide theger guarantees of qual-
ity. The Open-DO initiative aims at providing a frameworklégating open-source
tools for safety-critical systems. A key point is that thésels will come with the
material to ensure that industrial users can trust thepuiwnd use them to develop
software compliant to the highest integrity levels.

Keywords: software engineering, free/open software, tools, ceatific, qualifica-
tion

1 Introduction

In recent years, a significant trend has been a greater groduand use of Free libre Open-
Source Software (FIOSS). Improving and assessing qudliff@SS products have become an
strategic objective of FIOSS communities, with the goalusttier increasing FIOSS adoption.

If FIOSS wants to expand in the high-integrity arena, nevefaof software quality need to
be adopted by developer communities. Safety-criticalesgst in which human life depends
on the correct operation of the software, require followstctly defined methods to ensure,
as much as possible, the absence of errors. Existing stindlar developing high-integrity
software Fur03a Eur0O3h RTC92 DEF97 assist developers in applying good software practices
during the development, focusing on adequate definitionexedution of software engineering
processes and activities.

In the safety-critical world, the notion of certificationsha very precise meaning which goes
beyond what is typically covered by quality. In DO-178BT[C93, certification is the process
through which applications get official authorization teogte, which typically materializes as
a strict guidance/audit of their development process plagptoduction of required verification
artifacts.

Some of the required activities for certification are veiaes, human-labour intensive, and
error prone, when no automatic tools are in place. For exanspiuctural coverage analysis can
be more efficiently and reliably performed by a tool than byiman, hence tools are extensively
used to support this activity. These tools need to providetioper guarantees of quality for the
development of high-integrity systems.

The DO-178B RTC9] certification standard defines the concept of qualifiedstodbuch
tools have been verified to produce an output reliable entadpe used as evidence of a given
certification task. Qualified tools can then eliminate, mdor automate processes without its

1/12 Volume 20 (2009)

Open-DO: Open Framework for Critical Systems @

output being verified. To justify reliance on a tool, certfion authorities require evidences that
the tool meets precisely the operational requirementsategat the task it automates.

There are already some open-source initiatives targetiaglevelopment of tools for high-
integrity systems, such as TOPCASED (Toolkit in OPen-sadar Critical Application and
SystEms Development)dp] for Model Based Development, and OPEES (Open Platforntier t
Engineering of Embedded Systems), which is a followup of TABED focused on building an
open-source ecosystem.

A new initiative, called Open-DOd)pd, is being put in place to provide an infrastructure for
DO-178 related activities. Beyond the production of FIO8&4, a key point is the production
and evolution of open qualification material so that theséstoan be used in DO-178 processes.

There are also common software components, such as theingesygstem, where even com-
peting companies can work together to share cost withoupoamising their competitive ad-
vantage. The objective in Open-DO is to develop certifialolemponents, which would come
with the required artefacts to fit in the certification praces

Apart from tools and components, Open-DO aspires to prowidee elements which would
simplify critical development. Safety-critical standardequire the production of many docu-
ments. The creation of templates to speed up document grodand to make sure that the
required elements are provided is one of the tasks in OpenAnGther one is the development
of education material to make training for safety-critic@lvelopment easier and more widely
available.

2 Certification process

Safety-critical standards focus on the adequate defindtimhexecution of software engineering
processes and activities. They define the objectives fadifferent processes, the activities that
need to be performed for achieving these objectives, and\ttences that indicate that the
objectives have been satisfied.

Software failures can affect differently system safety.e THO-178B certification standard
defines five software levels according to the failure coaditihat can result from anomalous
software behavior: failures in Level A software can caugasteophic results, Level B could
cause potential fatal injuries to a small number of occupdrdvel C can impair crew efficiency
or possible injuries to occupants, Level D corresponds twnfailures, and Level E would have
no effect on aircraft operational capability or pilot warkH.

Once a system safety assessment is done and the safety whpafttvare being developed is
known, then the software level is defined. The software leaslan impact on the effort required
to show compliance with certification requirements. Levesdftware needs to fulfil 66 DO-
178B obijectives, Level B 65 objectives, Level C 57 objectjveevel D 28 objectives, and none
for Level E.

