Electronic Communications of the EASST

Volume 23 (2009)

Proceedings of the
Ninth International Workshop on
Automated Verification of Critical Systems
(AVOCS 2009)

Towards SMV Model Checking ofiISNAL (multi-clocked)
Specifications

Julio C. Peralta and Thierry Gautier

15 pages

Guest Editor: Markus Roggenbach

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Towards SMV Model Checking of SIGNAL (multi-clocked)
Specifications

Julio C. Peralta and Thierry Gautier

IRISA-INRIA, Centre Rennes-Bretagne Atlantique, 350421fRes cedex, France
Julio.Peralta@inria.fr Thierry.Gautier@inria.fr

Abstract: SIGNAL is a high-level data-flow specification language that eguall
allows multi-clocked descriptions as well as single-cltlones. It has a formal se-
mantics and is supported by several formal tools for sinarfend static validation.
This generality renders it useful for various specificatisimulation, and verifica-
tion tasks in embedded system design. SMV, in turn, is a lagguand model
checker where synchronous models are single-clocked byititeii. Roughly, we
use standard techniques to describe clocks by Boolearblesjavith the advantage
that the number of such variables is kept to a minimum thraugftatic analysis pro-
vided by the 86NAL compiler. In particular, we propose a translation from gugs
multi-clocked SGNAL specifications into SMV specifications for their correspond
ing verification by model checking.

Keywords: Synchronous programs, Multiple-clocks, SMV, Model chagki

1 Introduction

The increasing complexity of embedded systems and the asstxiated with failures in their

engineering and operation demand for models and tools tizdlie safe design and formal vali-
dation. In the past years, system design based osytihronous mod@BB91] has attracted the

attention of many academic and industrial actors. Thisdigna consists in abstracting the non-
functional implementation details of a system, thus fastea focused reasoning on the logic
behind the instants at which the system functionalitiesikhbe secured. A benefit of designing
with languages based on the synchronous model (esgegEL [BG97, LUSTRE[HCRP9],

or SGNAL [LTLO3])) is the availability of associated verification tools.

Among synchronous languages, a salient featurel®@N&L is the notion ofpolychrony the
capability to describe systems in which components may tifezent clock rates. This expres-
sivity coupled with its (compiler) ability to statically ayhesize schedules (reasoning about the
logic behind the source clock constraints) allows to emd@@mplex systems that arise in the
form of GALS (globally-asynchronous locally-synchronous) or (logséme-triggered architec-
tures, and thus renders the model checking of such spefisdtighly attractive.

SMV, inturn, is a language and model checker where syncluonwdels are single-clocked
by definition. However, this apparent constraint does nevgmt us from describing and veri-
fying SIGNAL multi-clocked specifications as we demonstrate here. Iarawdescribe multi-
clocked computations using a single-clocked framework seesiandard techniques to describe
clocks by Boolean variable8BG"00], with the advantage that the number of such variables is

1/15 Volume 23 (2009)

mailto:Julio.Peralta@inria.fr
mailto:Thierry.Gautier@inria.fr

Model Checking SIGNAL @

kept to a minimum through a static analysis provided by th@N&L compiler. Such analysis
produces a hierarchy of clocks (ordered by set inclusionizhvts useful to avoid proliferation
of SMV state variables.

The paper presents in Secti@rsyntactic and semantic highlights of our soureeL pro-
grams and the target SMV programs. SecBoim turn, describes a generic SMV translation for
each $GNAL kernel operator. Then in Sectighwe provide examples of translations for (pos-
sibly multi-clocked) $GNAL specifications and show the use of the®aL compiler analysis
to reduce the number of SMV state variables. The behavidutedranslated examples will be
examined in Sectioh by model checking with SMV itself. Next, in Secti@some elements for
comparison with related work on model checking for othericéyanous languages are presented.
Finally, some concluding remarks and pointers for futureknase given in Sectiof.

2 SIGNAL and SMV: Syntax and semantics

In this section we introduce tha@&vAL kernel language and a subset of the SMV language used
for our translation, as well as highlights of each languagaantics.

2.1 SIGNAL kernel

SIGNAL is a data-flow relational language that relies on the poltyobus modell[TLO3, BGLOS§].

It handles possibly infinite sequences of typed valuesdailgnals A signalx is implicitly in-
dexed by discrete time, thus denoting the sequeqiagheret € H, H C N. At any instant
(arbitraryt € N) a signal may b@resent at which point it holds a value, @bsent There is no
actual value associated with a signal when it is absent, byrast with the instants when it is
present. The instants of absence of a signal are denotedheitspecial symbal_, in the se-
mantics. Signals may be of standard types, e.g. Booleageéntreal, etc. Additionally, there is
a particular type of signal calleevent . A signal of this type is alwaysue when it is present.
The set of instants (index skt above) where a signal is present represents itdock noted

X (which implicitly denotes a signal afvent type). Aprocesss a system of equations (also
called elementary processes) over signals that specifesores between values and clocks of
the signals. Aprogramis a process. ISNAL relies on a few primitive constructs that define
elementary processdsom which bigger processes may be built. Next the definibérour
elementary processes and two other constructs to buildebiggcesses, and to mask signals,
respectively.

def
e Function.y:= f(x1,...,xn) = X # L& . exn#Lsy = f(Xy,..,xn)

d
e Delay.y:= x $ 1 init c zefxt £Zleow#ALle[t>0Ay=x A k=maxXt’|
' <t Axe#L}) VvV (t=0 Ay =c)]; (c is acompile time constant).

def
e Undersamplingy:= x when b (whereb is Boolean)ze Vi = X if by =true,
elsey; = L ; (observe that expressign= when b is equivalentto:= b when b).

