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Abstract: This paper presents a range of approaches to the analysis and develop-
ment of program specifications that have been expressed in a probabilistic process
algebra. The approach explores Markovian processes as a high-level abstraction
tool to reason about system specifications. The abstractions include ones to check
the structure of specifications, analyze the long-term stability of the system, and
provide guidance to improve the specifications if they are found to be unstable. The
approach could present interest to the formal methods and critical-systems develop-
ment community, as it leads to an automatic analysis of some subtle properties of
complex systems. We illustrate some aspects by analyzing the Monty Hall game,
and a probabilistic protocol.
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1 Introduction

The process of effective abstraction underlies most facets of software production and analysis.
When reasoning about software systems, we abstract out areas of interest, and reason only about
those. When writing software, we use class declarations to encapsulate abstract notions. The
benefit is that it could be easier to manipulate abstract notions. We can then make use of apriori
knowledge about the abstraction. In the case of automatic analysis or automatic software pro-
duction, we may also benefit from higher-level abstractions, the automatic tool using pre-proved
transformations.

The approach presented here builds on earlier work in [MMO1], where Markov Decision
Processes (MDPs) are used as an abstraction in the context of the quantitative analysis of pro-
gram predicate transformers, and in [NPPWO07], where automated verification for probabilistic
m-calculus is outlined.

We show the development of high-level abstractions based on Markovian processes. In the
context presented here, the abstractions are used to assist in the analysis of specifications given
in the probabilistic process algebra, useful for the analysis and development of probabilistic algo-
rithms, and also the analysis of critical-systems in which we include estimates of the likelihood
of failure. Such systems are commonly found in modern distributed computer systems, and a
feature of this approach is that it supports mechanical formal analysis of the systems.
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The approach starts with the generation of a Markov transition matrix for the program spec-
ification. After generating the transition matrix, we can reason directly about the matrix, or
establish the long-term behaviour/equilibrium state of the system, or analyze it directly by using
the eigenvectors of the matrix. In each case, we use known properties of the matrix to pick out
an area of the specification to fix/modify.

In order to follow this technical sequence, we need to provide effective abstractions of the
elements of the approach. Section 2 provides background material on Markovian processes and
transition matrices, as well as the probabilistic w-calculus. Section 3 continues with a discussion
on suitable abstractions. Section 4 shows various worked examples, including the analysis of a
probabilistic protocol. Section 5 concludes the paper.

2 Preliminaries

In this section, the underlying components of the approach, probabilistic process algebras and
Markov chains, are briefly introduced and defined.

A process algebra is a technique for mathematically modeling systems constructed of inter-
acting concurrent processes. The technique deserves the term algebra, as it is concerned with
axioms and algebraic transformations of expressions in the process algebra.

The most well-known process algebras are the Communicating Sequential Processes (CSP),
the Calculus of Communicating Systems (CCS) and the 7-calculus. CSP is presented in [BHR84];
CCS and the m-calculus are presented in [Mil99]. Each of these process algebras is useful in its
own right, concerned mostly with notions of equivalence between expressions in the process al-
gebras, or with notions of satisfaction between a process algebra expression, and some property
expressed in a modal logic.

Probabilistic process algebras have been used for modelling complex systems. Such systems
may include elements of interaction where the environment introduces uncertainty; for example,
the behaviour of people interacting with the processes, or communication bit error rates, or speed.

The advantage of model description in process algebra is compositionality, i.e., that complex
models can be built from smaller ones. With probabilistic process algebra, it is generally un-
derstood that the underlying quantitative semantics of the concurrent model of computation is
a discrete or continuous-time Markov chain [Hil94]. The analysis of continuous-time Markov
chains with large populations can be computationally quite expensive, and so deterministic mod-
els can be more efficient.

2.1 Probabilistic z-calculus

Probabilistic m-calculus is an extension of the 7-calculus introduced in [NPPWO07] with the aim
of modeling performances of dynamically reconfigurable systems. It inherits all the syntax of
m-calculus, and extends it with the possibility of associating to each action a probability distri-
bution. This means that it is possible to associate to each prefix a quantitative value, represented
by the value of a random variable, which follows the above mentioned probability distribution.
Distributed systems often have probabilities associated with them that can be represented in the
probabilistic 7-calculus.
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Many works have pointed out the usefulness of probabilistic and stochastic versions of the
m-calculus in modeling various systems (see, e.g., [PRSSO01, Car08, CP07]). Mainly it could
be applied to labeled transition systems representing concurrent systems; this is not possible by
using differential equation models. For instance, the use of process algebras in systems biology
is natural and provides double advantages: on the one hand, the representation is incremental
and compositional; on the other hand, the models support formal verification techniques such as
behavioral equivalences and model checking [Cio04, Cio08, NPPWO7].

