Electronic Communications of the EASST

Volume 22 (2009)

Proceedings of the
Third International Workshop on
Formal Methods for Interactive Systems
(FMIS 2009)

Ul-Design Driven Model-Based Testing
Judy Bowen and Steve Reeves

16 pages

Guest Editors: Michael Harrison, Mieke Massink

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Ul-Design Driven Model-Based Testing

1Judy Bowen and Steve Reeves

1University of Waikato, Hamilton, New Zealand

Abstract: Testing interactive systems is notoriously difficult. Nodypdo we need
to ensure that the functionality of the developed systeroiigect with respect to the
requirements and specifications, we also need to ensurththaser interface to the
system is correct (enables a user to access the functipgalitectly) and is usable.
These different requirements of interactive system tgsdire not easily combined
within a single testing strategy. We investigate the use ad@ls of interactive sys-
tems, which have been derived from design artefacts, asf$ie for generating tests
for an implemented system. We give a model-based metho@$ting interactive
systems which has low overhead in terms of the models redjaind which enables
testing of Ul and system functionality from the perspectweiser interaction.

Keywords: User interface, prototyping, formal methods, unit testing

1 Introduction

Testing of interactive systems is a difficult task. It regsithat we test the system’s functionality,
the interactive behaviour of the system and that the userfate (Ul) is usable and aesthetically
acceptable for users. As Uls become more complex and s&fta@plications become ubiqui-
tous, often relying on new, and sometimes novel, modes efantion, this difficulty increases.
Testing for Uls is often confined to human-based usabilisting which is used primarily to
ensure users are able to understand and successfullycinteth the system under test (SUT)
and to measure qualitative responses to aesthetic coasales. While usability testing is an
important activity, it is known to be time-consuming andtbpand is therefore more successful
when performed on systems which have already been weltteste

Itis not always practical to separate the testing of systemtifonality from the Ul, and relying
on usability testing for interactive elements as well asilgg increases time and cost as well
as putting a heavier burden on the process in terms of the euaria types of errors we rely on
it to catch.

In any testing process generating the tests is a criticaligcas we want to ensure that the
tests have as wide coverage as possible in order to find as emeorg as possible, but at the
same time we do not want the test generation process to bessousthat the process becomes
impractical due to the length of time it takes and the levetxbertise required. In the case of
interactive systems the difficulty is again increased agseration requires knowledge of, and
the ability to formally consider, both the underlying fuioctality and the interactive behaviours.

Model-based testing alleviates some of the problems ofgstration in general by providing
a formal basis for the tests as well as oracles to compardtsesgainst. It lends itself to auto-
matic generation of tests via tool support (sek (6] for a comprehensive discussion of this)
which helps reduce both time and effort required. It alsvigles a way of generating repeatable

1/16 Volume 22 (2009)

Ul-Design Driven Model-Based Testing @

tests and gives confidence in the coverage of the testing ekmwmodel-based testing methods
for interactive systems are not yet widespread and haveaestiallenges to overcome if they
are to become so.

Choosing an appropriate model to describe the Ul is one sistlei Paivat al. [PFV07 for
example, highlight and try to address this problem by combithe formal testing framework
of a popular programming language, Spec# for the C# lang[age0§, with UML. Their aim
is to integrate the formality of Spec# with the visual fammiity of UML to develop abstract
models of both functional and Ul behavioural requiremerttgciv can be used to test for coverage
and correctness. They have also chosen state-based moaedskt with, which is a common
choice, but this then requires work to manage the complestised by the management of large
numbers of states, for example by working with hierarchiceddels such as those proposed
in [PTFV0Y. Belli [Bel0l, Bel03 extends this idea by using regular expressions to model
sequences of user interactions as part of a fault-modetiafnique. The exploration of all
possible sequences is, however, necessarily large, amovéiteead in creating the models not
insubstantial.

Comprehensive research on model-based testing for initeragystems has been undertaken
by Memonet al. (see for exampleYMO06], [MemO07, [YCMO09] and Mem09). One of the
fundamental concerns of this work is the development of theehto be used for testing. Their
methods are based on creating a model of an existing implati@m which is then used to
develop tests of event and interaction sequences whichecasdd for regression testing as new
functionality is added or the SUT is refactored. In contrast are investigating the use of a
pre-implementation model of the interactive system whiklerived from Ul design artefacts
and which is linked to a formal specification of the functilityaof the system. We aim to find
out if such a model can be successfully used to generateaedtprovide an oracle to test if a
subsequent implementation correctly instantiates theifépe interactive system.