The rationale behind certification standards is that theofiséandard processes and compli-
ance with pre-determined objectives help avoid the commitfallp of software development.
DO-178B defines the following main processes to be impleatent

e Software Planning. Determines what will be done to prodade software conforming to
the system requirements.

Proc. OpenCert 2009 2/12

@ ECEASST

e Software Development. This process is broken down into $obrprocesses:

— Requirements. Defines the high-level requirements desgrihe functionality, per-
formance, interface, and safety.

— Design. Defines the software architecture and the low-l@glirements from which
source code can be implemented.

— Coding. Implements the source code from the low-level requénts.

— Integration. Develops the integrated airborne system aglitg the executable into
the target hardware.

e Software Verification. Detects and reports errors that nexetbeen introduced during
the software development process. Verification is not girtgsting (it cannot, in general,
show the absence of errors). It is typically a combinatioreefews, analyses and tests.

e Software Configuration Management. Establishes the mé&shano identify, control,
and regenerate all certification artifacts. Appropriatebgm tracking mechanisms are
also part of this activity.

e Software Quality Assurance. Ensures the quality of thexsoft by assessing the software
life-cycle processes and their outputs. Ensures that gdictibbes for a given level are
satisfied, and detected deficiencies are evaluated, tragakddesolved.

Each process has inputs, outputs and transition critehia.tfeinsition between processes are
defined as the minimum conditions to be satisfied to enter@epm All these software life-cycle
processes are linked and must be traceable.

There is an initial phase (Software Planning) where the oéshe processes are properly
defined. Then, there is the Software Development Processrimtes the final system. As we
can see, the three other processes are transversal (iptegaftware development: verification,
configuration management, and quality assurance.

3 Tool gqualification

Critical software development requires many tools to hamdfuirements, design, code gener-
ation, tests, and structural coverage, among others. Repetnd human-labor intensive pro-
cesses can result in errors as well as high costs. The DO-4fa8Bards acknowledges the need
for tools, but keeping safety in mind: tools can be used, bay need to provide the proper
guarantees of quality.

The DO-178B certification standard defines the concept ofifgpeatools, which are those
providing the required guarantees allowing to trust theipat. Qualified tools can then elimi-
nate, reduce or automate processes without its output lveiified. Therefore, qualified tools
must provide confidence at least equivalent to that of thegages which are eliminated, reduced
or automated.

Tools are classified as either development tools or veriificabols. Development tools pro-
duce outputs that become part of the final airborne systentrargdcan potentially introduce

3/12 Volume 20 (2009)

Open-DO: Open Framework for Critical Systems @

errors in the final system. Therefore, the rules for qualifydevelopment tools are close to
those for the airborne system. Verification tools are thbaé ¢annot introduce errors but may
fail to detect them or mask their presence. Qualificatiotedd for verification tools are much
simpler than for development tools, and they are roughletams demonstrating that the tool
fulfils its requirements under normal operational condiio

Tools need to comply with very stringent quality criteriagiosure their usability when being
integrated in a DO-178B development process.

4 The FIOSS advantage for critical systems

Free licensing guarantees complete freedom to inspectfynadd maintain tools. This is really
important because the life-cycle of safety-critical apgiions can typically be decades. Itis hard
to ensure that the tool provider will be in business for afltttime, and to guarantee that they
will keep their know-how is even harder. FIOSS can ensureahsew company may continue
supporting an existing toolset.

Free licensing also guarantees that components embedtieslfinal critical system, such as
the run-time systems provided by compilers, are availablource form, and can be inspected
and modified as necessary for certification purposes. Ogsrmmeans also that many eyes are
potentially looking at it, increasing the likelihood of deting problems and malicious code.

From an industrial community viewpoint, open-source congras allow for a shared infras-
tructure which ensures long term viability, no dependenteroject life-cycles, no dependence
on company policies, and cost reduction by sharing theieldgment and evolution among
users with similar needs. It also allows some level of coafpen with competitors, and reduces
training costs (specially for subcontractors).