Definition 1 (Probabilistic 7-calculus) Let .4/ = {a,b,...,x,y,...} be an infinite set of
names. A probabilistic z-calculus process is an expression using the following grammar:

P.Q = 0]} (m.pi).B | (vo)P | [x=yIP | PQ | P(y1,....yn)

where 7 is either x(y) or Xy or 7, and p € [0, 1].

The intuitive meaning of the operators is essentially the same as in 7-calculus. x(y) denotes
that we are waiting for a message on the channel x and y acts as a placeholder, which will be
replaced with the received message. Xy represents the output of the message y on the channel x. T
is the silent action. Standard considerations about free and bound names hold. In general, inputs
are binding operators on the arguments. This means that in the process x(y).P the name y is
bound in P, and not accessible from outside P. Restriction (vn)P of the name n makes that name
private and unique to P: the name n becomes bound in P. Recursion models infinite behaviour
by assuming the existence of a set of equations of the form A(x) = P such that x € fn(P), where
fn(P) stands for the usual free names of P. The definition of fn(P) is standard taking into
account that the only binding operators are inputs and restriction.

0 represents the inactive process. The probabilistic process (7, p) .P is used in a probabilistic
choice operation, so the process (7,0.5).P + (7,0.5).0 will either continue with process P or
0, with equal probability. If a probability p is 1.0, then we may omit it. In this probabilistic
m-calculus, we do not consider nondeterminism.

2.2 Markovian Processes

There are many different kinds of processes, however a particular subset of all processes, the
Markov processes, have been studied in great detail for many years.

Markov processes are viewed as a set of random variables {X; }, where the time index ¢ runs
through an ordered set. The set of all possible values of the variables is known as the state space
of the process. For one-dimensional state spaces, we classify Markov processes into four distinct
categories:

] \ Time State space
1 discrete discrete
2 | continuous discrete
3 discrete continuous
4 | continuous | continuous
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A Markov chain is an abstraction .# representing a probabilistic process in terms of a set of
states ./, and a probability transition matrix .7 from one set of states to another. Transitions
from state to state occur at discrete time intervals. The future behaviour of a Markov chain is not
dependent on the previous path arriving at the current state, although we can specify an initial
state according to some pre-defined probability over ..

In elementary probability theory, given an event B, and an exhaustive set of mutually exclusive
events {C;}, then prob(B) = Y, prob(B | C;) prob(C;). In a continuous state space, the conditional
probability density function at time n given the state occupied at time m (I < m < n) is:

px,(x| X =z2) = /pXm(y‘Xl:Z)an(x|X =y,X; =2)dy )]

where the X; are random variables specifying the states of a probabilistic process. A probabilistic
process is a Markov Process if, for arbitrary times [ <m < n,

px, x| Xn =y, X1 =2,...) = px,(x | X = y) 2)

That is, probability density functions are only dependant on the most recent of the time points.
Given equation (2), we can rewrite equation (1) as:

px, (x| X =2) = / Px, (V| Xi = 2)px, (x | X = y)dy (3)

This is called the Chapman-Kolmogorov equation, and it indicates that it is possible to build up
probability density functions over a long period of time (/...n) from short time periods (/...m)
and (m...n). We can express this for discrete states as:

no__ n—1
Pik = iji Pik
i=0

and note that in process algebras we are dealing with discrete state spaces and hence Markov
chains, rather than the continuous state space and hence Markov processes.

A Markov Decision Process extends the notion of the Discrete Time Markov chain (DTMC) by
allowing the process to be controlled through actions at each state. MDPs also provide the notion
of reward for each taken action and each pair of present and subsequent states. By contrast, in
the case of DTMCs, the process cannot be controlled. The subsequent states are only chosen
in a probabilistic fashion, with respect to some prescribed transition matrix. Thus DTMCs only
allow probabilistic choice (through the transition matrix), while MDPs allow both probabilistic
choice (through the probability function) and nondeterministic choice (through the set of possible
actions from each state).

