
Electronic Communications of the EASST
Volume 22 (2009)

Proceedings of the
Third International Workshop on

Formal Methods for Interactive Systems
(FMIS 2009)

UI-Design Driven Model-Based Testing

Judy Bowen and Steve Reeves

16 pages

Guest Editors: Michael Harrison, Mieke Massink
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

UI-Design Driven Model-Based Testing
1Judy Bowen and Steve Reeves

1University of Waikato, Hamilton, New Zealand

Abstract: Testing interactive systems is notoriously difficult. Not only do we need
to ensure that the functionality of the developed system is correct with respect to the
requirements and specifications, we also need to ensure thatthe user interface to the
system is correct (enables a user to access the functionality correctly) and is usable.
These different requirements of interactive system testing are not easily combined
within a single testing strategy. We investigate the use of models of interactive sys-
tems, which have been derived from design artefacts, as the basis for generating tests
for an implemented system. We give a model-based method for testing interactive
systems which has low overhead in terms of the models required and which enables
testing of UI and system functionality from the perspectiveof user interaction.

Keywords: User interface, prototyping, formal methods, unit testing

1 Introduction

Testing of interactive systems is a difficult task. It requires that we test the system’s functionality,
the interactive behaviour of the system and that the user interface (UI) is usable and aesthetically
acceptable for users. As UIs become more complex and software applications become ubiqui-
tous, often relying on new, and sometimes novel, modes of interaction, this difficulty increases.
Testing for UIs is often confined to human-based usability testing which is used primarily to
ensure users are able to understand and successfully interact with the system under test (SUT)
and to measure qualitative responses to aesthetic considerations. While usability testing is an
important activity, it is known to be time-consuming and costly and is therefore more successful
when performed on systems which have already been well tested.

It is not always practical to separate the testing of system functionality from the UI, and relying
on usability testing for interactive elements as well as usability increases time and cost as well
as putting a heavier burden on the process in terms of the number and types of errors we rely on
it to catch.

In any testing process generating the tests is a critical activity as we want to ensure that the
tests have as wide coverage as possible in order to find as manyerrors as possible, but at the
same time we do not want the test generation process to be so onerous that the process becomes
impractical due to the length of time it takes and the level ofexpertise required. In the case of
interactive systems the difficulty is again increased as test generation requires knowledge of, and
the ability to formally consider, both the underlying functionality and the interactive behaviours.

Model-based testing alleviates some of the problems of testgeneration in general by providing
a formal basis for the tests as well as oracles to compare results against. It lends itself to auto-
matic generation of tests via tool support (see [UL06] for a comprehensive discussion of this)
which helps reduce both time and effort required. It also provides a way of generating repeatable

1 / 16 Volume 22 (2009)



UI-Design Driven Model-Based Testing

tests and gives confidence in the coverage of the testing. However, model-based testing methods
for interactive systems are not yet widespread and have several challenges to overcome if they
are to become so.

Choosing an appropriate model to describe the UI is one such issue. Paivaet al. [PFV07] for
example, highlight and try to address this problem by combining the formal testing framework
of a popular programming language, Spec# for the C# language[Spe08], with UML. Their aim
is to integrate the formality of Spec# with the visual familiarity of UML to develop abstract
models of both functional and UI behavioural requirements which can be used to test for coverage
and correctness. They have also chosen state-based models to work with, which is a common
choice, but this then requires work to manage the complexitycaused by the management of large
numbers of states, for example by working with hierarchicalmodels such as those proposed
in [PTFV05]. Belli [Bel01, Bel03] extends this idea by using regular expressions to model
sequences of user interactions as part of a fault-modellingtechnique. The exploration of all
possible sequences is, however, necessarily large, and theoverhead in creating the models not
insubstantial.

Comprehensive research on model-based testing for interactive systems has been undertaken
by Memonet al. (see for example [XM06], [Mem07], [YCM09] and [Mem09]). One of the
fundamental concerns of this work is the development of the model to be used for testing. Their
methods are based on creating a model of an existing implementation which is then used to
develop tests of event and interaction sequences which can be used for regression testing as new
functionality is added or the SUT is refactored. In contrast, we are investigating the use of a
pre-implementation model of the interactive system which is derived from UI design artefacts
and which is linked to a formal specification of the functionality of the system. We aim to find
out if such a model can be successfully used to generate testsand provide an oracle to test if a
subsequent implementation correctly instantiates the specified interactive system.

In previous work we have developed models for UIs [BR08a, Bow08] which are based upon
design artefacts created as part of a user-centred design (UCD) process. In this paper we in-
vestigate whether we can use these models as the basis for model-based testing for interactive
systems. We propose that this will provide several benefits.Firstly, the models themselves are
lightweight and easy to produce as part of standard UCD processes. They use abstraction within
the state-based models to avoid state-explosion problems and as such they do not lead to some
of the problems associated with other UI models (high overhead of development, complexity
of understandingetc.) Secondly, we use these models to link the UI and interactivebehaviours
to a formal system specification which provides a formal model of the entire system enabling
us to derive tests which are comprehensive and cover all aspects of the SUT. Thirdly, using the
models in this way not only increases the benefits that the useof such models provides, but also
enables us to further support UCD techniques formally and test our system from the perspective
of interactivity. The models describe both the intended design from the point of view of the UI
designer (in conjunction with their informal artefacts such as prototypes) as well as a demonstra-
tion of correctness with respect to the overall system and the relationship between system and UI
designs. So, we can use the models to derive tests for the properties which have been captured
informally and formally within early designs.