In previous work we have developed models for UBRRP8g Bow0d which are based upon
design artefacts created as part of a user-centred desigb)drocess. In this paper we in-
vestigate whether we can use these models as the basis fei-bemkd testing for interactive
systems. We propose that this will provide several benefitstly, the models themselves are
lightweight and easy to produce as part of standard UCD pe@=e They use abstraction within
the state-based models to avoid state-explosion problechagsuch they do not lead to some
of the problems associated with other Ul models (high owdhef development, complexity
of understandingtc) Secondly, we use these models to link the Ul and interati@reaviours
to a formal system specification which provides a formal niadehe entire system enabling
us to derive tests which are comprehensive and cover alcespéthe SUT. Thirdly, using the
models in this way not only increases the benefits that the@iusech models provides, but also
enables us to further support UCD techniques formally astider system from the perspective
of interactivity. The models describe both the intendedgitefom the point of view of the Ul
designer (in conjunction with their informal artefacts Bus prototypes) as well as a demonstra-
tion of correctness with respect to the overall system aadeafationship between system and Ul
designs. So, we can use the models to derive tests for theniexpwhich have been captured
informally and formally within early designs.

Using Ul designs as the basis for testing is an approachakemtin A\CE"06] but their work
is used as the basis for a test-driven development approache Ul and follows the approach

Proc. FMIS 2009 2/16

@ ECEASST

of complete separation of Ul considerations from undedyinnctionality. We are concerned
with the integration of Ul and system behaviours once we ataepoint of implementation,
and our aim is to use the formal models of the Ul to derive testich ensure correctness of the
integration.

The IEEE Software Engineering Body of Knowleddg®(094 says:

“Testing is an activity performed for evaluating productatjty, and for improving
it, by identifying defects and problems.”

That is, the purpose of testing is to find errors: a succedsfilis one that finds an error. In
model-based testing the model gives us a description oecbbehaviour, so we use this to
determine where incorrect behaviour occurs by looking ftaragions which violate the model.
This means finding defects in the functionality and in the wagypresent that functionality to
users, via the user interface. The testing we propose isndignaunning the program to check
behaviour under certain test cases, so it is a post-impletien activity. There are, of course,
limitations to model-based testing; we are not guarantediad all errors. But by examining the
underlying specification for expected behaviours as desdrin the model we hope to expose as
many as possible before we move on to human-based usabsgiing, which can then focus on
finding the sorts of errors which cannot be detected by o#sing means.

2 Example System

The example we use throughout this paper is a calendar atiphccalled SimpleCalendar which
is used to display a monthly view of a calendar with eventschvlaire assigned to a particular
day. The user can view a calendar as a monthly view or as a&gilayl view. They can add events
to any given day, view the events of any given day and can alisoedelete those events. Based
on these functional requirements a formal specification de®loped using ZIFO0J. Here
we give only some of the relevant (to our exposition herejsaf that specification, namely the
description of the system state along with descriptionsoaies of the operations as an example
of how the system is specified. We omit, for brevity, the tyeéirdtions, axiomatic definitions
and the rest of the operations.

The system state contains various observable values: allseéntsof events (each event
containing a valid date and a title); the current day, momiti gear; and a setdateswhich
represents the dates currently visible in the applicatidnich is in turn a subset @lIDates the
set of all valid dates.

The AddEventoperation extends the salleventsin the Calendarstate by adding to it the
event given in the observatiar?, the rest of the state remains unchanged. RemoveEvent
operation performs the reverse by removing the event ginéd from the set of events.

The ShowPreviousMontand ShowNextMontloperations increment or decrement the obser-
vation currentMonth and depending on the initial value ofirrentMonthincrement or decre-
ment thecurrentYearobservation when necessary (if we move forward a month fraoeinber
or back a month from January).

3/16 Volume 22 (2009)

Ul-Design Driven Model-Based Testing @

Calendar

allevents PEVENT
currentMonth: MONTH
currentYear. N

vdates PallDates

__AddEvent
ACalendar
i? :EVENT

allevents= allevents {i?}
currentMonth = currentMonth
currentYeaf = currentYear
vdate$ = vdates

__RemoveEvent
ACalendar
i? :EVENT

allevents= allevents, {i?}
currentMonth = currentMonth
currentYeaf = currentYear
vdate$= vdates

__ ShowPreviousMonth
ACalendar

allevent$ = allevents

currentMonth> 1 = currentMonth = currentMonth— 1 A currentYeaf = currentYear
currentMonth= 1 = currentMontth= 12 A currentYeaf = currentYear— 1

vdates = allDates> (currentMontH. . currentMontt)

__ShowNextMonth
ACalendar

allevent$ = allevents

currentMonth< 12 =- currentMonth = currentMonth+ 1 A currentYeaf = currentYear
currentMonth= 12 =- currentMonth = 1 A currentYeaf = currentYear- 1

vdates = allDates> (currentMontH. . currentMontt)

A series of designs and prototypes of the Ul for SimpleCadencere developed following a
user-centred design process. At the end of the designidesathe prototypes given in figurés
and?2 were accepted as the basis for the application’s UI.