If a system eventually settles to a state of statistical equilibrium represented by a state distribu-
tion vector 7 = (m,...,7,), where m; +...+ m, = 1, then 7 = 7.7 or alternatively n(.¥ — F) =
0. This gives us a homogeneous set of equations, which will have a solution if .# — .7 vanishes.
There are various standard methods for solving such a set of equations.
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Another notion is that of class solidarity: a state of a given type can only intercommunicate
with states of the same type. Furthermore they must have the same recurrence period. A set
of states that communicate only with each other are called a closed set - an absorbing set of
states. The decomposition theorem states that we may divide any Markov chain into two sets
- the recurrent and the transient states. The recurrent set may be decomposed into closed sets.
Within each closed set, all states communicate with same period.

The Perron-Frobenius theorem asserts that if A is of order 4 x h and if A has ¢ > 1 eigenvalues
equal in modulus to A; (the largest one), then A can be reduced to a cyclic form by a permutation
applied to both rows and columns. The import of this is that it allows us to differentiate between
cyclic and stochastic processes.

Hansson and Jonsson have developed PCTL in [HJ94]. It is a probabilistic real-time com-
putation tree logic for checking discrete time Markov chains. PCTL path and state formulas
represent properties of states and sequences of states. The PCTL formula are applied to dis-
crete time Markov chains, yielding judgements over them that indicate if the chain satisfies the
formula. This model-checking approach is not considered here.

3 Markov Abstractions

The principal abstraction is just the (perhaps obvious) one that the transition matrix derived from
the specification is an abstraction of the specification. Observations about the matrix apply to the
specification. We begin with some general observations about the analysis of transition matrices:

1. Given a Markov transition matrix .7, the solution of the equation p.7 = p can give p, the
steady-state (or equilibrium) state value matrix'.

2. The least or greatest expected returns from a state p,, can be easily calculated using the
transition matrix .7 . The calculations are easy to do, but the meaning associated with them
needs to be given an intuition. This intuition is clarified by means of examples: “Given
that we are at p, what is the least expected cost of a decision taken here?”

3. More complex distributions are possible. For example - the ¢ value may itself be a MDP,
making the decision based on (say) a dial on the black box. This suggests a festing process
- given a specification, and a particular MDP suggesting how another process/tester will
interact with it.

We also have the following abstractions over the transition matrix, which can be tied back to the
particular state(s) that give rise to the effect. This gives us a method for specification improve-
ment, involving testing the transition matrix for each effect, and then relating this back to the
causative states.

Given a Markov transition matrix 7,

1. determine which (if any) states are absorbing (i.e. capturing states of the system).

2. determine which (if any) states are ephemeral (i.e. unreachable).

1" There are two possible kinds of outcomes - cyclic ones, and steady state ones.

5/17 Volume 22 (2009)



Markov Abstractions for Probabilistic 7-Calculus Eﬁ

3. determine if the system is cyclic or ergodic. Is it expected to be cyclic? Is it expected to
be a distribution?

4. if it is cyclic, determine the states of the cyclic behaviour.
5. determine if the system is a single Markov chain or two (or more) Markov chains.

6. if it describes two (or more) Markov chains, determine the states belonging to each of the
chains.

7. the distribution of eigenvalues of .7 gives the following insights:

(a) If one is O, then the transitions are not invertible
(b) If two are close together, then it may take a long time to stabilize
(¢) The maximum value gives the long term behaviour

(d) The case when the behaviour is cyclic (i.e. no equilibrium)

For each abstraction, we develop an intuition or interpretation, and show how it can be mechan-
ically calculated using conventional linear programming tricks.

3.1 Markov Classification of States

The states of a Markov chain are classified as follows:

Type of state Definition

Ephemeral Cannot be reached from any other state
Absorbing Cannot ever leave this state

Periodic Return to this state cyclically

Aperiodic Not periodic

Recurrent Eventual return certain

Transient Eventual return uncertain
Positive-recurrent | Recurrent, finite mean recurrence time
Null-recurrent Recurrent, infinite mean recurrence time
Ergodic Aperiodic, positive recurrent

Each of these types of states has some relevance to the analysis of probabilistic process alge-
bra. For example an ephemeral state (if it is not the first state in the system), may indicate an
unreachable part of a specification. An absorbing state may indicate a deadlock condition.