_ def .
e Deterministic mergez:= x default y = z=xif % # L, elsez =v;.

Proc. AVOCS 2009 2/15

@ ECEASST

Table 1: Clock relations for primitives.

construct clock relations
y = f(x1,...,xn) y=X=..=%
y:= x$1 initc y=X
_ 37A:>‘<ﬂ[b].
y:= xwhen b b U[-b] = band[b] N [~b] = 0
z = xdefault y z=xXUy

def

e Parallel CompositionP1|P2 = union of equations oP1 andP2.
def

e Hiding. P where x = x is local to the procesB.

Derived operators are defined using the primitive operabis/e. For instance, synchro-
nizationequationx "= y specifies thak andy have the same clock. Moreover, the equation
X "=y "+ z asserts that the clock &fis the union of the clocks of and that ofz. A mem-
ory: y = x cell b init yO allows to memorize ity the latest value carried bywhen
X is present or wheb is true. Processes can be abstracted and declared, in a standaroyway
explicitly designating their input and output signals (meing their declarations witt?* and
“1" respectively), with the sole constraint that the desigdanput signals cannot be defined
(i.e. occur in the lhs of &= symbol) inside such a process.

2.2 Static analysis ofSIGNAL specifications

In order to assess the consistency of the clock relatiorecded with a program, and to orga-
nize the control of such a program, the compiler synthesiodsck hierarchy{ABL95, BGLO§].
A clock k; is said to be greater than a clokkif k is included ink; in terms of sets of instants.

Table 1 shows theclock relationsimplicit in each primitive construct of ISNAL. For the
undersampling construct, the clock of the Boolean signial partitioned intab] and[-b]. The
sub-clock[b] (resp. [-b]) denotes the set of instants where the Boolean exprebsi®present
andtrue (resp. false. Clock relations are automatically added and (possibiwy melations
between clocks are inferred by the compiler from any prograrne analyzed. For a program
P = Py...|JP 4, its resulting relations between clocks are the result @iyapg the clock
calculus on the conjunction of the clock relations assediatith the sub-process&s, k € 1..n.

Theclock calculusfABL94], in turn, seeks the greatest clock in the program, cathedter
clock from which all other clocks in the program can be extractéul.this case, the clock
hierarchy is a tree. Nonetheless, in some programs, sucigaeumaster clock may not exist.
In this latter case, there are several local master cloafstenclock hierarchy is a forest. Note,
however, that the root of a tree may not correspond with thekobf an input signal.

A program in which the clock hierarchy is a treeeisdochronousSuch a program can be run
in an autonomous way (its master clock plays the role of awaiizin clock). Otherwise, the
program needs extra information from its environment toulsein a deterministic way.

The automatic code generation, for an endochronous progedies on the synthesized clock

3/15 Volume 23 (2009)

Model Checking SIGNAL @

SMVpgr — ModuleMain | ModuleStmt SMVpgr AssignStmt — ¢ | Ihs:= rhs; AssignStmt
ModuleStmt — MODULE id[(IdList)] InvarStmt — ¢ | s_.boolLexp
VARVarDclLst lhs — init(id) | id | next(id)
ASSIGNAssignStmt rhs — cnstexp | setexp | caseexp
INVAR InvarStmt caseexp — case casesesac;
VarDclLst — € | id: Type; VarDclLst cases — 1: rhs; | boolLexp: rhs; cases

Figure 1: Subset of SMV language.

hierarchy. Each clock is represented by a Boolean varidigiel¢anization stageBBG"00])
which is true when the clock is present, and false othervwise every signal, its value is mean-
ingful (under a multi-clock interpretation) when the Baaherepresenting its clock has the value
true. This allows to organize the control of the applicafioifowing the clock hierarchy.

2.3 SMV: A subset

For our translation purposes we use only a subset of the SMyukege. We present such a
subset using the syntax of SMV that is compatible with theghrersionsiicM01, McM99,
CCJ05] of the language currently available on the web (SMV frompENCE, SMV from
CARNEGIE-MELLON UNIVERSITY, and NUSMV). We identify the following syntax with the
oldest McMO1] of the three versions.

Syntax

Our SMV programs will consist of modules with parameters;egit for the reserved module
main . Module declarations may not be nested. Each module has e, r{@ossibly) a list of
parameter names, and at most three sections: a sectionriableadeclarations and/or mod-
ule instantiation, marked at the beginning by W&Rreserved word; a section describing the
variable values (initial, current or next instant), inide by theASSIGN keyword; and, a sec-
tion describing invariants between the variables of therrefl module, and whose beginning is
marked by the reserved wottlVAR. DEFINE, FAIRNESSand SPECsections are not con-
sidered for the moment, but their use will be motivated whenpresent translation examples
(Sect.4), and some verification (Sed) on them.