We create a link between the formal specification of the syst@d the user interface de-
sign by creating presentation models and presentationrdgachction models (PIMs)BRO€],

Proc. FMIS 2009 4/16

ECEASST

Figure 1: Main Month View for Simple Calendar

Figure 2: Subsidiary Views for Simple Calendar

5/16 Volume 22 (2009)

Ul-Design Driven Model-Based Testing @

[BR0O84. The presentation model gives a description of the interfdesigns based on the inter-
active elements (widgets) of the design. Each widget isrie=t by way of a tuple consisting of
a name, a category (which determines the type of interab&aviour it exhibits) and a collec-
tion of behaviours associated with the widget. Behavioitteeerelate to system functionality
(i.e. provide a way of interacting with the underlying system fiimgality) or to interface func-
tionality, e.g. opening new dialogues, and are prefixed hyos |_ respectively. The Ul for the
entire system is described by a single presentation modielwdonsists of component models
for each of the distinct windows and dialogues. For the Sa@glendar designs this is:

SimpleCal is MainView : DayView : AddView : EditView

MainView is
(QuitButton, ActionControl, (Quit))
(PrevArrow, ActionControl, (SPrevMonth))
(NextArrow, ActionControl, (SNextMonth))
(DayDisplay, ActionControl, (IDayView))

DayView is
(AddButton, ActionControl, (LAddView))
(EventList, ActionControl, (SRemoveEvent, IEditView))
(BackButton, ActionControl, ((MainView))

AddView is
(TitleEntry, Entry, ()
(StartEntry, Entry, ()
(EndEntry, Entry, ()
(CancelButton, ActionControl, (DayView))
(SaveButton, ActionControl, (SAddEvent, LDayView))

EditView is
(TitleEntry, Entry, ()
(StartEntry, Entry, ()
(EndEntry, Entry, ()
(CancelButton, ActionControl, (DayView))
(SaveButton, ActionControl, (SJpdateEvent, IDayView))

We link the Ul design models and the specification by creagimgesentation model relation
(PMR) between each_Behaviour of the presentation model and operations of theipation,
which for our example iSimpleCalPMR

{S_PrevMonth— ShowPreviousMontl& NextMonth— ShowNextMonth
S RemoveEvent: DeleteEventS_UpdateEvent- EditEventS AddEvent— AddEvent

The third model, the PIM, denotes the dynamic behaviour eflih by describing how each
individual dialogue or window is reached by way aBehaviours. Each component presentation
model is associated with a state of the PIM, anBdhaviours of the relevant model act as labels

Proc. FMIS 2009 6/16

@ ECEASST

SimpleCalUl

1_MonthView 1_DayView

AddView
|_DayView

I_AddView

|_EditView |_DayView

Figure 3: SimpleCal PIM

on transitions between states, and hence, as intendedelaagiburs which are purely interface
behaviours and so move us around the interface.

The combination of the system specification and the Ul mdge¢sentation models, PIM and
PMR) provides a formal description of the entire system. \&leelhpreviously shown how we can
use this information as a way of ensuring correctness offteeptoposed systenBR084 and
also as the basis for refinemeBtR}084. In this paper, however, we will use the models to derive
tests which can then be run on an implementation of the systémintention is that the models
give a description of how we require the implemented systefnehave and by using them to
generate tests we hope to find errors where the implementdéoiates from this behaviour. In
the next section we show how the tests are derived.

3 Derivingthe Tests

The presentation models describe the interactive elenoéttie Ul and their required behaviours.
That is, they describe the functionality that is accesdible user who interacts with the Ul. The
PIM extends this to describe which behaviours are availabdifferent states of the Ul and how
a user can move between these states. The testing approaate weposing will ensure that
both the behaviours, and the availability of the behavioars provided by the implementation so
that we are sure that it satisfies the models. The PIM alsaidesanodality: each independent
state of the PIM is modal so we include this as a condition iwklwould be tested.

Ul-based testing is often goal-driven. Tasks are definedaken from earlier task analysis
work) and then sequences of events and user interactioreisegs are constructed to satisfy
these goals (see for exampkdl01, WAOOQ]). In contrast, the tests we derive use the definitions
given within the models as their basis. These tests will l&ratt (in that they are expressed at
the level of, and in the language of, the models) and can tkéndbantiated in any language or
using any testing framework as required. This will often lepehdant on the choice of target
implementation language. In sectidnwe give an example of one way of instantiating the
abstract tests for an implementation of SimpleCalendaawa.J

We begin by considering the dynamic behaviour of the Ul. Tidefined by 1 Behaviours in

7116 Volume 22 (2009)

Ul-Design Driven Model-Based Testing @

the presentation models on transitions of the PIM showing aiaiser can move between states
of the Ul. In the PIM given in figur® there are four states to be considered, with the initiabstat
beingMainView (denoted by the double ellipse). For all of the defined behasi we will test
two things: firstly that a widget exists in a given state whghvides the required behaviour;
and secondly that the behaviour is functionally correct, f8oexample, the presentation model
for MainViewdescribes arctionControlcalledDayDisplaywhich has a behaviour_DayView
From the PIM we determine that this behaviour should causeUthto change from the state
MainView(i.e. a state where all of the defined behaviourd/afinVieware available) to the state
DayView(i.e. a state where all of the defined behaviour®afyVieware available). So first we
will test that there is a widget available MainViewcalledDayDisplayand then we will ensure
that when interaction occurs the Ul behaves as required,ighiachanges fromMainViewto
DayView During the testing process, in order to determine that weeraa correct state, we use
the defined behaviours for that state. For example, the Sap¥iewis a state of the Ul where the
behaviours of théayViewpresentation model are available (a user has access totwidia
the behaviourd_AddViewS RemoveEvent EditViewand|_MonthView. The LBehaviours
and associated widgets for each of the states in our model are

