
Electronic Communications of the EASST
Volume 23 (2009)

Proceedings of the
Ninth International Workshop on

Automated Verification of Critical Systems
(AVOCS 2009)

User Interfaces for Theorem Provers: Necessary Nuisance or
Unexplored Potential?

Christoph Lüth

8 pages

Guest Editor: Markus Roggenbach
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

User Interfaces for Theorem Provers: Necessary Nuisance or
Unexplored Potential?

Christoph Lüth

Deutsches Forschungszentrum für Künstliche Intelligenz, Bremen

Abstract: This note considers the design of user interfaces for interactive theorem
provers. The basic rules of interface design are reviewed, and their applicability to
theorem provers is discussed, leading to considerations about the particular chal-
lenges of interface design for theorem provers. A short overview and classification
of existing interfaces is given, followed by suggestions of possible future work in
the area.

Keywords: user interfaces, theorem provers, interactive theorem proving

1 Introduction

Theorem provers need to be interactive, and interactive theorem provers need user interfaces.
The first part of this statement may sound controversial, but even fully automatic theorem provers
need a way to state the proposition to be proven, and the fact of the matter is that any non-trivial
proof, be it about program verification, formalised mathematics, or any other application do-
main, will have to have be conducted with human interaction. So user interfaces are a necessary
nuisance, but do they offer more potential?

For most theorem provers, user interfaces have been something of an afterthought in the be-
ginning — understandably so, as developing the core technology was enough of a challenge.
With the advances of this technology over the recent years, theorem proving has come of age.
The use of theorem proving has spread beyond its previous confines, from case studies to real
applications (e.g. in mathematics, software or hardware verification), and with new users the
need for better interfaces arises.

In this note, we consider interactive theorem provers (the best known examples of which are,
in no particular order, Coq, HOL, HOL light, Isabelle, and PVS), which read proof scripts con-
taining definitions, declarations, theorems and prover-specific commands. These proof scripts
are the central artefacts under construction; supporting the user to interactively construct them
should be the main purpose of the user interface. Even though phrased in terms of theorem prov-
ing, the discussion also pertains to interactive formal method tools; we come back to this in the
conclusions.

We first consider criteria for a good user interface for theorem provers, and then review ex-
isting interfaces and their strengths and weaknesses. From this, we point out some directions of
future research, and conclude with the major challenges and a résumé.

1 / 8 Volume 23 (2009)



User Interfaces for Theorem Provers

(i) Strive for consistency.
(ii) Cater to universal usability.

(iii) Offer informative feedback.
(iv) Design dialogs to yield closure.
(v) Prevent errors.

(vi) Permit easy reversal of actions.
(vii) Support internal locus of control.

(viii) Reduce short-term memory load.

Figure 1: The ‘Eight Golden Rules’ of interface design. Taken from [SP09, p. 88f].

2 What makes a Good User Interface?

2.1 General Criteria

Figure 1 shows the ‘golden rules’ of interface design according to Shneiderman [SP09] (other
authors give similar guidelines). They are all relevant for interactive theorem proving, but some
rules particularly so: the sixth, because interactive theorem proving by its very nature is an
explorative process, so it is important to be able to try and undo proof steps; the eighth, alluding
to the seven (plus or minus two) chunks of information that can be held in short-term memory,
because theorem provers can actually offer a lot of information to the user, and the problem is to
avoid overwhelming the user; and the second, because users will range from experts who know
exactly what they want and how to achieve it and might prefer a programmable command line
interface, to complete novices who need every help they can get, and prefer syntax-free interface
elements such as menus.

On the other hand, the seventh rule should be taken with a grain of salt. It means that it should
be easy to get the system to do what the user wants to achieve, which in a theorem prover means
proving propositions. Unfortunately, keeping the user from proving wrong propositions is the
core of interactive theorem proving, and the resulting frustrations are par for the course (and
cannot be blamed on the interface). Showing why a particular action does not work, on the other
hand, is an important task of the interface, so the rule should be read in this sense.