4 Direct Analysis of Systems

In this section, some simple examples are used to demonstrate how systems expressed in a proba-
bilistic process algebra may be expressed as transition matrices, which are then examined directly
in terms of the Markov classification of states, in order to discover various properties.
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In each example, we also give a motivation or intuition about the applicability of the particular
technique used.

4.1 Periodic versus Ergodic

It is useful to discover if an arbitrary process algebra expression is periodic or ergodic. This may
not be apparent from the process algebra expression, and if it is found to be (say) periodic when
we expect it to be random, then this may indicate a problem with the expression. Let us begin
with a very simple example:

The prefixes (x, p) indicate a pair consisting of the prefix, and its probability. This one’s tran-
0.5 0.5

sition matrix 1s [ 05 05

] with an equilibrium state vector of (0.5,0.5). Consider also the

expression:

P = (a,0).P+(b,1.0).0
0 = (a,1.0).P+(b,0).0

0 1.0
1.0 O

Can we differentiate between these two? They are quite different, the first representing a
probabilistic process, producing sequences including actions a and b, while the second is a de-
terministic process defined by alternating actions a and b. If we look at the eigenvalues of the
two matrices, we see that the first matrix returns the eigenvalues 1 and 0, whereas the second
produces 1 and —1. From the Perron-Frobenius theorem, we can immediately tell from the two
eigenvalues that this matrix represents a cyclic process. In summary:

with the transition matrix and, again, an equilibrium state vector of (0.5,0.5).

The direct analysis of the eigenvalues of a transition matrix allows us to differentiate
between two different types of process - specifically cyclic and stochastic processes.

This analysis may be useful in either case - when we expect a stochastic process and get a cyclic
one, and vice-versa.

4.2 [Ephemeral States

The trivial ephemeral state S; in a Markov chain is a state in which the i-th column of the tran-
sition matrix is all-zeroes. This indicates that you can only pass out of this state, and never get
back into it.

The intuition in process algebra terms is that we might consider these states to be correct if
they are initial states, but otherwise they are dead-code. You can never get to an ephemeral state
if you do not start in the ephemeral state. In this example, column 4 is all-zeroes, indicating that
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Sy is ephemeral:

(03 00 00 00 00 07 ]
00 0.1 0.1 00 00 08
00 0.0 0.8 00 00 02
02 0.0 0.0 00 04 04
00 05 00 0.0 0.0 05
| 0.1 03 02 00 00 04 |

The concept of the ephemeral state may be extended to an ephemeral state-set. This is a set
of states which you can only pass out of. In this case, there can be no periodic structure in the
ephemeral state-set, and one of the states must therefore be a first ephemeral state. If it is removed
from the transition matrix, we are left with a transition matrix with a (possibly null) ephemeral
state-set, and the rest of the matrix. In this way, we can step-wise remove the ephemeral state set
from the transition matrix, identifying all its elements as we go.

0.3 00 0.0 0.0 0.7
0.0 01 0.1 0.0 0.8
P'=1]00 0.0 08 00 0.2 P’ =
0.0 05 0.0 0.0 05
0.1 03 02 00 04

03 0.0 0.0 0.7
0.0 0.1 0.1 0.8
0.0 0.0 0.8 0.2
0.1 03 02 04

In this example, by removing S4 we discovered a second ephemeral state S. Removing this state
removes the ephemeral state-set entirely. In summary:

The ephemeral states should correspond only to initial states. If there are any
ephemeral states that are not the initial ones, then these indicate that the states
are dead states, i.e. ones that will never be visited.

This analysis is useful in finding parts of a specification that are not required. If so they may as
well be removed.

4.3 Absorbing States and State Sets

An absorbing state S; in a Markov chain is one in which the i-th row is all-zeroes. This indicates
that you can only pass into this state, and never get back out of it. The intuition in process algebra
terms is that we might consider these states to be deadlock ones - our process has arrived at this
state and can never exit it. The concept of the absorbing state may be extended to an absorbing
state-set, which may either be a chain of states ending in an absorbing state, or a set of states
which may be either ergodic or periodic, but in any case do not ever exit.