Using UI designs as the basis for testing is an approach also taken in [ACE+06] but their work
is used as the basis for a test-driven development approach for the UI and follows the approach

Proc. FMIS 2009 2 / 16



ECEASST

of complete separation of UI considerations from underlying functionality. We are concerned
with the integration of UI and system behaviours once we are at the point of implementation,
and our aim is to use the formal models of the UI to derive testswhich ensure correctness of the
integration.

The IEEE Software Engineering Body of Knowledge [ISO94] says:

“Testing is an activity performed for evaluating product quality, and for improving
it, by identifying defects and problems.”

That is, the purpose of testing is to find errors: a successfultest is one that finds an error. In
model-based testing the model gives us a description of correct behaviour, so we use this to
determine where incorrect behaviour occurs by looking for situations which violate the model.
This means finding defects in the functionality and in the waywe present that functionality to
users, via the user interface. The testing we propose is dynamic, running the program to check
behaviour under certain test cases, so it is a post-implementation activity. There are, of course,
limitations to model-based testing; we are not guaranteed to find all errors. But by examining the
underlying specification for expected behaviours as described in the model we hope to expose as
many as possible before we move on to human-based usability testing, which can then focus on
finding the sorts of errors which cannot be detected by other testing means.

2 Example System

The example we use throughout this paper is a calendar application called SimpleCalendar which
is used to display a monthly view of a calendar with events which are assigned to a particular
day. The user can view a calendar as a monthly view or as a single day view. They can add events
to any given day, view the events of any given day and can also edit or delete those events. Based
on these functional requirements a formal specification wasdeveloped using Z [ISO02]. Here
we give only some of the relevant (to our exposition here) parts of that specification, namely the
description of the system state along with descriptions of some of the operations as an example
of how the system is specified. We omit, for brevity, the type definitions, axiomatic definitions
and the rest of the operations.

The system state contains various observable values: a setalleventsof events (each event
containing a valid date and a title); the current day, month and year; and a setvdateswhich
represents the dates currently visible in the application,which is in turn a subset ofallDates, the
set of all valid dates.

The AddEventoperation extends the setalleventsin the Calendarstate by adding to it the
event given in the observationi?, the rest of the state remains unchanged. TheRemoveEvent
operation performs the reverse by removing the event given in i? from the set of events.

TheShowPreviousMonthandShowNextMonthoperations increment or decrement the obser-
vation currentMonth, and depending on the initial value ofcurrentMonthincrement or decre-
ment thecurrentYearobservation when necessary (if we move forward a month from December
or back a month from January).

3 / 16 Volume 22 (2009)



UI-Design Driven Model-Based Testing

Calendar
allevents: PEVENT
currentMonth: MONTH
currentYear: N

vdates: PallDates

AddEvent
∆Calendar
i? :EVENT

allevents′ = allevents∪{i?}
currentMonth′ = currentMonth
currentYear′ = currentYear
vdates′ = vdates

RemoveEvent
∆Calendar
i? :EVENT

allevents′ = allevents\ {i?}
currentMonth′ = currentMonth
currentYear′ = currentYear
vdates′ = vdates

ShowPreviousMonth
∆Calendar

allevents′ = allevents
currentMonth> 1⇒ currentMonth′ = currentMonth−1∧ currentYear′ = currentYear
currentMonth= 1⇒ currentMonth′ = 12∧ currentYear′ = currentYear−1
vdates′ = allDates⊲ (currentMonth′ . .currentMonth′)

ShowNextMonth
∆Calendar

allevents′ = allevents
currentMonth< 12⇒ currentMonth′ = currentMonth+1∧ currentYear′ = currentYear
currentMonth= 12⇒ currentMonth′ = 1∧ currentYear′ = currentYear+1
vdates′ = allDates⊲ (currentMonth′ . .currentMonth′)

A series of designs and prototypes of the UI for SimpleCalendar were developed following a
user-centred design process. At the end of the design iterations the prototypes given in figures1
and2 were accepted as the basis for the application’s UI.