2.2 Challenges in User Interfaces for Theorem Provers

Theorem provers are special programs, and designing a good interface for them offers special
challenges. The first difficulty is that theorems or proofs are abstract in the sense that they have no
physical counterpart. Hence, syntax plays a central rôle in theorem proving (and mathematics),
because this is what is being manipulated. The capability to read and write proofs in a notation
which is close to what users are used to from text books cannot be overstated, because it eases
the cognitive load on the user considerably.

Secondly, theorem proving is very hard, and proof scripts are very abstract in the sense that
they condense much information; they cannot be manipulated as conveniently as e.g. source
code. In particular, the high degree of interdependency tends to make proof scripts brittle, so
changing them in one place may lead to unexpected failure elsewhere, which makes changing

Proc. AVOCS 2009 2 / 8



ECEASST

and maintaining larger proofs very frustrating.
Thirdly, theorem provers potentially offer a lot of information: the proof state can become

very large, the amount of rules, theorems, proof procedures known to the system can run into
thousands, etc. It is important not to overwhelm the user, but it is even as important (and more
challenging to implement) to allow the user to query the system interactively, preferably at dif-
ferent levels of abstraction, depending on the user’s proficiency.

The most important consequence of these considerations is that user interface and theorem
prover need to interact closely, with control flow going in both directions; interface design for
theorem prover is more than ‘bolting a bit of Tcl/Tk onto a text-command-driven existing prover
in an afternoon’s work’ [BS98].

3 A Review of User Interfaces Past and Present

3.1 The Early Days

In the early days, interactive theorem provers were used from the command line. Users wrote a
proof script which they fed to the prover, and the prover would check it; the interaction was in
batch mode, very much like a with a compiler. Although today this modus operandi would be
considered unproductive, it was standard practice back then. Moreover, the interactive theorem
proving community has never been large, and subsequently resources to develop user interfaces
have always been scarce (comprised to no small part of postgraduate students struggling to pro-
duce a thesis under the limitations of the prevailing user interfaces, and gratefully finding some
justifiable diversion from their thesis work).

3.2 Emacs and Proof General

Under these limitations, the Emacs editor, which allows for comfortable and flexible customi-
sation using the Lisp dialect it is written in, offered an excellent platform, and soon specialised
Emacs modes for many of the popular provers appeared. After a while, it became clear that
many provers shared a similar interaction mode, and maintaining each of them separately was an
unnecessary burden. The Proof General project [Asp00] in Edinburgh consolidates the different
Emacs interfaces for Isabelle, Lego and others into one Emacs package which can be instantiated
to the different provers.

Proof General found widespread use and is the most popular interface implementing the idea
of script management introduced in [BT98], where the proof script is treated as a sequence of
commands, which are processed in a linear fashion. This divides the script in three regions,
one of which has already been processed, one of which is currently being processed, and one
of which is unprocessed. Once a region has been processed, it can not be edited anymore. A
simple undo function allows the user to go back in the proof. This idea is strikingly simple and
powerful; it is cheap to implement on the prover’s side, and on the other hand offers a flexible
way to add more functionality in the user interface (e.g. a ‘go to here’ button, which performs
forward or backward steps as required).

3 / 8 Volume 23 (2009)



User Interfaces for Theorem Provers

3.3 Integrated Development Environments

An integrated development environment (IDE) offers a tight integration of source code editor,
compiler, debugger, documentation browser, and other tools. SmallTalk was the first language
to come with an IDE, and they became really popular with Borland’s Turbo-Pascal. With the
similarities between theorem proving and software development (in both, the object of interest
— source code and proof script respectively — is processed by an external tool — compiler or
theorem prover), it seems tempting to construct an IDE for theorem proving [TBK92]. Early
attempts include CtCoq and PCoq [ABPR01]. These attempts have been hampered by the fact
that the integration between a theorem prover and its interface needs to be far closer than between
a compiler and a source-code editor, and that in particular maintaining an IDE is a substantial
task — many of these efforts fall out of use because the underlying prover changes and is no
longer compatible with the interface, or because they were built using an interface toolkit which
has fallen out of use. Recently, more powerful toolkits made it easier to create IDEs, such as the
CoqIDE created using GTK+, but this is still the exception rather than the rule.