Figurel depicts the grammar of our subset of SMV. The possible ty¥ppd of an identifier
(id)isinteger (orintervals thereoflpoolean , enumerated, or the name of another module;
in this last case the identifier is used to refer to an instaifitiee referred module, and appropriate
expressions should be given as parameters for the intendeghce. Access to members of a
module instance is through a dot notation (icevar _id).

An expression of an invariant is of type Boolean and may owlytain module variables in
its present form (i.e. no use ofit or next operators are allowed). The right-hand-side of
an assignmentlis), for the case of a constant expressionstexp), is a valid expression (e.qg.
containing arithmetic, Boolean or comparison operatosi)giany of the possible type values
for a correct typing of the identifier in the left-hand-sideright-hand-side, for the case of a set
expressiongetexp, uses curly braces to extensively list the elements (sép@diby commas) of
the desired set. Operations on sets are union and test of ensinin

Proc. AVOCS 2009 4/15

@ ECEASST

VAR
f, h x, h .y: boolean; VAR
ASSIGN hx, h .y, h _b: boolean;
initly) = C; ASSIGN
next(y) := case initly) = x;
f & nextth x) : x; next(y) := case
1: vy next(h) : next(x);
esac; 1y
init(f) := h X; esac;
next(f) = f | next(h x); INVAR
INVAR (hy <> (h x & hlb & b))
(hy <> h x)
@y = x$1 init C inSMV (b)y = x when b inSMV
Figure 2: Function and undersampling operators in SMV
Semantics

Assignments for the first value (signaled by the usenif keyword on thdhs) of a program
variable are only executed in the first instant of prograntetien, whereas assignments for the
next instant are executed to obtain the value of the designatéabl@ starting from the second
instant. Assignments with no occurrencesimf or next in their lhs are executed at all
instants. The order in which assignments are executedes @iy the data dependencies existing
between the variables occurring in the right-hand-sideélefssignments to execute (among all
assignments of a program including those added by procssmiration). The rule that dictates
the (partial) order of assignment execution says that abkriis first assigned before its value
is used in a right-hand-side evaluation. Invariants defpusgibly) extra relations/constraints
to those already imposed by the assignments, thus limitiegvalid executions of the source
program to those where the invariant expressions hold.

3 From SIGNAL to SMV

Let us now describe a possible translation from simple égusiin the $GNAL kernel, to SMV
module fragments. We will assume, for simplicity of expiosi that there is only one kernel
operator per equation. Also, the translation for each sucin&. source equation is an SMV
program fragment where variable declarations will be adifivhenever possible) to allow for a
greater translation generality, provided that their ti@ien depends on whether they are input,
output or local in the presence of multipleGBIAL processes. Roughly, the translation has an
SMYV variable to carry the value of each source signal, as a®la Boolean SMV variable
to denote its clock. An instant of an SMV execution corresfsoio an instant of &NAL
execution. The multi-clock reading of an SMV generated mogcomes from reading pairs of
SMYV variables: one denoting its clock and another carryiagalue (if any).

Delay See SMV translation in Figurg(a). Variablesh_x, h_y, andf were added by the
translation. The first two represent the clockxondy respectively, while the last variable is

5/15 Volume 23 (2009)

Model Checking SIGNAL @

VAR
hx, h _y, h _z. boolean; VAR
ASSIGN
init(z) := case hx, h .y, h _zz boolean;
” ASSIGN
hx X% init(z) = f(x,y);
1.y, ’)

. next(z) := case
esac;

next(z) := case
next(h x): next(x);
next(h _y): next(y);
1. z
esac;

next(h _z): next(f(x,y));
1. z
esac;
INVAR
(hz <>hx) & (h x <> h.y)

INVAR
(hz <> (h x | hy)

(@) z := x default y in SMV (b) z = T0xy) in SMV

Figure 3: Merge and function operators

used to detect the first instant of sigmalThe guard labeled with in thecase statement is the
default choice if none of the offered options holds. It is ortgnt to note here that the previous
value ofx should be kept (in its SMV definition, not shown here) in cdse absent (typically
the default case in mext assignment) since thisi&AL operator will refer to the previous
value in SGNAL semantics, which is not necessarily that of SMV. Also, n&eetihat the value
of y is kept in case its first instant does not coincide with tha®bfV. Variablef is needed to
detect the first instant of (or x since they are synchronous).

For the SGNAL kernel operators that follow we decided to keep the previalse of the de-
fined variable, considering a general schema of translabiainin some particular occurrences of
such operators we may not need to keep the value. The usdgiiragnts that keep the value by
default, allows for stuttering steps in our translationuadamental property if compositionality
is desired.

Undersampling The SMYV translation is depicted in Figugéb). Here we (potentially) need
three clocks, one for each signal. Ting definition fixes the value to that of disregarding
clock h_y. This is correct, however, becausehify holds in the first instant then the value is
correct, and if it doesn’t then the value is not importantistiny value is valid in this last case.

Merge Figure 3(a) depicts the translation into SMV. Here, as above, we hawsetlclock)
SMV variables. Once again, the initial assignment definifiar the default case (labeled with
1) appears arbitrary; it is justified, however, with a simil@asoning as that used for the under-
sampling operator above.

Function Refer to Figure3(b) for the SMV translation. The reason for the initial instant
assignment is similar to that used for thlben operator above. Whether the output is present or
not, the chosen value will be good.