MainView: {DayDisplay— |_DayView}

DayView: {AddButton— |_AddViewEventList— | _EditView BackButton— |_MonthView}
AddView. {CancelButton— |_DayView SaveButtor- | _DayView}

EditView: {CancelButton— | _DayView SaveButtor- |_DayView}

Using this information we derive our first set of tests use@nsure that the relevant widgets
exist in the appropriate states. To ensure that a widgetaitadle for a user to interact with we
must not only test that it exists in the given state, but distit is visible and active. We describe
the tests using first-order logic (which might be replacea bgble to show which predicates hold
for which values in each state if that would be more suitabtesérious audiences) as follows:

UlStatd MainView) = WidgetDayDisplay A Visible(DayDisplay A Activeg DayDisplay)
A hasBehaviouiDayDisplay | _DayView
UlStatd DayView = WidgetAddButton A Visible(AddButton A Activel AddButtorn)
A hasBehavioufAddButtonl _AddView
UlStatg DayView = WidgetEventLis} A Visible(EventLisj A Activg EventLisy
A hasBehaviouiEventList|_EditView)
UlStatd DayView = Widge{BackButton A Visible(BackButton A ActiveBackButton
A hasBehaviouBackButtonl _MainView)
UlStatg AddView = WidgetCancelButton A Visible{CancelButton A Activg CancelButton
A hasBehaviouiCancelButtonl _DayView)
UlStatg AddView = WidgetSaveButtopA Visible(SaveButtonA ActivgSaveButton
A hasBehaviouiSaveButtorl _DayView
UlStatd EditView) = WidgefCancelButton A Visible(CancelButton A ActivgCancelButton
A hasBehaviouiCancelButtonl _DayView)
UlStatg EditView) = Widge{SaveButtonA Visible(SaveButtohA ActiveSaveButtoh
A hasBehaviouiSaveButtorl _DayView

(The predicates here have the obvious (from their nameshimgefor now. They will be given
a formal meaning by associating them with computed progeifvia pieces of code) later on.)
Next we ensure the modality of each state of the PIM (note ithiatnot necessary to put a

Proc. FMIS 2009 8/16

@ ECEASST

modality requirement on the initial statglainView):

UlStatd DayView = Modal(DayView
UlStatg AddView = Modal(AddView
UlStatg EditView) = Modal(EditView)

In order to derive tests for the system functionality we &y identify the widgets with
S_Behaviours and ensure that each of the widgets exist andtbgthave the required be-
haviours. When we come to instantiate the tests we can udeNtieto identify the specified
operation which relates to the behaviour and then use thefgadion to determine the function-
ality which must be satisfied when the widget is interactethwrl he functional tests we derive
from the models are, therefore, as follows:

UlStatg MainView) = WidgetQuitButton) A Visible(QuitButton) A Activg QuitButton
A hasBehaviouiQuitButton Quit)

UlStatd MainView) = WidgetPrevArrow) A Visible(PrevArrow) A Activg PrevArrow)
A hasBehaviouPrevArrow S_PrevMonth

UlStatg MainView) = WidgetNextArrow A Visible(NextArrow A Active(NextArrow
A hasBehaviouiNextArrow S_NextMonth

UlStatg DayView = WidgetEventLis} A Visible(EventLisj A Activg EventLisy
A hasBehaviouEventListS RemoveEveit

UlStatd AddView = WidgetSaveButtopA Visible{SaveButtonA ActivgSaveButton
A hasBehaviouiSaveButtorS AddEvent

UlStatg EditView) = Widge{SaveButtonA Visible(SaveButtohA ActiveSaveButtoh
A hasBehaviouiSaveButtors UpdateEvent

Finally we consider the widgets which do not have associatthviours. In order for our
implementation to satisfy the requirements given in the ef®ave must also ensure that these
non-functional widgets exist and can be seen by the userh ®idgets are used for a user to
provide information to the system by way of inputs or to gisrmation regarding the state of
the system back to a user by way of displays.

UlStatg AddView = WidgetTitleEntry) A Visible(TitleEntry) A Activeg TitleEntry)
UlStatg AddView = WidgetStartEntry A Visible(StartEntry) A Active(StartEntry)
UlStatg AddView = WidgetEndEntry A Visible EndEntry A Activg EndEntry)
UlStatd EditView) = Widge{TitleEntry) A Visible(TitleEntry) A ActivgTitleEntry)
UlStatd EditView) = WidgetStartEntry A Visible(StartEntry) A ActivgStartEntry)
UlStatd EditView) = WidgetEndEntry A Visible(EndEntry A Activg EndEntry)

This is the full set of abstract tests we derive from the mefaithe SimpleCalendar application.
They define all of the conditions on an implementation. Tis¢sterovide coverage criteria, we
know what we want to test and refer to the fixed properties eflh which have been given
initially within the Ul design artefacts (the prototypesfimfuresl and?2 in this example). When
we instantiate the tests we will see that we may need to dedin@bles in some instances which
are subject to the usual testing considerations of boueslaid choice of values. We discuss
this further in the next section and show how we use the ctkisible state of the Ul from a
user’s perspective to help with these choices.