3.4 Graphical User Interfaces

Graphical user interfaces (GUIs) entered the scene as early as the 70s with the Xerox Star system.
The methodology behind graphical user interfaces is direct interaction: all objects of interest are
represented continuously and graphically, preferably using an understandable metaphor, and can
be manipulated with syntax-free operations on this representation, such as pointing at them,
moving them, or causing interaction by dropping them onto other objects.

Finding such a metaphor for theorem provers is a challenge, since the objects in a theorem
prover are abstract, and it is far from clear how their manipulation can be modelled by intuitive
gestures, although attempts have been made [LW99]. The Jape system was a pioneering effort
[BS99]; it was designed to be a ‘quiet interface’, meaning it would only show as little as needed
and not as much as possible (which as pointed out above is good interface design practice), and
uses gestures to select proof steps.

3.5 Document-Centered Approaches

The PVS system has developed a closer interaction model with the Emacs editor then the other
systems mentioned in Sect. 3.2. The user is essentially editing an interactive document in the
editor’s buffer, with the prover checking the semantic integrity in the background. This is the
so-called document-centered approach, where the focus of attention is the proof script itself, and
how to edit it, rather than it being processed by a prover. It works best with a style of proof
scripts which is not a simple sequence of state-affecting prover commands, but where the proof
script represents the proof itself, e.g. by stating a sequence of transformations or intermediate
goals. The Mizar prover pioneered this approach [T+73], and Isar brought it to the Isabelle
system [Wen99]. Taking this idea one step further is the Plato system [WAB06], which uses
the Texmacs editor to provide WYSIWYG editing of mathematical documents in a LATEX-like
language with high quality typesetting, while the proofs are checked by the Omega-prover in the
background.

Proc. AVOCS 2009 4 / 8



ECEASST

4 The Future of User Interfaces

What have the interfaces introduced in the last chapter achieved? Without wishing to denigrate
the efforts of the researchers involved, there is still a lot of room for improvement. What we
can take from the existing interfaces is that as Proof General shows, it is good to be generic.
Hardly any theorem prover has a large enough developer base to develop its own interface, but
by sharing the effort across different provers we can achieve something. Genericity is also good
because it helps to make the connection between interface and prover clear; e.g. the interaction
protocol for Proof General was made explicit in the PGIP protocol [ALW07]. It is also important
to note that the success of a prover hinges mainly on its expressiveness and proof support; in the
past, users have always preferred a powerful prover with an Emacs interface over a less powerful
prover with a slick GUI, even if the latter is easier to use. The aim must be, then, to provide
existing powerful provers with better interfaces.

4.1 Modern IDEs

Early attempts to develop IDEs for theorem proving have been mentioned above. With modern
IDEs such as Eclipse and NetBeans which are specifically designed to be generic, the situa-
tion has improved, and it is tempting to instantiate e.g. Eclipse as a theorem proving interface
[ALWF06]. However, Eclipse is not exactly light-weight, and a major disadvantage of most
IDEs is that they do not support mathematical notation well.

Particularly appealing in Eclipse is its incremental document processing. That is, there is no
explicit ‘process this document’ step, rather the prover (or compiler) continuously processes as
much of the document as possible in the background, flagging up errors as they occur. This asyn-
chronous mode of interaction makes good use of the time the user spends thinking, increasing
overall responsiveness of the system.

4.2 Emerging Technologies

The most drastic change in interface technology over the last years has possibly been the rise of
web-based technologies. The technique known as AJAX (asynchronous Java script and XML)
has taken web-based interfaces from filling in forms to fully interactive graphical user interfaces,
and in future the distinction between local (desktop-based) and remote (web-based) interfaces
will probably be blurred even further. These technologies can play a rôle in theorem proving
too, as they allow easy cross-platform access to a theorem prover without having to install it
locally, often a daunting task for the novice. An impressive first step here is Kaliszyk’s ProofWeb
[Kal07].