Proc. AVOCS 2009 6/15

@ ECEASST

3.1 Improving the translation into SMV

So far we have proposed an intuitively correct translatimmf SGNAL elementary processes
into SMV modules. We anticipate/conjecture that this tiaien is correct given the straightfor-
ward coding style of data-flow and clock constraints into SEBgign statements and invariants.
Nonetheless, scalability is another desirable featurethifoaim we would like to reduce the
number of SMV (state) variables introduced by our transfgtsince the number of such vari-
ables may (sometimes) render the state space exponefigdfgr. The natural candidates for
elimination are the clock variables, and perhaps also th& S&fiables corresponding to signal
source variables.

In order to avoid state variables in the translation theeeatould know that SMV allows to
define a variable as a function of other variables withoutube ofnext orinit operators.
That is, such assignments may only refer to the presentvaluether SMV variables. In order
to identify such variable definitions SMV provides a sectiamedDEFINE. Roughly, uses of
the variables so defined are replaced by their definition $pasing some state variables.

Atfirst sight, we may think that there is no need to introduegesvariables for signals defined
through operatowhen, or default , orfunction , since they all refer to values in the same
instant. It would be tempting to replace them by their edentin theDEFINE section, and
thus their values would be arbitrary when absent. Howeliex replacement would be incorrect
when the values they define are referenced througlca& delay operator. Recall that the
clock of a SGNAL variable coincides with the instants of the associated SN@I&an variable
when it has valugrue , which isnot necessarilyhe previous SMV instant. Consequently, for
those $GNAL elementary processes using kernel operateen, default , orfunction that
do not define a value used in a delay operator, one may repglacBMV translation proposed
above by one referring to present values in the correspgrioliEFINE section.

For the SMV (clock) variables introduced we propose to hanesiate SMV variable per tree
root in the forest constructed (during clock calculus) by 8\GNAL compiler. The remaining
SMV (clock) variables will be assigned in tBEFINE section. Itis important to note here a shift
in the translation. So far we translated clock relations @sl®n formulas in thtNVAR section
by pure constraint reasoning. Replacing such constraiitts agsignments (in th®EFINE
section) renders the constrairitgictional In summary, SMV variables that represent source
SIGNAL clocks and are associated with an internal node in one oféles found by the IBNAL
compiler may be translated using assignments in the camelipg SMV DEFINE section. In
addition, the number of clock variables may be reduced hygusihe variable per synchronous
equivalence class found by the compiler, as well as by eétion of those clocks (variables)
found to be empty.

4 Translation examples

In the following we will provide examples of sourcaGlAL specifications and their transla-
tion into SMV. Such 8NAL examples will make part of a bigger specification descritang
communication protocol for loosely time-triggered arehttires BCL02].

7115 Volume 23 (2009)

Model Checking SIGNAL @

4.1 A one-placerFiFo

Consider a one-placaFo in SIGNAL, fifo _1 in Figure4(a). Its content is the last value writ-
ten into it. The output (signalx) may only be read/retrieved after at least one instant theds
entered. The number of instants between a write and a readntr@ase non-deterministically.
Each such instant is given by the (internal) clock of the ll@@olean signab (interleave
process). Before translating into SMV we will give thi®s _1 program to the &NAL com-
piler so that the hierarchy of clocks becomes evident asagaither optimisations applied by the
compiler. For this program the compiler produces theNa\L program depicted in Figuré(b).
The hierarchy of clocks is made visually evident by the mgstf parallet subprocesses (the
only subprocess in this example comprises li&ek3). The root of the only tree is that of the
clock defined at the top, lin@. This line also indicates that the clobkb is not fixed, but a free
variable which could have any value at any instant. l4rgives the set of signals that share the
same clockli_b). Lines6,8 indicate what is the name of the clock of signajsx , respec-
tively, whereas line$,7 give their definitions. Finally, line8-11 provide the definition of the
fifo _1 outputsx (through the use of the value of an intermediate vari&ile).

Now the translation of the compildifo _1 program into SMV is in Figur&. Translation
of the negated delay spans ling3-20 ; translation of thecell operator lays between lines
5-12 ; and, thewhen operator is translated into lir4 (if the type oftmp was not Boolean
then acase statement would have been used). There is a clear departtherranslation
schemes presented in Secti@n This stems from several improvements in the translatién (a
ready suggested at the end of Sect®)nand with some conventions in the compiler program
generation, Figuré(b). A first convention exploited in our translation says thatiaés ofwhen
operator have as first operand a synchronous expressioal(iits signals share the same clock)
and second operand a signal denoting a ckrolller or equato that of the first operand. As a
result, our translation into SMV (Figur&b)) need not test the clocl (x) of the first operand
together with the clockh(_b) and value I§) of the second operand,; it suffices to guard the use
of the first operand value by the clock given as second opdiiandexpressiom_y <-> h x
& hb & b becomeshy <-> h b & b). The next convention states that occurrences of
thedefault operator have the standard fosr= (a when h _f) default (b when
h_g) (with possibly moredefault and their corresponding operators) whéré,h _g are
clocks anda,b are synchronous expressions. Note here that clock siggashould be defined
(implicitly or explicitly) as the difference between the@cks ofx andh_f . Our translation of this
operator (Figured(a)) won't have to translate th@hen operator occurrences in such equations,
they serve to identify the clock guard for eacdise branch of thedefault operator. Finally,
to discuss theell operator recall that, in general, an equation=y cell z init C
is equivalent to the two equatiomns:= y default (x$1 init C) | Xx =y =+ when
z. Uses of sucltell operator have as second operand the clock of the defined.sigra is,
z above will be a signal denoting the clockf andy is either a synchronous expression or a
when operator.