Tool providers can provide a complete supported solutiorereasily when tools are shared,
and open software tools offers an ideal showcase for opémodmgies. Open software creates
an ecosystem where vendors can find potential customersaamms. Tool vendors ensure their
income by offering support, training and expertise to adaptevolve the products. Additionally,
in large-scale critical projects, expert support and tleeiance of not being blocked by tool
misbehavior are extremely valuable and key for reducirksrig schedule shifts.

For certification authorities, those in charge of acceptingefusing the airworthiness certifi-
cation of a system, an open platform would help them sharioigoaactising new ideas. It would
also be an excellent vehicle for clarifying specific issw@®] it would lower their training costs.

From the public institutions viewpoint, open software tesaa very convenient bridge be-
tween academia and critical industries, and constitutesrtost effective way to have a better
return on public fund investment, since the results of gramtd funded projects have a better
chance to be reused and applied.

Therefore, there are many synergies to explore in the uséQ8% for critical systems, and
the Open-DO initiative is a call for action in this respect.

Proc. OpenCert 2009 4/12

@ ECEASST

5 The Open-DO initiative

The free/open-source concept is being successfully adopteldwide, and many companies
have integrated FIOSS in their business models. UnfortlyyaDpening only the source is not
enough for addressing the needs of critical systems.

Safety-critical development involves many different msges, and can leverage on the inte-
gration of a number of tools covering, at least, the follaywrategories:

e Life-cycle management

e Requirements management
e Modeling tools

e Software development tools
e \erification Tools

e Testing tools

¢ Build infrastructure

e Configuration management

e Traceability management

Open-DO is an initiative which is being put in place to pravidn infrastructure for DO-
178B software development, based on open-source toolsy blaen-source tools already exist
for handling some of these activities. For example, OSEEe(Opystem Engineering Envi-
ronment) psq is an integrated application life-cycle management syst#&Unit [aur] and JU-
nit [jun] offer unit testing capabilities, etc.

Open-DO aims at federating these tools, providing a frankewbegrating them, and address-
ing workflow support, which handles the ordering of actestiallocation of resources, transition
criteria between activities and inspection of objectives.

Addressing the workflow is one of the objectives in Open-D@isTs one point where Open-
DO approaches LeaV[S05 and Agile [Mar03 methodologies. Although these two approaches
are not widely considered suitable for high-integrity syss, these concepts are actually being
successfully applied for developing systems following Bi@-178B standard. In a verification-
driven life-cycle, where requirements-based testing isustmthe paradigms of test-first and
continuous integration allow for appropriate refinememesfuirements (from high-level to low-
level requirements) and early detection of errors. Notéfttiese requirements can be formally
defined and subject to formal verification.

When planning the development, the software life-cyclegfinéd and described, including
the ordering of activities, allocation of resources, argl tifansition criteria between activities.
Verification activities (reviews, analyses, tests, ... e that the workflow is followed as it
was planned, and that the required criteria for transitigrietween activities are met. Tools can
be used to track these activities, properly logging thesatsvso everything is traceable.

5/12 Volume 20 (2009)

Open-DO: Open Framework for Critical Systems @

The use of open software tools eases their integration amincmication, allowing users to
adapt, add or replace the different components, and perqiagasier modification and tracking
of the workflow.

Beyond the production of tools, a key point is the productibqualification material, so these
tools can address DO-178 processes. Open-DO will host apaifigation materials, as well as
other certification artifacts such as validation test siligéc. They can guarantee that the required
quality criteria are met.

Apart from qualifiable tools, Open-DO can also provide mdeenents which would simplify
critical development. As we have seen, DO-178B requireptbhduction of many documents,
and templates can be provided to speed up document prodwaniith to make sure that the re-
quired elements are provided. It is also possible to devetofifiable components, which would
come with the required artifacts to fit in the certificatio@sss.