In the next section we discuss how we instantiated the testa flava implementation of
SimpleCalendar and give some positive and negative resiuite testing process.

9/16 Volume 22 (2009)

Ul-Design Driven Model-Based Testing @

4 Instantiating and Running the Tests

Having shown how we can derive a set of abstract tests fromdbmodels of Ul design artefacts
we now give an example of instantiating and running thests.teBhe Simple Calendar appli-
cation has been implemented in Java and we have used the EBSgtframework FES09,
which is based on the principles of TestNG and Abl®P(7, as a way of instantiating and
running the tests. While FEST is intended to provide a teésed development approach to in-
teractive system development, its ability to replicater uisteraction (by way of the underlying
Java Robot class) makes it a suitable approach for our wodnables us to take a user-centred
approach to our testing in the manner of replicating useraution with the system to determine
correctness of response to possible interaction with thardl we can then use the underlying
support of JUnit to determine whether or not the system behas described in our abstract
tests. Due to the requirements of FEST classes, which relynplementation details (such as
widget namestc), we take a white-box approach to testing where we use ccjeeation to
determine the information required for FEST (as necessary)

Depending orowwe want to test the system we might choose different waysstéirtiating
the tests. For example it may be enough to determine thaalired behaviours of all Ul states
can be accessed by a user, or we might be stricter and reqairéd bur model has two separate
controls with a particular behaviour then the tests musivsthat two such distinct widgets exist
with the required behaviour. This is the approach we havertakith this example as it adheres
to our commitment to using the designs as the basis for impheation. That is, we expect
everything described in the final design artefacts to begoanteof the implementation.

Just as we did when we began the test derivation process wégizonsidering the dynamic
behaviour of I Behaviours. In order to determine correctness of state vleansure that each
named state has the correct set of widgets visible to a uskawailable for interaction. FEST
uses a package of classes callgxtures which understand simulation of user events on Java
Swing objects and verify the state of these objects. Thereifferent classes for different types
of widgets, for example dButtonFixtureenables simulation of clicks or double clic&s:. upon
an actual JButton of an implementation (which is passedd@dmstructor of the fixture object).
In order to test correctness of state, therefore, we credtedss for each frame or dialogue which
instantiates one of the states given in the PIM and thenragate this to determine whether or
not required widgets are present and correctly availablee fdllowing code is an example of
such a test for th&lainViewstate:

m/ = new FraneFi xture(new Wiew());

public void nViewState(){
.button("quitButton").requireVisible();
.button("quitButton").requireEnabl ed();
.button("prevArrow').requireVisible();
.button("prevArrow').requireEnabl ed();
.button("nextArrow').requireVisible();
.button("next Arrow").requireEnabl ed();

. panel (testdate).requireVisible();

. panel (testdate).requireEnabl ed();

33333333

}

where “MView” is the class in our implemented system whichyvides the Ul elements for the
MainViewof the application. When we call the “mViewState()” methooinh within a JUnit test

Proc. FMIS 2009 10/16

@ ECEASST

method the “MView” frame is created and run in exactly the samay as if we had launched
the SimpleCalendar application, and the cursor can be sesinmgharound the Ul over each
widget as it identifies it in the same manner as a user moviagritbuse to hover over each of
the widgets. If any of the tests fail (for example if one of thiglgets cannot be found or does
not have the required visibility property) we get the stadd#Jnit red failure bar along with an
explanation of the cause of the test failure.

We create similar test methods fDrayView AddViewand EditViewand then use these as
part of our LBehaviour tests. We can either instantiate each abstrsicindividually, or com-
bine two or more into a single test. For example we combinentbdality requirement given
in UlStatgDayView = Modal(DayView with the state test method fabayViewby adding
“dv.requireModal();” to the state test. In order to insiate an abstract test such as:

UlStatg MainView) = WidgetDayDisplay A Visible{DayDisplay)
A Activg(DayDisplay A hasBehaviouiDayDisplay | _DayView

we determine from the PIM that a control callBdyViewshould have thé_DayViewbehaviour
which should change the state of the system fidainViewto DayView As part of the prepa-
ration for our tests we create a FrameFixture catledwhich allows us to simulate interaction
with the Ul and take us to any of the other states as requinettfting. For example the FEST
code for the test given above is:

public void nvl DayVi ewTest () {
Di al ogFi xture dv = nmv. panel (testdate).click().dial og(testdate);
dVi ewSt at e(dv) ;