4.3 Interaction Models

There have been various attempts to adapt more intuitive interaction models like gestures into
theorem proving interfaces, like in Jape or Coq (‘proof-by-pointing’ [BKS97]). It seems tempt-
ing to allow the user to rearrange formulae by drag-and-drop, going beyond what pen-and-paper
mathematics allows us to do. However, this has to be reconciliated with the fact that the main
artefact of a theorem prover is the proof script; a proof consisting of a series of gestures is not

5 / 8 Volume 23 (2009)



User Interfaces for Theorem Provers

really useful. Thus, gestures should be seen as a way to create proof scripts. Users indicate that
they wish to perform induction on x, or exchange the two arguments of + (and this can be done
either via drag-and-drop gestures, a menu button, or even more exotic means), the prover returns
a new proof script fragment, which the interface inserts into the proof script. The challenge is
to provide a uniform interaction protocol which works reliably across different provers (a first
attempt has been made in [ALW06]).

4.4 Foundations

Interfaces have mostly been seen in technological terms. This is understandable, because tech-
nology delivers to the user, but the theoretical foundations of user interfaces have not received
much attention. An exception is Denney’s work [DPT05], which introduced the notion of hier-
archical proofs, and operations such as zooming into a proof, on a purely semantics-free level.
This allows interfaces to implement operations on this level, separating the purely syntactic ma-
nipulation which can be done in the interface from the semantic manipulations in the theorem
prover.

5 Conclusions

We have highlighted the challenges in constructing interfaces for theorem provers, reviewed
existing interfaces, and pointed out some directions of future research. All of this is necessarily
subjective, so the author is grateful for any omissions pointed out to him. The discussion here has
been phrased in terms of interactive theorem provers, but applies equally well to formal methods
tools; the key difference between formal method tools and theorem provers is that because formal
method tools typically have a more singular purpose (e.g. proofs in a particular notation or of
particular properties), users and their level of proficiency will be less diverse, but the points about
consistent notation and genericity are equally valid.

As a closing summary, the key technical challenges in the author’s estimate are the compre-
hensive support of mathematical notation (maybe standard vector graphics formats such as SVG
can offer a solution here), and a clear standard protocol for theorem provers to interact with user
interfaces. PGIP was a first start in this direction, but possibly it is oriented too much towards
script management; a recent new version [AALW09] aims to rectify this shortcoming.

The overall challenge in user interfaces is to leverage the underlying technology to an extent
which makes it easier to do proofs in a computer than with pen and paper. Presently, this is not
the case. Theorem provers tend to get in the way more often than they are helpful, and even
though that is in part their duty as proof checkers, the preferable rôle model of a theorem prover
should be that of a helpful co-author gently pointing out errors and suggesting improvements,
rather than a stubborn civil servant refusing to accept the blindingly obvious because of some
formality. In good part, this an interface issue, and hence the author’s answer to the initial
question is that there is definitely unexplored potential, waiting to be developed by enterprising
minds.

Acknowledgements: Research in part supported by the German Research Agency (DFG) un-
der grant LU 707-2/2.

Proc. AVOCS 2009 6 / 8



ECEASST

Bibliography

[AALW09] D. Aspinall, S. Autexier, C. Lüth, M. Wagner. Towards Merging PlatΩ and PGIP.
In Proc. 8th International Workshop on User Interfaces for Theorem Provers (UITP
2008). Electronic Notes in Theoretical Computer Science 226, pp. 3– 21. Elsevier
Science, 2009.

[ABPR01] A. Amerkad, Y. Bertot, L. Pottier, L. Rideau. Mathematics and Proof Presentation
in PCOQ. In Proof Transformations, Proof Presentations and Complexity of Proofs
(PTP’01), Sienna, Italy. 2001. also available as INRIA RR-4313.

[ALW06] D. Aspinall, C. Lüth, B. Wolff. Assisted Proof Document Authoring. In Kohlhase
(ed.), Mathematical Knowledge Management MKM 2005. Lecture Notes in Artifi-
cial Intelligence 3863, pp. 65– 80. Springer, 2006.