An explanation of the simplification in the translation @813-20 , Figure5) of the negated
delay (linel2, Figure4(b)) is in order. Because the definition lafv is quasi-circular (through a
function operator and a one instant delay) we do not needxtina fe variable to detect the first

1 The SGNAL parallel composition operator is commutative and assiveiat

Proc. AVOCS 2009 8/15

@ ECEASST

process fifo 1 = (? boolean x;

| .
- ' boplean sX:) 1: process fifo 1 = (? boolean x;

(] sx := current _1(x, sx) o | boolean sx))

| interleave(x,sx)) 3j (| hb = “hb ' '
where _ . 4: | hb=tmp =b
process current 1 = (? boolean wkx; 5 | (] hx := when b

event c; : oL
I boolean rx;) 6: | hx= x
_ o ' 7 | h.sx := when (not b)
(] rx = (wx cell c init false) 8 | hsx = sx
); when ¢ 9: | sx = tmp when h _sx
process interleave = (? boolean X, i(l) | tmp = %X \l:I)Vhi?\?t ?als_(;() cell
sx; 1) : — " .

(| x = when b i; })b := not (b$1 init false)

| SX__: when (nlo.t b) 14: |) where event h _b, h sx, h _x;

| b := not(b$l init false) 15: boolean tmp, b: end:;

|) where boolean b; end; 16: end: b ’

end;

() One-plac@IFoin SIGNAL (b) fifo _1 after clock calculus

Figure 4:fifo _1 source: Before and after applying clock calculus

instant, neither do we need an extra state variablex(treiable in Figure2(a)) to guarantee that
the delayed value is the correct one. All the informationcklwise and data-wise, is comprised
in the same signal, hence the compact SMV code generatiotra§yigtforward generalisation
of this reasoning allows us to translate in the same way alhtons with formy = f(x$1

init C) ,wheref is a SGNAL function operator.

A two-place FIFO. Let us now consider the translation of the two-plaeceo resulting from
composing two one-placeiFos, as shown by procesgo _2 in Figure6(a). For reasons of
space we won't show the compiled versiaf fifo _2 but use the generated SMV code (Fig-

2 The compiler automatically inlines all process instances.

1. MODULE fifo _1(x,h x) 13 init(b) = case
2 VAR . . 14: hb: 1
3: h_.b, b, tmp: boolean; 15. 1. o
4: ASSIGN 16: esa(;' '
> init(tmp) := case 17; next(b) := case ,
(75: Tix 0 18: nexth b) : Ib:
: N 19: 1: b;
8: esac;
9: next(tmp) := case 20: esac,

o '" _ _ 21: DEFINE
1(1)1 Te?(t(htm) next(x); 220 h x:=h b &b

I ke 23: h.sx:=h b & b
12: esac;

24: sx ;= h _sx & tmp;

Figure 5: One-placeiFoin SMV.

9/15 Volume 23 (2009)

Model Checking SIGNAL @

process fifo 2 = (? boolean x;
I boolean xok;)

MODULE fifo 2(x, h X)

— f VAR
(| xok = fifo ‘1ﬁ(fo 100) f11: fifo 1(x h x);
) where h ff12: fifo _1(ff1l.sx, ffl.h _sX);
process fifo .1 .. INVAR
where ff1l.h _sx <> ffl2.h X
DEFINE
process current 1 .. xok = ff12.5x:

process interleave ...
end;
end;

h_xok := ff12.h _SX;

(a) Two-placeriFOIn SIGNAL. (b) Two-placeriFoin SMV.

Figure 6: SGNAL and SMV: A two-placeriFO

ure5), and compose two instancesfidd _1 accordingly. An interesting feature of thieo 2
SIGNAL program is that it is not endochronous (unlfil®@ _1) and thus has multiple (master)
clocks. lts translation into SMV (Figurg(b)) uses the same schemas as for endochronous pro-
grams though. Yet another feature of the generated code iexilstence of a clock constraint

in the form of an SMV invariant. This expression was not tlatesl as a clock definition since
the SGNAL compiler was unable to verify its validity, hence its formaminstraint rather than a
directed assignment (as those appearingE&INE section, for instance).

4.2 The whole communication protocol

We've applied the mentioned simplifications for the complgpecification of the protocol pro-
posed by Benveniste et aBCL"02] (seeftp://ftp.irisa.fr/local/signal/publis/SIG2SMMobr the
whole protocol and its translation). Our simplificationesiwith the aid of the compiler reduced
the number of state variables from 98 to 27 (disregardingpsgible reductions in the SMV
internal representation of such models), with the ensumgovements in verification time.