}

This simulates a user clicking ondayDisplaywidget (a JPanel in our implementation) which
opens a new dialogue, “dv”, and we then check that this hagddafieedDayViewstate. One way
of identifying widgets using FEST is by using their name, am&impleCalendar we use the
current date of eacbayDisplaypanel as the name’s value. “Testdate” is a variable comgini
the current date (as the system always starts up displagimgurrent month this is a suitable
choice for the test variable) and so represents the nameeaffdhe JPanel widgets MainView
This is an example of a test which requires a variable valua{e). Our choice of value for this
is made based on what choices are available to a user wheystieesstarts up, so we test based
on the dates of the current month and iterate through eadieofdlues that would be visible to
the user. The range of the values chosen are then the limithaif a user has access to. We do
not randomly test arbitrary dates or seek to test bounddnesasuch as 01/01/00, 12/12/6 .
as these do not reflect choices the user can make in the catadat

We construct tests as described above for all of tligehaviours, and when we run them one
at a time we discover our first error. ThlelAddViewTesb, which instantiates the abstract test:

UlStatd DayView = WidgetAddButton A Visible(AddButton A Activel AddButtorn)
A hasBehavioufAddButtonl _AddView

fails, producing the error:

java.lang. AssertionError: .. property nmodal’ expected <true> but was <fal se>

11/16 Volume 22 (2009)

Ul-Design Driven Model-Based Testing @

When theaViewStatetest is called to ensure that the resulting state after iclickhe Add
button is correct, the modality test fails. In the implenation of SimpleCalendakddViewhas
not been set as a modal dialogue and so the test fails androuisediscovered. Once we have
corrected this problem all of the Behaviour tests are passed.

We next move onto the non-behavioural widgets, which esalddo test that the implemented
Ul for SimpleCalendar contains the required widgets for @sgry and display. As there are no
behaviours associated with these widgets we test them basbeir category, so for the abstract
test:

UlStatd AddView = WidgetTitleEntry) A Visible(TitleEntry) A Activg TitleEntry)

We identify the category ofitleEntry from the presentation modé&ntry and then instantiate
the test by checking that the widget allows user entry (weatmeed to test that the widget is
visible and active in the state as we have already done tlmarasf our state tests). Using FEST
we simulate the user entering some string into the text fietbthen test that the value of the text
field is the entered string:

String tString = "Test Text";
av.textBox("titleEntry").enterText(tString);
av.textBox("titleEntry").requireText(tString);

It may seem strange to test the value of the “titleEntry” text immediately after setting it, but
the “enterText” instruction does not set the value of the X, it merely attempts to interact
with it in the same way a user would, by selecting it with theus® and then entering the
keystrokes required to produce the string. If the ‘editapleperty of the text box was set to
false the “enterText” instruction would be carried out (bsynof mouse movement and keyboard
input) but the textBox would not contain the required stramgl so the assertion would fail. Each
of the non-behavioural widgets are tested in this mannemiirad the tests are passed.

Finally we move onto the SBehaviour widget tests. In order to create these we need to
identify and simulate user action on each of the widgets ahetate in the same manner as for
the |_Behaviours, and use the specified behaviour of operatidaizdevia thePMRto determine
whether or not behaviour is correct. As an example conslieabstract test:

UlStatg MainView) = WidgetPrevArrow) A Visible(PrevArrow)
A Activg(PrevArrow) A hasBehaviouiPrevArrow S_PrevMonth)

Just as we have done with the other widgets we need to ensurtaéhwidgets are available and
visible in the required Ul state and that the behaviour iseszir In the case of the_8ehaviours
the meaning is given by the specified operatiSBhpwPreviousMontfdescribed in sectioR)
which the SBehaviour is related to via theMR Because the Behaviours enable the user
to access the system functionality (and therefore changesyhtem state) as part of our test
we should ensure that whenever a user can perform such aatiopef.e when a widget with
that behaviour is available for interaction) the pre-ctindi of the related operation holds. This
ensures that we do not expose users to the possibility ahgutte system into an unexpected
state. Secondly we must test that the post-condition giwethé invariant in the operation
description holds after the interactione. that the correct operation has occurred and has left
the system in the expected state. In the example we presénisipaper the specification of

Proc. FMIS 2009 12716

@ ECEASST

the system is given in ZI$O0J and we use standard conventions for determining pre- and
post-conditions for operations. However, it is not a reguient that Z is used, only that related
operations can be identified within the given specificatiod #nen appropriate methods used to
identify the requirements for testing the system state.

For thePrevArrowwidget in theMainViewU| state our test then entails the following steps:

ensure thé>revArrowwidget exists in théMainViewstate

ensure thé’revArrowwidget is visible and enabled in tidainViewstate

ensure that the pre-condition of tB&owPreviousMontbperation holds itMainView
ensure that the post-condition of tBBowPreviousMontbperation holds itMainView
after interaction with thé®ayViewwidget

The pre-condition of the operation schema can be calculagédy standard Z techniques, and
can be simplified t@urrentMonth= 1 Vv currentMonthe 2..12, which for the Ul means test-
ing that the displayed month is either January, or betwedmuaey and December. The post-
condition of the operation requires that we check the valualleventsis unchanged and that
the visible dates are correctly determined by the new vafueuaentMonthwhich should be
the month prior to the original value. For the FEST testingare only interested in the Ul el-
ements, and therefore separate the non-Ul requirementisigicase the condition callevent$
into a separate test which can be run using JUnit indepelydeiit | elements. This leads to the
following test:

public void nmvSPrevMont hTest (){
int cm= cal.get(Cal endar. MONTH) ;
int year = cal.get(Cal endar. YEAR);
String yearstring = Integer.toString(year);
mv. | abel (" nont hLabel). requireText (makeMont h(cm);
int pcm=cm-1;

for(int i =0; i < 12; i++){
if(pcm== 11)
yearstring = Integer.toString(year-1);
if(pcm== 0)
pcm = 12;