6 Life-cycle management

The planning process defines the means of producing softsedisfying both the system and
safety requirements. It defines the software life-cyclejctvhincludes the inter-relationships
between processes, their ordering, feedback mechanisrdgramsition criteria between pro-
cesses and activities.Verification activities (reviewsalgses, tests, etc.) ensure that the work-
flow is followed as planned, and that the required criteriatfansitioning between activities
are met. Tools can be used to track these activities, profmgling these events so everything
is traceable. Handling this workflow is one of the objectiie©pen-DO, encountering Lean
and Agile methodologies. Although these two approachesaravidely considered suitable
for high-integrity systems, these concepts are actualiggosuccessfully applied for develop-
ing avionic systems following the DO-178B safety-criticthndard. In a verification-driven
life-cycle, where requirements-based testing is a mustptiradigms of test-first and continu-
ous integration allow for appropriate refinement of requieats (from high-level to low-level
requirements) and early detection of errors.

OSEE (Open System Engineering Environmeagd is an official Eclipse project which pro-
vides an integrated application life-cycle managementesydeveloped by the Apache Team
at Boeing. Among other features, it permits to import hedereous life-cycle artifacts (such
as requirements, test cases, models, source code) intoraaonatabase, capturing all project
data.

7 Requirements management

The first step in the development process is to get the sygtenification that defines what the
system must (and must not) do.

Requirement management systems have so far had smallaitéoim the open community.
However, the situation is expected to change with the futelease of the Open Requirement
Management Framework (ORMR)rm], an official Eclipse project. OSEE (see secti@asnd
15) embeds also a basic requirement management system.

Proc. OpenCert 2009 6/12

@ ECEASST

8 Modeling

Modeling is rapidly gaining importance in the developmerdgess of critical systems: for in-
stance, the next revision of DO-178, DO-178C, will includéuth annex about model-driven
design.

The most prominent open initiative within the modeling ar&nthe Eclipse Modeling Project,
which collects a set of tools for the definition of (domairesific) modeling languages and model
manipulations (including code generation and model-basatlsis): Eclipse implementation of
UML has become thée facto industrial standard. In the high-integrity and embeddenhaio,
TOPCASED has recently emerged as one major innovation wvegthin the European indus-
trial research community. TOPCASED leverages on the Eelidedeling Project and provides
an integrated collection of modeling environments in thenf@f an open Eclipse plug-in(s):
at the moment of writing, it includes graphical front-ends UML, SysML and AADL; the
TOPCASED UML plugin is expected to became the official Edigslution for UML model-
ing®. In the area of synchronous modeling languages, Scimjsdffers an open environment
for dynamic system modeling, simulation, analysis and gefesration.

Open modeling initiatives are however not restricted to etiod environments only: the
Gene-Auto §er] consortium aims at providing an open framework for the ttgwment of qual-
ified (in the DO-178B sense) multi-language code gener&boisynchronous languages such as
Matlab/Simulink naf or Scilab/Scicosqcli].

9 Software development

One of the most prominent examples of a successful operederelopment tool is Eclipsed],
an open-source framework which promotes the integratiodgiftédrent tools. Its openness en-
courages more projects to get involved, and it is boostitiglmoration between third-party tools.

At the core of software development we find compilers. The GGmpiler Collection
(GCCQC) [gcd, which supports front ends for many programming languaayes back ends for
most architectures available today, has become one of tisé popular compiler for the devel-
opment of free and proprietary software.

Debugging is also an integral part of software developmant, GDB pdb], the reference
open-source debugger, is an advanced and actively dedetopkesupporting native and cross
debugging.

In addition to these tools, there are others that can helpowimg the quality of the software.

Most certification standards encourage the use of a codamglatd that constrains language
features and constructs to a well-defined subset. This appracilitates safety analysis, avoid-
ing error prone or hard to analyze features. There are operte tools like GNATcheckgnagd
or AdaControl pdg for Ada. Code metrics are often used to evaluate the coriplexd
help understanding the structure of the source code. TheT@&efic tool gnad for Ada and
CCCC [cq for C and C++ are part of the open-source tools availabl¢Hat.

These are examples of open-source tools useful for safityat development among many
others. The goal of an open framework, such as Open-DO, iske tihe integration of additional

1 http://wiki.eclipse.org/MDT-Papyrus-Proposal

7112 Volume 20 (2009)

Open-DO: Open Framework for Critical Systems @

tools easy.