[ALW07] D. Aspinall, C. Lüth, D. Winterstein. A Framework for Interactive Proof. In Mathe-
matical Knowledge Management MKM 2007. LNAI 4573, pp. 161– 175. Springer,
2007.

[ALWF06] D. Aspinall, C. Lüth, D. Winterstein, A. Fayyaz. Proof General in Eclipse. In Eclipse
Technology eXchange ETX’06. ACM Press, 2006.

[Asp00] D. Aspinall. Proof General: A Generic Tool for Proof Development. In Graf and
Schwartzbach (eds.), Tools and Algorithms for the Construction and Analysis of
Systems. Lecture Notes in Computer Science 1785, pp. 38–42. Springer, 2000.

[BKS97] Y. Bertot, T. Kleymann, D. Sequeira. Implementing Proof by Pointing without
a Structure Editor. Technical report ECS-LFCS-97-368, University of Edinburgh,
1997. Also published as Rapport de recherche de l’INRIA Sophia Antipolis RR-
3286.

[BS98] R. Bornat, B. Sufrin. Using gestures to disambiguate unification. In User Interfaces
for Theorem Provers UITP’98. 1998.

[BS99] R. Bornat, B. Sufrin. A minimal graphical user interface for the Jape proof calcula-
tor. Formal Aspects of Computing 11(3):244– 271, 1999.

[BT98] Y. Bertot, L. Théry. A generic approach to building user interfaces for theorem
provers. Journal of Symbolic Computation 25(7):161–194, Feb. 1998.

[DPT05] E. Denney, J. Power, K. Tourlas. Hiproofs: A hierarchical notion of proof tree.
In Proceedings of Mathematical Foundations of Programing Semantics (MFPS).
Electronic Notes in Theoretical Computer Science (ENTCS). Elsevier, 2005.

[Kal07] C. Kaliszyk. Web Interfaces for Proof Assistants. In Autexier and Benzmüller (eds.),
Proc. User Interfaces for Theorem Provers (UITP’06). ENTCS 174(2), pp. 49–61.
2007.

7 / 8 Volume 23 (2009)



User Interfaces for Theorem Provers

[LW99] C. Lüth, B. Wolff. Functional Design and Implementation of Graphical User In-
terfaces for Theorem Provers. Journal of Functional Programming 9(2):167– 189,
Mar. 1999.

[SP09] B. Shneiderman, C. Plaisant. Designing the User Interface. Addison-Wesley, 5th
edition, 2009.

[T+73] A. Trybulec et al. The Mizar Project. 1973. See web page hosted at http://mizar.org,
University of Bialystok, Poland.

[TBK92] L. Théry, Y. Bertot, G. Kahn. Real theorem provers deserve real user-interfaces.
SIGSOFT Softw. Eng. Notes 17(5):120–129, 1992.

[WAB06] M. Wagner, S. Autexier, C. Benzmüller. PLATΩ: A Mediator between Text-Editors
and Proof Assistance Systems. In Autexier and Benzmüller (eds.), 7th Workshop on
User Interfaces for Theorem Provers (UITP’06). ENTCS. Elsevier, 2006.

[Wen99] M. Wenzel. Isar — a Generic Interpretative Approach to Readable Formal Proof
Documents. In Bertot et al. (eds.), Theorem Proving in Higher Order Logics
TPHOLs’99. Lecture Notes in Computer Science 1690, pp. 167– 184. Springer,
1999.

Proc. AVOCS 2009 8 / 8

http://mizar.org

	Introduction
	What makes a Good User Interface?
	General Criteria
	Challenges in User Interfaces for Theorem Provers

	A Review of User Interfaces Past and Present
	The Early Days
	Emacs and Proof General
	Integrated Development Environments
	Graphical User Interfaces
	Document-Centered Approaches

	The Future of User Interfaces
	Modern IDEs
	Emerging Technologies
	Interaction Models
	Foundations

	Conclusions