String prevdate = nakeMont h(pcm);
mv. button("prevArrow').click();
nv. | abel ("nont hLabel ") . requi reText (prevdate);
nmv. | abel ("yearLabel ") .requireText (yearstring);
pcm - -;

}

sysPost Condi ti onPrevMont h();

The line “mv.label(*monthLabel”).requireText(makeMbigtm));” checks the pre-condition
by ensuring that the value of the month label is one of theasljiven by the “makeMonth()”
utility method in the test class (which returns only valugthie range January to December). The
test runs through a twelve month cycle which ensures coeesh@poth possible post-condition
cases irrespective of the start month. Finally the methgdPsstConditionPrevMonth()” is
called which is the unit test for the non-Ul parts of the postdition.

As we work our way through the tests for theEehaviours we obtain an unexpected result
for one of the tests. When we run the test instantiating tis¢ratt test:

13/16 Volume 22 (2009)

Ul-Design Driven Model-Based Testing @

UlStatg DayView = Widge{EventLis} A Visible(EventLis}
A Activg([EventLisj A hasBehavioufEventListS RemoveEvent

We observe the simulated interaction, and conclude thategteshould fail. We have created
an event titled “Dentist” for a given date, and then test tftegr S RemoveEvent this event is
no longer displayed ilbayViewor MonthView What we observe upon closure of thayView
dialogue is that the event is still displayed MonthViewThe test, however, which checks the
value of the label displaying event values MainViewis passed, as is the JUnit test of the
underlying system state which determines that the evertvds successfully removed from the
collection of events maintained by the system. The erroaised by a lack of graphics refresh
by the Java Virtual Machine and so although the event has tmreectly removed, and the label
text reset to empty, the previous value remains on the scr&wen that it is possible to run
all of the tests we created in the background and generatgoat ref any errors that occur it is
quite possible that such an error could be missed by this firtasting. It is a reminder of the
importance of performing usability testing with peoplels tonclusion of model-based testing
where such an error would be easily detected.

5 Conclusions

In this paper we have shown how our formal models of Ul desig@facts can be used as the
basis for model-based testing of interactive systems. Weet how it was possible to derive
tests and oracles from the models which cover all of the hebawcaptured by the Ul designs
and system specification. The tests are Ul driven (as the imadebased on Ul designs), which
reflects our desire to follow a UCD approach supported by &mmethods.

We have given an example of how the abstract tests we derivdeanstantiated and run
against a Java implementation using the FEST framework mjuoation with JUnit. This en-
abled us to program tests for the implementation (in the reabfi white-box testing) and run
them to both observe the interaction produced as well asrobiia feedback from FEST and
JUnit with respect to whether the tests were passed or not.

During the testing of our example SimpleCalendar applicatie discovered a modality error
where the behaviour of the implementation did not match tlaele given by the model. We
also discovered an example of an error which could not be ltalog either FEST or JUnit.
Our aim in performing model-based testing in this way is tal fas many errors as possible
prior to performing human-based usability testing. We wardiscover as many functional and
interaction errors as possible so that user testing carsfonwsability and aesthetic issues.

Using the models enabled us to produce a range of abstrastvidasch covered all of the
described interactive behaviours of the Ul design modelgthier we have shown one way of
turning these abstract tests into an implemented test thatecan produce useful results. We
believe that this initial investigation into using desigaels for this purpose has shown it to be
a useful area of research to proceed with.

Our tool for creating, editing and storing presentation glscand PIMs is currently being
extended to support creation and exporting of abstract bleshe manner described in this paper.
This will remove the necessity to manually create the abstests and may also be able to
support partial generation of concrete tests for partic@sting strategies. For example we could

Proc. FMIS 2009 14716

@ ECEASST

automatically generate test method stubs for Java to stigigoexample given in this paper, or
use other suitable extensions to the tool depending on hewetis are to be implemented. This
seems feasible given the uniform way tests and their pregliGae given semantics by code.

We are also interested in investigating this testing sgsaterther and looking at different ways
of instantiating the tests. In particular we would be inséee to discover whether alternative
methods of instantiation lead to better, or worse, reshhsg tve obtained using FEST and JUnit.
Given that FEST is intended to be used within a test-drivereldpment (TDD) process we
believe it is possible to perform TDD of interactive systelased on the same abstract tests as
we have presented here. That is we would use the Ul desigie dmsis of unit-tests (both for
the Ul and functionality of the system) and then follow thealsTDD approach of implementing
the system with the objective of passing the tests.