We create a link between the formal specification of the system and the user interface de-
sign by creating presentation models and presentation and interaction models (PIMs) [BR06],

Proc. FMIS 2009 4 / 16



ECEASST

Figure 1: Main Month View for Simple Calendar

Figure 2: Subsidiary Views for Simple Calendar

5 / 16 Volume 22 (2009)



UI-Design Driven Model-Based Testing

[BR08a]. The presentation model gives a description of the interface designs based on the inter-
active elements (widgets) of the design. Each widget is described by way of a tuple consisting of
a name, a category (which determines the type of interactivebehaviour it exhibits) and a collec-
tion of behaviours associated with the widget. Behaviours either relate to system functionality
(i.e. provide a way of interacting with the underlying system functionality) or to interface func-
tionality, e.g. opening new dialogues, and are prefixed by Sor I respectively. The UI for the
entire system is described by a single presentation model which consists of component models
for each of the distinct windows and dialogues. For the SimpleCalendar designs this is:

SimpleCal is MainView : DayView : AddView : EditView

MainView is
(QuitButton, ActionControl, (Quit))
(PrevArrow, ActionControl, (SPrevMonth))
(NextArrow, ActionControl, (SNextMonth))
(DayDisplay, ActionControl, (IDayView))

DayView is
(AddButton, ActionControl, (IAddView))
(EventList, ActionControl, (SRemoveEvent, IEditView))
(BackButton, ActionControl, (IMainView))

AddView is
(TitleEntry, Entry, ())
(StartEntry, Entry, ())
(EndEntry, Entry, ())
(CancelButton, ActionControl, (IDayView))
(SaveButton, ActionControl, (SAddEvent, I DayView))

EditView is
(TitleEntry, Entry, ())
(StartEntry, Entry, ())
(EndEntry, Entry, ())
(CancelButton, ActionControl, (IDayView))
(SaveButton, ActionControl, (SUpdateEvent, IDayView))

We link the UI design models and the specification by creatinga presentation model relation
(PMR) between each SBehaviour of the presentation model and operations of the specification,
which for our example isSimpleCalPMR:

{S PrevMonth7→ ShowPreviousMonth,S NextMonth7→ ShowNextMonth,
S RemoveEvent7→ DeleteEvent,S UpdateEvent7→ EditEvent,S AddEvent7→ AddEvent}

The third model, the PIM, denotes the dynamic behaviour of the UI by describing how each
individual dialogue or window is reached by way of IBehaviours. Each component presentation
model is associated with a state of the PIM, and IBehaviours of the relevant model act as labels

Proc. FMIS 2009 6 / 16



ECEASST

SimpleCalUI

MainView
I_DayView

DayView

I_AddView

I_EditView

I_MonthView I_DayView

I_DayView

AddView

EditView

Figure 3: SimpleCal PIM

on transitions between states, and hence, as intended, are behaviours which are purely interface
behaviours and so move us around the interface.

The combination of the system specification and the UI models(presentation models, PIM and
PMR) provides a formal description of the entire system. We have previously shown how we can
use this information as a way of ensuring correctness of the the proposed system [BR08a] and
also as the basis for refinement [BR08b]. In this paper, however, we will use the models to derive
tests which can then be run on an implementation of the system. The intention is that the models
give a description of how we require the implemented system to behave and by using them to
generate tests we hope to find errors where the implementation deviates from this behaviour. In
the next section we show how the tests are derived.

3 Deriving the Tests

The presentation models describe the interactive elementsof the UI and their required behaviours.
That is, they describe the functionality that is accessibleto a user who interacts with the UI. The
PIM extends this to describe which behaviours are availablein different states of the UI and how
a user can move between these states. The testing approach weare proposing will ensure that
both the behaviours, and the availability of the behaviours, are provided by the implementation so
that we are sure that it satisfies the models. The PIM also describes modality: each independent
state of the PIM is modal so we include this as a condition which should be tested.

UI-based testing is often goal-driven. Tasks are defined (ortaken from earlier task analysis
work) and then sequences of events and user interaction sequences are constructed to satisfy
these goals (see for example [Bel01, WA00]). In contrast, the tests we derive use the definitions
given within the models as their basis. These tests will be abstract (in that they are expressed at
the level of, and in the language of, the models) and can then be instantiated in any language or
using any testing framework as required. This will often be dependant on the choice of target
implementation language. In section4 we give an example of one way of instantiating the
abstract tests for an implementation of SimpleCalendar in Java.

We begin by considering the dynamic behaviour of the UI. Thisis defined by I Behaviours in

7 / 16 Volume 22 (2009)



UI-Design Driven Model-Based Testing

the presentation models on transitions of the PIM showing how a user can move between states
of the UI. In the PIM given in figure3 there are four states to be considered, with the initial state
beingMainView(denoted by the double ellipse). For all of the defined behaviours we will test
two things: firstly that a widget exists in a given state whichprovides the required behaviour;
and secondly that the behaviour is functionally correct. So, for example, the presentation model
for MainViewdescribes anActionControlcalledDayDisplaywhich has a behaviourI DayView.
From the PIM we determine that this behaviour should cause the UI to change from the state
MainView(i.e. a state where all of the defined behaviours ofMainVieware available) to the state
DayView(i.e. a state where all of the defined behaviours ofDayVieware available). So first we
will test that there is a widget available inMainViewcalledDayDisplayand then we will ensure
that when interaction occurs the UI behaves as required, that is it changes fromMainView to
DayView. During the testing process, in order to determine that we are in a correct state, we use
the defined behaviours for that state. For example, the stateDayViewis a state of the UI where the
behaviours of theDayViewpresentation model are available (a user has access to widgets with
the behavioursI AddView,S RemoveEvent, I EditViewand I MonthView). The I Behaviours
and associated widgets for each of the states in our model are:

MainView: {DayDisplay7→ I DayView}
DayView: {AddButton7→ I AddView,EventList7→ I EditView,BackButton7→ I MonthView}
AddView: {CancelButton7→ I DayView,SaveButton7→ I DayView}
EditView: {CancelButton7→ I DayView,SaveButton7→ I DayView}

Using this information we derive our first set of tests used toensure that the relevant widgets
exist in the appropriate states. To ensure that a widget is available for a user to interact with we
must not only test that it exists in the given state, but also that it is visible and active. We describe
the tests using first-order logic (which might be replaced bya table to show which predicates hold
for which values in each state if that would be more suitable for various audiences) as follows:

UIState(MainView)⇒ Widget(DayDisplay) ∧ Visible(DayDisplay) ∧ Active(DayDisplay)
∧ hasBehaviour(DayDisplay, I DayView)

UIState(DayView)⇒ Widget(AddButton)∧ Visible(AddButton)∧ Active(AddButton)
∧ hasBehaviour(AddButton, I AddView)

UIState(DayView)⇒ Widget(EventList) ∧ Visible(EventList) ∧ Active(EventList)
∧ hasBehaviour(EventList, I EditView)

UIState(DayView)⇒ Widget(BackButton) ∧ Visible(BackButton)∧ Active(BackButton)
∧ hasBehaviour(BackButton, I MainView)

UIState(AddView)⇒ Widget(CancelButton) ∧ Visible(CancelButton)∧ Active(CancelButton)
∧ hasBehaviour(CancelButton, I DayView)

UIState(AddView)⇒ Widget(SaveButton) ∧ Visible(SaveButton)∧ Active(SaveButton)
∧ hasBehaviour(SaveButton, I DayView)

UIState(EditView)⇒ Widget(CancelButton) ∧ Visible(CancelButton)∧ Active(CancelButton)
∧ hasBehaviour(CancelButton, I DayView)

UIState(EditView)⇒ Widget(SaveButton)∧ Visible(SaveButton)∧ Active(SaveButton)
∧ hasBehaviour(SaveButton, I DayView)

(The predicates here have the obvious (from their names) meaning, for now. They will be given
a formal meaning by associating them with computed properties (via pieces of code) later on.)
Next we ensure the modality of each state of the PIM (note thatit is not necessary to put a

Proc. FMIS 2009 8 / 16



ECEASST

modality requirement on the initial state,MainView):

UIState(DayView)⇒ Modal(DayView)
UIState(AddView)⇒ Modal(AddView)
UIState(EditView)⇒ Modal(EditView)

In order to derive tests for the system functionality we similarly identify the widgets with
S Behaviours and ensure that each of the widgets exist and thatthey have the required be-
haviours. When we come to instantiate the tests we can use thePMR to identify the specified
operation which relates to the behaviour and then use the specification to determine the function-
ality which must be satisfied when the widget is interacted with. The functional tests we derive
from the models are, therefore, as follows:

UIState(MainView)⇒ Widget(QuitButton) ∧ Visible(QuitButton)∧ Active(QuitButton)
∧ hasBehaviour(QuitButton,Quit)

UIState(MainView)⇒ Widget(PrevArrow) ∧ Visible(PrevArrow) ∧ Active(PrevArrow)
∧ hasBehaviour(PrevArrow,S PrevMonth)

UIState(MainView)⇒ Widget(NextArrow) ∧ Visible(NextArrow) ∧ Active(NextArrow)
∧ hasBehaviour(NextArrow,S NextMonth)

UIState(DayView)⇒ Widget(EventList) ∧ Visible(EventList) ∧ Active(EventList)
∧ hasBehaviour(EventList,S RemoveEvent)

UIState(AddView)⇒ Widget(SaveButton) ∧ Visible(SaveButton)∧ Active(SaveButton)
∧ hasBehaviour(SaveButton,S AddEvent)

UIState(EditView)⇒ Widget(SaveButton)∧ Visible(SaveButton)∧ Active(SaveButton)
∧ hasBehaviour(SaveButton,S UpdateEvent)

Finally we consider the widgets which do not have associatedbehaviours. In order for our
implementation to satisfy the requirements given in the models we must also ensure that these
non-functional widgets exist and can be seen by the user. Such widgets are used for a user to
provide information to the system by way of inputs or to give information regarding the state of
the system back to a user by way of displays.

UIState(AddView)⇒ Widget(TitleEntry) ∧ Visible(TitleEntry) ∧ Active(TitleEntry)
UIState(AddView)⇒ Widget(StartEntry) ∧ Visible(StartEntry) ∧ Active(StartEntry)
UIState(AddView)⇒ Widget(EndEntry) ∧ Visible(EndEntry)∧ Active(EndEntry)
UIState(EditView)⇒ Widget(TitleEntry) ∧ Visible(TitleEntry) ∧ Active(TitleEntry)
UIState(EditView)⇒ Widget(StartEntry) ∧ Visible(StartEntry) ∧ Active(StartEntry)
UIState(EditView)⇒ Widget(EndEntry) ∧ Visible(EndEntry) ∧ Active(EndEntry)

This is the full set of abstract tests we derive from the models for the SimpleCalendar application.
They define all of the conditions on an implementation. The tests provide coverage criteria, we
know what we want to test and refer to the fixed properties of the UI which have been given
initially within the UI design artefacts (the prototypes offigures1 and2 in this example). When
we instantiate the tests we will see that we may need to define variables in some instances which
are subject to the usual testing considerations of boundaries and choice of values. We discuss
this further in the next section and show how we use the current visible state of the UI from a
user’s perspective to help with these choices.