10 Static analysis

Static analysis techniques, when applicable, provide tagase information that can be used to
derive properties that will hold under any operating cdondi. They are very valuable in safety-
critical development since they help establishing formergntees about resource availability
(memory and timing).

Stack usage can be analyzed with GNATstadeBIHCO07, an open-source static stack anal-
ysis tool that constructs the full call graph for a given &ilon, annotated with local stack
requirements, and then it extracts its worst-case stadaeusahis information can be used as
evidence of stack overflow avoidance for the certificatiofnigh-integrity and high-reliability
applications.

Timing properties can be analyzed with Chedd&irfIM04], an open-source real-time schedul-
ing tool which verifies task temporal constraints of realdiapplications. It supports state-of-
the-art scheduling policies, such as Rate Monotonic Sdmed(RMS) and Earliest Deadline
First (EDF). When combined with a deterministic and andieaasking model, such as the
Ada 2005 Ravenscar profil& P05, concurrency can be used in a reliable manner in mission-
critical applications.

11 Dynamic analysis

Dynamic analysis technigues get program properties whilaing or simulating the application.
Dynamic memory usage and structural coverage informatiertygically extracted using this
kind of techniques. GNATmenghal is an open-source Ada tool that obtains accurate dynamic
memory usage history. It monitors dynamic allocation aralldeation activity in an executing
program and extracts information about incorrect deationa and possible sources of memory
leaks.

The quality of a testing campaign is usually measured in gesframount of structural cov-
erage achieved. Project Coveragel] will produce a Free Software coverage analysis toolset,
together with the ability to generate artifacts that alldwe tools to be used for safety-critical
software projects undergoing a DO-178B software auditggedor all levels of criticality.

In the context of the French government “Competitive ClisSténitiative to encourage re-
search, a two-years funding was awarded to the project, itiglinas part of the Free Software
thematic group.

The core idea is to analyze coverage from machine-levelutiectraces out of an instru-
mented execution environment such as a target micropracessilator. For common traditional
processors, Qemu¢ni is used for this purpose. Itis a reliable and efficient Fre@ivBare em-
ulator that is being adapted to generate run-time exectitzmes. This allows very flexible non
application-intrusive analysis on final target code withuéattors running on development hosts.
Additionally, coverage analysis can be performed on thealgode that will run in the final
production system.

Proc. OpenCert 2009 8/12

@ ECEASST

Compliance with such certification levels represents agrésting challenge, in particular re-
garding the Modified Condition/Decision Coverage (MC/D@)eria. Additionally, the advan-
tage of doing object-level analysis is that it can be ex#rdidioth object-level and source-level
(with the help of the compiler to allow for mapping source atgject code) coverage informa-
tion. Project Coverage will support, at the object-leveltthbinstruction and branch coverage; at
the source-level, statement, decision, and MC/DC coveaagdysis will be available.

Unit testing, which verifies individual units of source codéll be supported by means of
consolidating the coverage results from different exdalatexercising a given part of the code.
Integration and system testing will also be addressed bybgung the results of successive
executions of a given executable with different input data.

Open-DO software components, as Project Coverage, wileaweith material to demonstrate
that their outcome is dependable, and it will thereforevakiualification of the tools for use in
a certification context, up to the strictest level for DO-B7& opens the open-source concept
to other artifacts than source code. An important goal &f gnoject is to raise awareness and
interest about safety-critical and certification issuethafree libre open-source community.

This tool targets safety-critical development above ait,itis obviously of interest to projects
who want to incorporate a good software practice such asvileation of the quality of their
testing.

Project Coverage is a representative example of toolstieadpen-DO initiative will federate:
tools fulfilling a certification activity (structural covage analysis in this case), and whose soft-
ware components and associated qualification materialodng ¢p be open. Industrial users will
be able to modify it, to adapt it to specific requirements, gmickuse it. This is the open source
philosophy brought to qualification material, and a radgtaft for the high-integrity software
community.