Finally we also plan to investigate the use of the the abistessts presented here as the basis
for usability testing. There are mayg hocapproaches taken to deciding how a system should
be tested with users and we are interested to see if thesd-arogen tests provide a useful basis
for such decisions, and what, if any, differences this lé¢ads terms of results when compared
with task-driven approaches to usability testing.

Bibliography

[ACE*T06] M. Alles, D. Croshy, C. Erickson, B. Harleton, M. Marsayl G. Pattison, C. Stien-
stra. Presenter First: Organizing Complex GUI Applicasidor Test-Driven Devel-
opmentAGILE Conferenc®:276—-288, 2006.

[Bel01] F. Belli. Finite-State Testing and Analysis of Ghagal User Interfaces. IISSRE
'01: Proceedings of the 12th International Symposium oriv&o€ Reliability En-
gineering (ISSRE’01)Pp. 34-43. IEEE Computer Society, Washington, DC, USA,
2001.

[Bel03] F. Belli. A Holistic View for Finite-State Modelingnd Testing of User Interactions.
2003. Technical Report 2003/1, Institute for ElectricabiEwering and Information
Technology, The University of Paderborn, April 2003.

[Bow08] J.BowenFormal Models and Refinement for Graphical User Interfacei@es?hD
thesis, University of Waikato, Department of Computer Sces 2008.

[BRO6] J.Bowen, S. Reeves. Formal Models for Informal GUIDas. Inlst International
Workshop on Formal Methods for Interactive Systems, MadsiR Shina, 31 Oc-
tober 2006 Volume 183, pp. 57—72. Electronic Notes in Theoretical @atar Sci-
ence, Elsevier, 2006.

[BR0O8a] J.Bowen, S. Reeves. Formal Models for User Intertiesign artefact$nnovations
in Systems and Software Engineer#(@):125-141, 2008.

[BRO8b] J.Bowen, S. Reeves. Refinement for User Interfacggbs.Electronic Notes Theo-
retical Computer Scienc208:5-22, 2008.

15/ 16 Volume 22 (2009)

Ul-Design Driven Model-Based Testing @

[FESO09]

[1S094]

[1S002]

[MemO7]

[MemO09]

[PFVO07]

[PTFV05]

[RPO7]

[Spe08]

[ULO6]

[WAOQO]

[XMO6]

[YCMO9]

FEST. 2009. FEST (Fixtures for Easy Software Tgstin
http://fest.easytesting.org/wiki/pmwiki.php

ISO.ISO/IEC 9646-1—Information Technology—Open Systemscameection—
Conformance Testing Methodology and Framework, Part 1: éeaConceptsin-
ternational Standards Organisation. ISO/IEC, first edjti094.

ISO.ISO/IEC 13568— Information Technology—Z Formal Specitioaiotation—
Syntax, Type System and Semanfrgntice-Hall International series in computer
science. ISO/IEC, first edition, 2002.

A. M. Memon. An event-flow model of GUI-based apptioas for testingSoftware
Testing Verification and Reliability7(3):137-157, 2007.

A. M. Memon. Using Reverse Engineering for Autontatésability Evaluation of
GUI-Based Applications. Iisoftware Engineering Models, Patterns and Architec-
tures for HCI Springer-Verlag London Ltd, 2009.

A. Paiva, J. C. P. Faria, R. F. A. M. Vidal. Towards timéegration of Visual and
Formal Models for GUI TestingElectronic Notes Theoretical Computer Science
190(2):99-111, 2007.

A. Paiva, N. Tillmann, J. Faria, R. Vidal. Modeliragnd testing hierarchical GUIs.
In D. Beauquier, E. Borger, and A. Slissenko, editors, ASNWiSversite de Paris,
2005.

A. Ruiz, Y. W. Price. Test-Driven GUI Development witestNG and AbbotlEEE
Software24(3):51-57, 2007.

Spec. #. 2008. Microsoft technical pages for Spec #:
http://research.microsoft.com/specsharp/

M. Utting, B. Legeard Practical Model-Based Testing: A Tools Approadiiorgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2006.

L. White, H. Almezen. Generating Test Cases for GUkRensibilities Using Com-
plete Interaction Sequences. IBSRE '00: Proceedings of the 11th International
Symposium on Software Reliability Engineerif®y 110. IEEE Computer Society,
Washington, DC, USA, 2000.

Q. Xie, A. M. Memon. Model-Based Testing of Communidyiven Open-Source
GUI Applications. INICSM '06: Proceedings of the 22nd IEEE International Con-
ference on Software Maintenandep. 145-154. IEEE Computer Society, Washing-
ton, DC, USA, 2006.

X. Yuan, M. B. Cohen, A. M. Memon. Towards Dynamic Auteve Automated Test

Generation for Graphical User Interfaces.I@STW '09: Proceedings of the IEEE
International Conference on Software Testing, Verifiaggtiand Validation Work-

shops Pp. 263—-266. IEEE Computer Society, Washington, DC, USRA92

Proc. FMIS 2009 16/16

http://fest.easytesting.org/wiki/pmwiki.php
http://research.microsoft.com/specsharp/

	Introduction
	Example System
	Deriving the Tests
	Instantiating and Running the Tests
	Conclusions