5 Some model checking

Here we will pose some CTLJGPOQ queries (and LTL whenever possible, in order to ease
the reading) to our previous SMV programs (Sec#®nn order to elucidate some behaviour
information from the 8NAL source or the SMV translation. Also, our queries aim atfitatsng

the use of the SMV clock variables introduced by the traitsiat

5.1 The need forFAIRNESS constraints

Recall thefifo -1 SMV module (Fig.5). We are interested to know whether the SMV trans-
lation correctly assigngue for the first instant (in 8NAL) of b, given that the default case
assigndalse (i.e. 0). Also recall that the first instant of an SMV program doesmextessar-
ily correspond to the first instant of someG8IAL clocks. An LTL query could be as follows:
('n _b U b). Our formula states that aloradl paths from the initial state(s) of the system our

Proc. AVOCS 2009 10/15

ftp://ftp.irisa.fr/local/signal/publis/SIG2SMV/

@ ECEASST

signal may remain absent until it is first present with valué¢lowever, the SMV model checker
says that our model fails to follow this LTL specificationdagives us a one-state trace to support
such a response. A close examination of the counter-exashples that it is a state with a loop
transition to it; that is, a behaviour of our system wheredigaal _b) is forever absent. This
is a valid behaviour and is desirable for compositional seas For model checking, however,
it is best to ignore behaviours consisting only of such smdpk. Fortunately, SMV provides
ways of ensuring that our queries are verified on (possilapily) behaviours where something
interesting happens. This may be achieved using SMYRNESS statements toestrict the
verification to paths where such statements hold infinitélgno Hence, for oufifo 1 exam-
ple, we added the following lind=AIRNESS h.b, and then our model verifies our LTL query
above. Let us assume that approprided RNESSconstraints have been added to all our exam-
ples and our LTL/CTL goals are to be verified along fair patbkearly the correcFAIRNESS
statements refer to the clocks of the root(s) of the tree{g)d during clock calculus.

Now, we can check whether the Boolean (guard) sigbali¢ alternating, by posing the
LTL query: G(((h b & b) -> X(!h b U b)) | ((h b &) ->X'h b
U b))) . By such formula we mean that all states where the signalesgmt and true are
always followed by a sequence of states where the signal majpbent until it first arises (is
present) with value false, or the converse (for the signkalesonly). As expected, the SMV
answer is affirmative.

5.2 Some non-determinism

Let us now query théifo _2 module (Fig.6(b)) where a stored value can only be retrieved
(at least) two instants after it has been written, and nobreefA CTL formula for inspecting
whether given an input evenh (x), in the next instant, an output evemt_gok) is possible
could be expressed a8G(ff11.h x -> EX(h xok)) . For this goal the model checker
answersno and gives a counter-example where every arrival of the dwpeours two instants
after an input was received. One may think that the outpaltvaysavailable exactly two instants
after an input is placed, and thus pose the LTL quéfyf1l.h x -> X(X(h xok)))
Unfortunately this is not the case, as shown by another ecsaxample generated by SMV; the
first output arrives four instants after the first input andntfevery three instants after another
input. This (apparently) non-deterministic behaviour i do the polychronous nature of the
SIGNAL source by virtue of the two instances of thi® _1 process (and more specifically,
of the interleave process). Nonetheless we may assert that in general, thaleays a
behaviour for which after exactly two instants the outpull asrive, in CTL: AG(ff11.h x

-> EX(EX(h xok))) . Alternatively, we may claim that given the input the outmuil
always eventually arrive, in LTLG(ff11.h x -> F(h _xok)))and thus verify this with
the model checker. Note that (in part) due to the impds&dRNESSconstraints, given an input,
the output will eventually arrive, even when the constramtot on the input or output variables.

5.3 Correctness of the whole communication protocol

Before verifying the correctness of the protocol we suceddd verifying the correctness of a
claimed specification property (property number BE["02]) of the protocol implementation:

11/15 Volume 23 (2009)

Model Checking SIGNAL @

never two writing events between two successive bus/la#fepling eventsFinally, we posed
the same two CTL goals (to prove correctness of the protacaur SMV translation and thus
confirmed the answer previously reporté&iL"02].

6 Related Work

Here we provide some comparison elements for work on mockskehg for three synchronous
languages: BETEREL LUSTREand SGNAL, and work on model checking multi-clocked speci-
fications outside the synchronous paradigm.

From the language expressivity perspective it is worthngpthat ESTEREL and LUSTRE
assume a master clotkwvhile SGNAL does not impose such a constraint. We may saytteat
subsetof SIGNAL programs that are found to be endochronous by the compilecide with
those synchronous programs with a single master clock.

For LUSTRE alone there is a model checker calleddaRr [Ray0§. It is based on symbolic
model checking too, and is able to reason about numericati@nts (convex polyhedra) on the
transition systems, unlike SMV. HoweverEEARis unable to validate liveness properties; only
safety properties can be proved. A case stigly/[06] comparing model checking usingelsAR
and SMV (among other validation tools), shows the improvedgr of SMV compared with
LESAR. In such comparison some translation fromdTRE is used, but unfortunately it is not
provided. Nonetheless, a close examination of tbstRE sources for their example shows that
their programs were already single-clocked, and thus #eskation into SMV appears much
simpler than ours. Also, a manual translation fromTEREL to LUSTRE is mentioned (not
provided) to reach the facilities of SMV.

Two other transformations fromusTrReEto SMV are mentioned inNIMMO5, MAWWO05].
Neither of them provide the transformation rules used, herltuSTRE subset that could be
translated.