In the next section we discuss how we instantiated the tests for a Java implementation of
SimpleCalendar and give some positive and negative resultsof the testing process.

9 / 16 Volume 22 (2009)



UI-Design Driven Model-Based Testing

4 Instantiating and Running the Tests

Having shown how we can derive a set of abstract tests from formal models of UI design artefacts
we now give an example of instantiating and running these tests. The Simple Calendar appli-
cation has been implemented in Java and we have used the FEST testing framework [FES09],
which is based on the principles of TestNG and Abbot [RP07], as a way of instantiating and
running the tests. While FEST is intended to provide a test-driven development approach to in-
teractive system development, its ability to replicate user interaction (by way of the underlying
Java Robot class) makes it a suitable approach for our work. It enables us to take a user-centred
approach to our testing in the manner of replicating user interaction with the system to determine
correctness of response to possible interaction with the UIand we can then use the underlying
support of JUnit to determine whether or not the system behaves as described in our abstract
tests. Due to the requirements of FEST classes, which rely onimplementation details (such as
widget namesetc.), we take a white-box approach to testing where we use code inspection to
determine the information required for FEST (as necessary).

Depending onhowwe want to test the system we might choose different ways of instantiating
the tests. For example it may be enough to determine that all required behaviours of all UI states
can be accessed by a user, or we might be stricter and require that if our model has two separate
controls with a particular behaviour then the tests must show that two such distinct widgets exist
with the required behaviour. This is the approach we have taken with this example as it adheres
to our commitment to using the designs as the basis for implementation. That is, we expect
everything described in the final design artefacts to becomepart of the implementation.

Just as we did when we began the test derivation process we start by considering the dynamic
behaviour of I Behaviours. In order to determine correctness of state we will ensure that each
named state has the correct set of widgets visible to a user and available for interaction. FEST
uses a package of classes calledFixtureswhich understand simulation of user events on Java
Swing objects and verify the state of these objects. There are different classes for different types
of widgets, for example aJButtonFixtureenables simulation of clicks or double clicksetc.upon
an actual JButton of an implementation (which is passed to the constructor of the fixture object).
In order to test correctness of state, therefore, we create fixtures for each frame or dialogue which
instantiates one of the states given in the PIM and then interrogate this to determine whether or
not required widgets are present and correctly available. The following code is an example of
such a test for theMainViewstate:

mv = new FrameFixture(new MView());
public void mViewState(){

mv.button("quitButton").requireVisible();
mv.button("quitButton").requireEnabled();
mv.button("prevArrow").requireVisible();
mv.button("prevArrow").requireEnabled();
mv.button("nextArrow").requireVisible();
mv.button("nextArrow").requireEnabled();
mv.panel(testdate).requireVisible();
mv.panel(testdate).requireEnabled();

}

where “MView” is the class in our implemented system which provides the UI elements for the
MainViewof the application. When we call the “mViewState()” method from within a JUnit test

Proc. FMIS 2009 10 / 16



ECEASST

method the “MView” frame is created and run in exactly the same way as if we had launched
the SimpleCalendar application, and the cursor can be seen moving around the UI over each
widget as it identifies it in the same manner as a user moving the mouse to hover over each of
the widgets. If any of the tests fail (for example if one of thewidgets cannot be found or does
not have the required visibility property) we get the standard JUnit red failure bar along with an
explanation of the cause of the test failure.

We create similar test methods forDayView, AddViewand EditViewand then use these as
part of our I Behaviour tests. We can either instantiate each abstract test individually, or com-
bine two or more into a single test. For example we combine themodality requirement given
in UIState(DayView) ⇒ Modal(DayView) with the state test method forDayViewby adding
“dv.requireModal();” to the state test. In order to instantiate an abstract test such as:

UIState(MainView)⇒ Widget(DayDisplay) ∧ Visible(DayDisplay)
∧ Active(DayDisplay) ∧ hasBehaviour(DayDisplay, I DayView)

we determine from the PIM that a control calledDayViewshould have theI DayViewbehaviour
which should change the state of the system fromMainViewto DayView. As part of the prepa-
ration for our tests we create a FrameFixture calledmvwhich allows us to simulate interaction
with the UI and take us to any of the other states as required for testing. For example the FEST
code for the test given above is:

public void mvIDayViewTest(){
DialogFixture dv = mv.panel(testdate).click().dialog(testdate);
dViewState(dv);

}

This simulates a user clicking on adayDisplaywidget (a JPanel in our implementation) which
opens a new dialogue, “dv”, and we then check that this has thedefinedDayViewstate. One way
of identifying widgets using FEST is by using their name, andin SimpleCalendar we use the
current date of eachDayDisplaypanel as the name’s value. “Testdate” is a variable containing
the current date (as the system always starts up displaying the current month this is a suitable
choice for the test variable) and so represents the name of one of the JPanel widgets inMainView.
This is an example of a test which requires a variable value (adate). Our choice of value for this
is made based on what choices are available to a user when the system starts up, so we test based
on the dates of the current month and iterate through each of the values that would be visible to
the user. The range of the values chosen are then the limits ofwhat a user has access to. We do
not randomly test arbitrary dates or seek to test boundary values, such as 01/01/00, 12/12/99etc.
as these do not reflect choices the user can make in the currentstate.