12 Testing

In safety-critical software systems, the testing straisgriven by requirements, and depending
on the level of these requirements, the type of test is differFor high-level requirements, which
are derived from system requirements and system archigechere is integration (functional)
testing. For low-level requirements, which are successfiaements of high-level requirements
so that source code can be directly implemented from theitasting is used.

FitNesse (Framework for Integrated Test#)] js an open-source framework which provides
the capability of easily defining acceptance tests and remtautomatically. It addresses high-
level functional testing, based on the definition of inputd axpected outputs.

There is a well-known family of open-source unit testingnieworks (AUnit pur], JU-
nit [jun], etc.) whose intent is to facilitate test-first developmiey easing writing and running
unit tests. These unit tests are well suited to verify that-llevel requirements are correctly
implemented.

9/12 Volume 20 (2009)

Open-DO: Open Framework for Critical Systems @

13 Build infrastructure

Continuous integration is a software engineering pradgtioghich individual changes are im-
mediately tested and reported on when they are added to ex leogle base, providing rapid
feedback so that defects can be identified and correctedquécily. This practice fits very well
the Lean and Agile development methodologies, which ermgmutesting as early as possible,
and safety-critical development, where there are cleaefjndd requirements which drive the
development and the cost of late detection of problems ig Ivigh.

An example of an open-source light build bot is Savaday][a client-server based application
that can easily interact with configuration managemensttmtrigger new builds when commits
are done.

14 Configuration management

Certification standards like DO-178B require configurativmnagement of all life-cycle artifacts
including requirements, design, code, tests, test resuitsdocumentation.

Version control tools track the history of files. There areyweidespread open-source tools
for that, like Concurrent Versions System (CV8Y{| and its successor Subversisufj. They
are extensively used both in open and proprietary softvearé their flexibility allows for easy
integration with other tools.

Other DO-178B configuration management processes, sudteasfying, controlling and
regenerating the different artifacts, and problem tragkireed to be addressed by Open-DO.

15 Traceability

Traceability is a critical aspect in high-integrity soft@alevelopment which is often addressed
ad hoc by the development teams.

The goal is to be able to trace requirements to models, cedts, ttest results, and coverage
information, at least. Additionally, this end-to-end &ability needs to be extended following a
process-oriented approach, adding workflow support toleahd ordering of activities, alloca-
tion of resources, transition criteria between actividasl inspection of objectives.

The Open-DO initiative would like to address this criticary which is required by safety-
critical standards. The challenge is to create a useful asg-®-use tool but flexible enough to
cover the heterogeneous spectrum of software engineeraugiqe in safety-critical systems.

One of the major open tools to manage traceability is OSE&;wdefines a complete, end-
to-end traceability model among artifacts covering théliig-cycle of the product.

16 Conclusions

The FIOSS community has the potential to extend the openla@went philosophy, which so
far has addressed the source code, to open more than thelcmdéudes opening certification
artifacts, such as qualification material for tools, vaiiolatest suites, etc. It would pave the way
to FIOSS components for critical systems.

Proc. OpenCert 2009 10/12

@ ECEASST

In the other direction, there are quality aspects that adesgdes in safety-critical development
in a very comprehensive and rigorous manner, that would bewaduable to increase quality
in FIOSS. The high-integrity community can share the exgmmé they have in producing code
limiting errors, as much as possible.

The goal of the Open-DO initiative is to create an open edeaysvhere the industrial com-
munity, tool providers, and public institutions can find ymergies to increase the productivity,
and export high-integrity methodologies outside the gadetical arena.

The cooperative Open-DO initiative is the meeting of threelds: open source, Lean/Agile
development, and high assurance certification. The obgeidito implement and improve tools
and methodologies to develop evolvable safety-critichsre.

Open-DO is a call for action, waiting for new ideas to comeoimation about the project
will be posted athttp://www.open-do.org

Bibliography

[ada] AdaControlhttp://www.adalog.fr/adacontrol2.htm

[aun] AUnit, Ada unit testing frameworkttp://libre.adacore.com/aunit

[ccc] CCCC - C and C++ Code Countértip://cccc.sourceforge.net

[cou] Project Coverage: Free Software meets DO-178B.

http://libre.adacore.com/coverage
[cvs] CVS - Concurrent Versions Systehitp://www.nongnu.org/cvs

[DEF97] Ministry of Defence. DEF STAN 00-55: Requirements $afety Related Software
in Defence Equipment. August 1997.