For model checking ETEREL programs we know of a proposaliHM *95] that first translates
such programs into an intermediate representation cBibedean automataand then translates
such programs into SMV. However, the actual definition aadgformation into Boolean au-
tomata is not provided and it appears that not all such Boodesomata could be described in
their version of SMV.

SIGALI [MRLSO01] is the model checker foriSNAL. Itis tightly integrated with the (&NAL)
compiler internal representation and optimisations. biittwh to model checking, BALI is also
useful for controller synthesi8BG™01]. However, it does not generate counter-examples (nor
witnesses). From the beginning, it was conceived as a degsocedure and some limited form
of counter-example generation is possible for safety ptmseonly. The problem of generating
counter-examples may be cast as controller synthesis tevgbat project the source program on
all the behaviours that lead to a given unsafe set of statesh @ogram projection may be inter-
preted as a set of counter-examples. As regards the inpudge, Sigali only supports Boolean
and event signals whereas SMV has some (limited form ofyérteeasoning and offers the pos-
sibility to bridge to bounded model checkers too. Nonetbglen SGALI, signal clocks need not
always be explicit in LTL/CTL goals, they may remain implionlike our proposal for SMV.

3 Esterel V7 appears to be multi-clocked, though.

Proc. AVOCS 2009 12/15

@ ECEASST

We argue that making clocks explicit fosters a good undedstg of the source specification,
besides the potential feedback provided by counter-exasnpl

Outside the synchronous approach there is the work of Cltriae [CKY03] and the work of
Ganai and GuptadGO07. In the context of bounded model checking, the former abersi linear
relations (equality and/or inequality) between clocksngsit and then synthesises an automaton
that describes all possible schedules of the clock tickenEvough the system of linear relations
may reference precise clock frequencies the synthesigechaton refers to logical instants, as
in SIGNAL. Stuttering transitions are problematic for the automagmmesentation since it is not
evident which is(are) the master clock(s), if any. The arglappear to circumvent the problem
for their experiments but a definitive answer is missing. ifpeoposal is tightly dependent on
their bounded model checker and the kind of properties atakpears to be restricted to safety
issues only, whereas we are not dependent on safety pexpeartd bounded model checking
remains one possibility amongst several.

In a refinement of this work, Ganai and Gup@ad07 propose a specialised translation of
LTL goals for clocked specifications, which apparently remthe bounded model checking
scalable, for multiple-clocks. By contrast, we do not pspany model checking technique,
neither an optimised translation of clocked LTL/CTL forrasll However, we propose a tightly
integrated (with the &NAL compiler) translation from specifications with multiplecks into
SMYV where bounded model checking is one option.

Last, but not least, SMV itself provides a syntax for compgs{single-clocked) modules
asynchronously, using thgrocess keyword. This language feature offers the possibility to
express some coarse-grained multi-clocked specificatigtheut the need for extra explicit sig-
naling (as is the case of our SMV Boolean variables to denloteks). By contrast, in our
source $GNAL multi-clocked specifications clocks are finely interwoveérhe challenge here
is to derive a so-calledALs (globally-asynchronous locally-synchronous) desariptirom the
SIGNAL source multi-clocked specifications in order to match arafifpfrom this SMV lan-
guage feature (i.e. asynchronous composition of singlekeld modules).

7 Concluding Remarks

We have shown a simple source-to-source translation fraemn&. (multi-clocked) specifica-
tions to single-clocked SMV programs for the purpose of CEtification. Then we refine the
translation taking into account the compiler analysis @f source &NAL program, in order
to reduce the number of state variables added by the traomslathis optimisation allows us to
eliminate signal variables as well as (Boolean) clock \d#es We stick to a syntax compatible
with the three versions of SMV currently available. We prasusoundness of our translation
given the semantic proximity of the two languages and bexthes SMV coding neatly reflects
the clock relations (using invariants or definitions) antheffow (with assignments). The gen-
erality of our proposed translation is exercised througldefing and verification of &NAL
specification with multiple master clocks. There are twoitgolts to common/standard use of
SMV and CTL for model validation, namelya) clocks are explicit in SMV and LTL/CTL
goals, andb) fairness constraints are needed for ensuring reactivithefmodel behaviours;
such constraints refer to the clocks of all the roots foundhduclock calculus.

13/15 Volume 23 (2009)

Model Checking SIGNAL @

Boolean SMV variables are used to modetSAL clocks. The translation automatically adds
the Boolean clocks, and it is the user who will be respondini@ correct combination of clocks
and signals while querying (in LTL or CTL) the produced SMV aet The chief condition
for a sound use of explicit clocks is thiie value of a signal is only meaningful when its clock
evaluates tdrue . As a result, the user is only concerned with knowing the nafrtbe clock
of a signal and for every occurrence of the signal name (imgteal formula) add the conjunct
to test its presence (by referring to a true occurrence afdtsk variable).

Future work. Here we only used the LTL/CTL verification functionality oiV8/. We plan

to experiment with other functionalities (bounded modedaking, bounds analysis, refinement
checking, induction, and compositional verification). hder to reduce the load to the user on
combining clocks and signal values while querying the SMVdelpwe envisage automating
the addition of clocks to temporal formulas without them.