We construct tests as described above for all of the IBehaviours, and when we run them one
at a time we discover our first error. ThedvIAddViewTest(), which instantiates the abstract test:

UIState(DayView)⇒ Widget(AddButton)∧ Visible(AddButton)∧ Active(AddButton)
∧ hasBehaviour(AddButton, I AddView)

fails, producing the error:

java.lang.AssertionError: .. property’modal’ expected <true> but was <false>

11 / 16 Volume 22 (2009)



UI-Design Driven Model-Based Testing

When theaViewStatetest is called to ensure that the resulting state after clicking the Add
button is correct, the modality test fails. In the implementation of SimpleCalendarAddViewhas
not been set as a modal dialogue and so the test fails and our error is discovered. Once we have
corrected this problem all of the IBehaviour tests are passed.

We next move onto the non-behavioural widgets, which enables us to test that the implemented
UI for SimpleCalendar contains the required widgets for user entry and display. As there are no
behaviours associated with these widgets we test them basedon their category, so for the abstract
test:

UIState(AddView)⇒ Widget(TitleEntry) ∧ Visible(TitleEntry) ∧ Active(TitleEntry)

We identify the category ofTitleEntry from the presentation modelEntry and then instantiate
the test by checking that the widget allows user entry (we do not need to test that the widget is
visible and active in the state as we have already done this aspart of our state tests). Using FEST
we simulate the user entering some string into the text field and then test that the value of the text
field is the entered string:

String tString = "Test Text";
av.textBox("titleEntry").enterText(tString);
av.textBox("titleEntry").requireText(tString);

It may seem strange to test the value of the “titleEntry” textbox immediately after setting it, but
the “enterText” instruction does not set the value of the text box, it merely attempts to interact
with it in the same way a user would, by selecting it with the mouse and then entering the
keystrokes required to produce the string. If the ‘editable’ property of the text box was set to
false the “enterText” instruction would be carried out (by way of mouse movement and keyboard
input) but the textBox would not contain the required stringand so the assertion would fail. Each
of the non-behavioural widgets are tested in this manner andall of the tests are passed.

Finally we move onto the SBehaviour widget tests. In order to create these we need to
identify and simulate user action on each of the widgets in each state in the same manner as for
the I Behaviours, and use the specified behaviour of operations related via thePMRto determine
whether or not behaviour is correct. As an example consider the abstract test:

UIState(MainView)⇒ Widget(PrevArrow) ∧ Visible(PrevArrow)
∧ Active(PrevArrow) ∧ hasBehaviour(PrevArrow,S PrevMonth)

Just as we have done with the other widgets we need to ensure that the widgets are available and
visible in the required UI state and that the behaviour is correct. In the case of the SBehaviours
the meaning is given by the specified operation,ShowPreviousMonth(described in section2)
which the S Behaviour is related to via thePMR. Because the SBehaviours enable the user
to access the system functionality (and therefore change the system state) as part of our test
we should ensure that whenever a user can perform such an operation (i.e when a widget with
that behaviour is available for interaction) the pre-condition of the related operation holds. This
ensures that we do not expose users to the possibility of putting the system into an unexpected
state. Secondly we must test that the post-condition given by the invariant in the operation
description holds after the interaction,i.e. that the correct operation has occurred and has left
the system in the expected state. In the example we present inthis paper the specification of

Proc. FMIS 2009 12 / 16



ECEASST

the system is given in Z [ISO02] and we use standard conventions for determining pre- and
post-conditions for operations. However, it is not a requirement that Z is used, only that related
operations can be identified within the given specification and then appropriate methods used to
identify the requirements for testing the system state.