[ecl] Eclipse.http://www.eclipse.org

[Eur03a] European Cooperation for Space StandardizaB@86). ECCS-E-40B Space En-
gineering — Software. November 2003.

[Eur03b] European Cooperation for Space Standardizatit@SS). ECCS-Q-80B Space
Product Assurance — Software Product Assurance. Octolii. 20

[fit] FitNesse (Framework for Integrated Testsitp://fithesse.org

[gee] GCC, the GNU Compiler Collectiomttp://gcc.gnu.org

[gdb] GDB: The GNU Project Debuggehttp://www.gnu.org/software/gdb
[gen] Gene-Autohttp://gforge.enseeiht.fr/projects/geneauto

[gnaa] GNATcheckhttp://www.adacore.com

[gnab] GNATmem: Heap usage monitbittp://www.adacore.com

11/12 Volume 20 (2009)

http://www.open-do.org
http://www.adalog.fr/adacontrol2.htm
http://libre.adacore.com/aunit
http://cccc.sourceforge.net
http://libre.adacore.com/coverage
http://www.nongnu.org/cvs
http://www.eclipse.org
http://fitnesse.org
http://gcc.gnu.org
http://www.gnu.org/software/gdb
http://gforge.enseeiht.fr/projects/geneauto
http://www.adacore.com
http://www.adacore.com

Open-DO: Open Framework for Critical Systems @

[gnac] GNATmetric: The GNAT Metric Toohttp://www.adacore.com
[jun] JUnit. http://www.junit.org

[Mar03] R. C. Martin.Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall, 2003.

[mat] The MathWorkshttp://www.mathworks.com

[MSO05] P. Middleton, J. SuttorL.ean Software Srategies: Proven Techniques for Managers
and Developers. Productivity Press, 2005.

[ope] Open-DOhttp://www.open-do.org
[orm] ORMF (Open Requirements Management Framewditk)://eclipse.org/ormf
[ose] OSEE (Open System Engineering Environmeérith://eclipse.org/osee

[gem] QEMU: Open Source Processor Emulatatp://bellard.org/gemu

[RBHCO7] J. F. Ruiz, E. Botcazou, O. Hainque, C. Comar. Rréng Stack Overflow using
Static Analysis. INDASA 2007 - Data Systems in Aerospace. Naples, Italy, May
2007.

[RTC92] RTCA. RTCA/DO-178B: Software Considerations irrldarne Systems and Equip-
ment Certification. RTCA, December 1992.

[sav] Savadurhttp://repo.or.cz/w/savadur.git
[sci] Scicos.http://scicos.org

[SLNMO04] F. Singhoff, J. Legrand, L. Nana, L. MarcAl. Cheald a Flexible Real Time
Scheduling Framework. Volume 24(4). ACM SIGAda, Deceml4

[sub] Subversionhttp://subversion.tigris.org

[top] TOPCASED (Toolkit in OPen-source for Critical Appditton and SystEms Devel-
opment).http://www.topcased.org

[VZP0O5] T. Vardanega, J. Zamorano, J. A. de la Puente. On tfhmaiic Semantics and the
Timing Behaviour of Ravenscar KerneReal-Time Systems 29(1):1-31, 2005.

Proc. OpenCert 2009 12/12

http://www.adacore.com
http://www.junit.org
http://www.mathworks.com
http://www.open-do.org
http://eclipse.org/ormf
http://eclipse.org/osee
http://bellard.org/qemu
http://repo.or.cz/w/savadur.git
http://scicos.org
http://subversion.tigris.org
http://www.topcased.org

	Introduction
	Certification process
	Tool qualification
	The FlOSS advantage for critical systems
	The Open-DO initiative
	Life-cycle management
	Requirements management
	Modeling
	Software development
	Static analysis
	Dynamic analysis
	Testing
	Build infrastructure
	Configuration management
	Traceability
	Conclusions