Bibliography

[ABL94] T.P. Amagbegnon, L. Besnard, P. Le Guernic. Arboszg canonical form of Boolean
expressions. Technical report 2290, Unité de recherclifdANRennes, IRISA, Cam-
pus universitaire de Beaulieu, 35042 Rennes Cedex, Fraf8ed,

[ABL95] T. P. Amagbegnon, L. Besnard, P. Le Guernic. Implatagon of the dataflow syn-
chronous languagelSNAL. In Conference on Programming Language Design and
Implementation, PLDI9SACM Press, 1995.

[BB91] A. Benveniste, G. Berry. The synchronous approaateéative and real-time systems.
In Proceedings of the IEEB/olume 79(9), pp. 1270-1282. September 1991.

[BBG'00] L.Besnard, P. Bournai, T. Gautier, N. Halbwachs, S. Nadighrani, A. Ressouche.
Design of a Multi-formalism Application and Distributiom ia Data-flow Context:
An Example. In Gergatsoulis and Rondogiannis (edstgnsional Programming Il
Pp. 149-167. World Scientific, 2000.

[BBGT01] A. Benveniste, P. Bournai, T. Gautier, M. Le Borgne, P.G&eernic, H. Marc-
hand. The &NAL declarative synchronous language: controller synthesisyg:
tems/architecture design. I@onference on Decision and ContrdPp. 3284-3289.
2001.

[BCL*02] A. Benveniste, P. Caspi, P. Le Guernic, H. Marchand, Jakpin, S. Tripakis. A
Protocol for Loosely Time-Triggered Architectures. BMSOFT 2002Pp. 252—-265.
2002.

[BG92] G. Berry, G. Gonthier. The £'EREL synchronous programming language: Design,
semantics, implementatioScience of Computer Programmit§(2):87-152, 1992.

[BGLO8] L. Besnard, T. Gautier, P. Le GuernicGBIAL V4-INRIA version: Reference Man-
ual. March 2008. http://www.irisa.fr/espresso/Polyctyo

Proc. AVOCS 2009 14715

@ ECEASST

[BWLO6] F. Boniol, V. Wiels, E. Ledinot. Experiences in ugimodel checking to verify real
time properties of a landing gear control systemClonference on Embedded Real-
Time Systemganuary 2006.

[CCJ'05] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. CtiivéM. Pistore, M. Roveri,
A. Tchaltsev. NuSMV 2.4 User Manual. ITC-irst, Via Sommarit8, 38055 Povo
(Trento), Italy, 2005. http://nusmv.irst.itc.it.

[CGPOO] E. M. Clarke (Jr.), O. Grumberg, D. A. Pelétiodel CheckingThe MIT Press, 2000.

[CKYO03] E. M. Clarke, D. Kroening, K. Yorav. Specifying anakfying Systems with Multiple
Clocks. Ininternational Conference on Computer Design (ICCD'(R)48. 2003.

[GGO7] M. K. Ganai, A. Gupta. Efficient BMC for Multi-Clock Syems with Clocked Specifi-
cations. InAsia and South Pacific Design Automation Confereige 310-315. 2007.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud. Vhetwonous dataflow program-
ming language USTRE In Proceedings of the IEEB/olume 79(9), pp. 1321-1336.
September 1991.

[LTLO3] P. Le Guernic, J.-P. Talpin, J.-C. Le Lann. Polyamydor System DesignJournal of
Circuits, Systems, and Computekéarch 2003.

[MAWWO5] S. P. Miller, E. A. Anderson, L. G. Wagner, M. W. Wleal. Formal Verification of
Flight Critical Software. INPAIAA Guidance, Navigation and Control Conference and
Exhibit August 2005.

[McM99] K. L. McMillan. The SMV language. March 1999.
http://www.kenmcmil.com/smv.html

[McMO1] K. L. McMillan. The SMV system (version 2.5.4). 2001
http://www-2.cs.cmu.eduimodelcheck/smv/smvmanual.ps

[MHM *95] M. Millerburg, L. Holenderski, O. Maffeis, A. MeceroM. Morley. Systematic
Testing and Formal Verification to Validate Reactive ProggeSoftware Quality Jour-
nal 4(4), 1995.

[MMMO5] M. Moy, F. Maraninchi, L. Maillet-Contoz. LusSy: Aopen tool for the analysis of
systems-on-a-chip at the transaction leldsign Automation for Embedded Systems
10(2-3):73-104, 2005.

[MRLSO01] H. Marchand, E. Rutten, M. Le Borgne, M. Samaannfarverification of programs
specified with $GNAL: application to a power transformer station controlf&cience
of Computer Programming1(1):85-104, 2001.

[Ray06] P. Raymond. Vérification de programmes synchrewes LUSTRELESAR. In Navet
(ed.), Sysemes tempséel 1 Pp. 181-216. Hermes science publications, Lavoisier,
2006.

15/15 Volume 23 (2009)

http://www.kenmcmil.com/smv.html
http://www-2.cs.cmu.edu/~modelcheck/smv/smvmanual.ps

	Introduction
	Signal and SMV: Syntax and semantics
	Signal kernel
	Static analysis of Signal specifications
	SMV: A subset

	From Signal to SMV
	Improving the translation into SMV

	Translation examples
	A one-place fifo
	The whole communication protocol

	Some model checking
	The need for Fairness constraints
	Some non-determinism
	Correctness of the whole communication protocol

	Related Work
	Concluding Remarks