For thePrevArrowwidget in theMainViewUI state our test then entails the following steps:

• ensure thePrevArrowwidget exists in theMainViewstate
• ensure thePrevArrowwidget is visible and enabled in theMainViewstate
• ensure that the pre-condition of theShowPreviousMonthoperation holds inMainView
• ensure that the post-condition of theShowPreviousMonthoperation holds inMainView

after interaction with theDayViewwidget

The pre-condition of the operation schema can be calculatedusing standard Z techniques, and
can be simplified tocurrentMonth= 1 ∨ currentMonth∈ 2 . . 12, which for the UI means test-
ing that the displayed month is either January, or between February and December. The post-
condition of the operation requires that we check the value of alleventsis unchanged and that
the visible dates are correctly determined by the new value of currentMonthwhich should be
the month prior to the original value. For the FEST testing weare only interested in the UI el-
ements, and therefore separate the non-UI requirements (inthis case the condition onallevents)
into a separate test which can be run using JUnit independently of UI elements. This leads to the
following test:

public void mvSPrevMonthTest(){
int cm = cal.get(Calendar.MONTH);
int year = cal.get(Calendar.YEAR);
String yearstring = Integer.toString(year);
mv.label("monthLabel").requireText(makeMonth(cm));
int pcm = cm -1;
for(int i = 0; i < 12; i++){

if(pcm == 11)
yearstring = Integer.toString(year-1);

if(pcm == 0)
pcm = 12;

String prevdate = makeMonth(pcm);
mv.button("prevArrow").click();
mv.label("monthLabel").requireText(prevdate);
mv.label("yearLabel").requireText(yearstring);
pcm --;

}
sysPostConditionPrevMonth();

}

The line “mv.label(“monthLabel”).requireText(makeMonth(cm));” checks the pre-condition
by ensuring that the value of the month label is one of the values given by the “makeMonth()”
utility method in the test class (which returns only values in the range January to December). The
test runs through a twelve month cycle which ensures coverage of both possible post-condition
cases irrespective of the start month. Finally the method “sysPostConditionPrevMonth()” is
called which is the unit test for the non-UI parts of the post-condition.

As we work our way through the tests for the SBehaviours we obtain an unexpected result
for one of the tests. When we run the test instantiating the abstract test:

13 / 16 Volume 22 (2009)



UI-Design Driven Model-Based Testing

UIState(DayView)⇒ Widget(EventList) ∧ Visible(EventList)
∧ Active(EventList) ∧ hasBehaviour(EventList,S RemoveEvent)

We observe the simulated interaction, and conclude that thetest should fail. We have created
an event titled “Dentist” for a given date, and then test thatafter S RemoveEvent this event is
no longer displayed inDayViewor MonthView. What we observe upon closure of theDayView
dialogue is that the event is still displayed inMonthView.The test, however, which checks the
value of the label displaying event values inMainView is passed, as is the JUnit test of the
underlying system state which determines that the event hasbeen successfully removed from the
collection of events maintained by the system. The error is caused by a lack of graphics refresh
by the Java Virtual Machine and so although the event has beencorrectly removed, and the label
text reset to empty, the previous value remains on the screen. Given that it is possible to run
all of the tests we created in the background and generate a report of any errors that occur it is
quite possible that such an error could be missed by this formof testing. It is a reminder of the
importance of performing usability testing with people at the conclusion of model-based testing
where such an error would be easily detected.

5 Conclusions

In this paper we have shown how our formal models of UI design artefacts can be used as the
basis for model-based testing of interactive systems. We showed how it was possible to derive
tests and oracles from the models which cover all of the behaviour captured by the UI designs
and system specification. The tests are UI driven (as the models are based on UI designs), which
reflects our desire to follow a UCD approach supported by formal methods.

We have given an example of how the abstract tests we derive can be instantiated and run
against a Java implementation using the FEST framework in conjunction with JUnit. This en-
abled us to program tests for the implementation (in the nature of white-box testing) and run
them to both observe the interaction produced as well as obtain the feedback from FEST and
JUnit with respect to whether the tests were passed or not.

During the testing of our example SimpleCalendar application we discovered a modality error
where the behaviour of the implementation did not match the oracle given by the model. We
also discovered an example of an error which could not be caught by either FEST or JUnit.
Our aim in performing model-based testing in this way is to find as many errors as possible
prior to performing human-based usability testing. We wantto discover as many functional and
interaction errors as possible so that user testing can focus on usability and aesthetic issues.

Using the models enabled us to produce a range of abstract tests which covered all of the
described interactive behaviours of the UI design models. Further we have shown one way of
turning these abstract tests into an implemented test suitethat can produce useful results. We
believe that this initial investigation into using design models for this purpose has shown it to be
a useful area of research to proceed with.

Our tool for creating, editing and storing presentation models and PIMs is currently being
extended to support creation and exporting of abstract tests in the manner described in this paper.
This will remove the necessity to manually create the abstract tests and may also be able to
support partial generation of concrete tests for particular testing strategies. For example we could

Proc. FMIS 2009 14 / 16



ECEASST

automatically generate test method stubs for Java to support the example given in this paper, or
use other suitable extensions to the tool depending on how the tests are to be implemented. This
seems feasible given the uniform way tests and their predicates are given semantics by code.

We are also interested in investigating this testing strategy further and looking at different ways
of instantiating the tests. In particular we would be interested to discover whether alternative
methods of instantiation lead to better, or worse, results than we obtained using FEST and JUnit.
Given that FEST is intended to be used within a test-driven development (TDD) process we
believe it is possible to perform TDD of interactive systemsbased on the same abstract tests as
we have presented here. That is we would use the UI designs as the basis of unit-tests (both for
the UI and functionality of the system) and then follow the usual TDD approach of implementing
the system with the objective of passing the tests.

Finally we also plan to investigate the use of the the abstract tests presented here as the basis
for usability testing. There are manyad hocapproaches taken to deciding how a system should
be tested with users and we are interested to see if these model-driven tests provide a useful basis
for such decisions, and what, if any, differences this leadsto in terms of results when compared
with task-driven approaches to usability testing.

Bibliography

[ACE+06] M. Alles, D. Crosby, C. Erickson, B. Harleton, M. Marsiglia, G. Pattison, C. Stien-
stra. Presenter First: Organizing Complex GUI Applications for Test-Driven Devel-
opment.AGILE Conference0:276–288, 2006.

[Bel01] F. Belli. Finite-State Testing and Analysis of Graphical User Interfaces. InISSRE
’01: Proceedings of the 12th International Symposium on Software Reliability En-
gineering (ISSRE’01). Pp. 34–43. IEEE Computer Society, Washington, DC, USA,
2001.

[Bel03] F. Belli. A Holistic View for Finite-State Modelingand Testing of User Interactions.
2003. Technical Report 2003/1, Institute for Electrical Engineering and Information
Technology, The University of Paderborn, April 2003.

[Bow08] J. Bowen.Formal Models and Refinement for Graphical User Interface Design. PhD
thesis, University of Waikato, Department of Computer Science, 2008.

[BR06] J. Bowen, S. Reeves. Formal Models for Informal GUI Designs. In1st International
Workshop on Formal Methods for Interactive Systems, Macau SAR China, 31 Oc-
tober 2006. Volume 183, pp. 57–72. Electronic Notes in Theoretical Computer Sci-
ence, Elsevier, 2006.

[BR08a] J. Bowen, S. Reeves. Formal Models for User Interface design artefacts.Innovations
in Systems and Software Engineering4(2):125–141, 2008.

[BR08b] J. Bowen, S. Reeves. Refinement for User Interface Designs.Electronic Notes Theo-
retical Computer Science208:5–22, 2008.

15 / 16 Volume 22 (2009)



UI-Design Driven Model-Based Testing

[FES09] FEST. 2009. FEST (Fixtures for Easy Software Testing).
http://fest.easytesting.org/wiki/pmwiki.php

[ISO94] ISO. ISO/IEC 9646-1—Information Technology—Open Systems Interconnection—
Conformance Testing Methodology and Framework, Part 1: General Concepts.In-
ternational Standards Organisation. ISO/IEC, first edition, 1994.

[ISO02] ISO.ISO/IEC 13568— Information Technology—Z Formal Specification Notation—
Syntax, Type System and Semantics. Prentice-Hall International series in computer
science. ISO/IEC, first edition, 2002.

[Mem07] A. M. Memon. An event-flow model of GUI-based applications for testing.Software
Testing Verification and Reliability17(3):137–157, 2007.

[Mem09] A. M. Memon. Using Reverse Engineering for Automated Usability Evaluation of
GUI-Based Applications. InSoftware Engineering Models, Patterns and Architec-
tures for HCI. Springer-Verlag London Ltd, 2009.

[PFV07] A. Paiva, J. C. P. Faria, R. F. A. M. Vidal. Towards theIntegration of Visual and
Formal Models for GUI Testing.Electronic Notes Theoretical Computer Science
190(2):99–111, 2007.

[PTFV05] A. Paiva, N. Tillmann, J. Faria, R. Vidal. Modelingand testing hierarchical GUIs.
In D. Beauquier, E. Borger, and A. Slissenko, editors, ASM05. Universite de Paris,
2005.

[RP07] A. Ruiz, Y. W. Price. Test-Driven GUI Development with TestNG and Abbot.IEEE
Software24(3):51–57, 2007.

[Spe08] Spec. #. 2008. Microsoft technical pages for Spec #:.
http://research.microsoft.com/specsharp/

[UL06] M. Utting, B. Legeard.Practical Model-Based Testing: A Tools Approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2006.

[WA00] L. White, H. Almezen. Generating Test Cases for GUI Responsibilities Using Com-
plete Interaction Sequences. InISSRE ’00: Proceedings of the 11th International
Symposium on Software Reliability Engineering. P. 110. IEEE Computer Society,
Washington, DC, USA, 2000.

[XM06] Q. Xie, A. M. Memon. Model-Based Testing of Community-Driven Open-Source
GUI Applications. InICSM ’06: Proceedings of the 22nd IEEE International Con-
ference on Software Maintenance. Pp. 145–154. IEEE Computer Society, Washing-
ton, DC, USA, 2006.

[YCM09] X. Yuan, M. B. Cohen, A. M. Memon. Towards Dynamic Adaptive Automated Test
Generation for Graphical User Interfaces. InICSTW ’09: Proceedings of the IEEE
International Conference on Software Testing, Verification, and Validation Work-
shops. Pp. 263–266. IEEE Computer Society, Washington, DC, USA, 2009.

Proc. FMIS 2009 16 / 16

http://fest.easytesting.org/wiki/pmwiki.php
http://research.microsoft.com/specsharp/

	Introduction
	Example System
	Deriving the Tests
	Instantiating and Running the Tests
	Conclusions