The first option is easily handled in a manner analogous to that used in the presentation for
ephemeral states; the second is a little more difficult. However, the Markov techniques provide
again a solution. By permuting the rows and columns, we transform the matrix until it is P =

{ 0 [ K] . In this matrix, the bottom right hand corner K is a square matrix, with all-zero

entries to the left of it. If the states contributing to the rows of K do not contain an initial state,
we can deduce that this is a set of states that are absorbing. In summary:
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The absorbing states should correspond only to final states. If there are any ab-
sorbing states or state sets that are not final, then these indicate that the states are
deadlock states.

This analysis is useful in finding parts of a specification that cause deadlocks. If so, these are
better removed early (at the specification stage) than later.

4.4 Direct Computation

It is relatively easy to manipulate the matrices directly to discover properties of a process. This
is illustrated by examining a process algebra expression intended to capture the elements of the
Monty-Hall game. The rules of the Monty-Hall game are as follows:

A contestant appears in a TV show. The announcer for the show (Monty Hall) hides
a prize in an alcove behind one of three curtains. The contestant is asked to select
one of the curtains, and then announce the selection. Since the announcer for the
show knows where the prize is located, he opens one of the other two curtains,
showing the contestant that the prize is not behind it. The contestant is then asked
if she wants to change her mind - she can either stick to the original curtain, or
change to the other curtain.

The question is: which of these options should the contestant choose? The surprising answer is
that she should change her mind.

4.4.1 Parallel Formulation

We begin with a probabilistic -calculus expression of the game, played with two interacting
processes representing Monty Hall (monty), a contestant (contestant). Beginning with the Monty
Hall process, we have Monty selecting a random prize curtain, and signalling the contestant on
channel x. The contestant replies with a curtain selection on channel z. Monty then signals the
contestant on channel y with a revealed curtain. Finally the contestant replies with a choice on
channel w. Monty then signals either the win or lose on channel public:

game &t monty | contestant
def -
monty = Yic{123} (x, %> .z(c).select;,
def (3(c1),3) .w(f).signalif+<)7(c,),%>.w(f).signalif ifi=c
select;,, = v ) e
¥(co)-w(f).signal;y ifi #c

sional.. % public(win).!monty  ifi= f (awin!)
gnalyy = public(lose).!monty  ifi # f (alose)

The process is replicated, and continues forever, or until we switch off the TV. The other pro-
cesses may be defined as follows, where the contestant makes the deliberate decision to choose
the other curtain (that is the contestant changes curtains):

1
contestant & x.( Y <Z(CJ'),>.y(m).w(co).!contestant>
je{1,23} 3
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To model the the case when the contestant decides not to change curtains, our contestant process
would be

ef 1
contestant & x. ( Z <Z(cj), > y(m).w(cj). !contestant)
. 3 :
je{1,2,3}

We can model the whole system using a simple (single) process algebra expression, only con-
sisting of choice, and no parallel composition. The following section shows such an expression.

4.4.2 Expansion of Parallel Composition - 1

We can expand the parallel composition of the expression using the modified expansion law as
shown below. We assume that we have actions (aj,az,a3) representing the selection of Monty
Hall selecting one of the three alcoves. The contestant then can indicate with one of three actions
(b1,ba,b3) which alcove/curtain she wishes to choose by pressing the corresponding button.
Monty can then open one of the two remaining curtains, the left one or the right one if there is a
choice (c;,c,), or the only remaining one if there is not (c,). Finally, the contestant can choose
either to change to the other curtain by selecting action (d) or not. In the following expression,
the contestant tries the changing algorithm - that is, she changes her selection. There are also
two extra states, indicating winning and losing which we are interested in:

. 1
hide = . Z <a,~, 3> .select;
i€{1,2,3}

1
select; &f Z <bj,3>.montyij

je{1,2,3}
monty.. % (¢;,0.5) .change; + (c,,0.5) .change,  ifi=j
Yij = co.change, ifi£ jAk#iNk#
dlose ifi=1
def o
change; = dlose ifi=r
d.win ifi=o
lose & hide
win € hide

We can now use this to generate a simple Markov transition matrix, as seen in section 4.4.4.

4.4.3 Expansion of Parallel Composition - 2

Another technique may be used to expand out the parallel composition of probabilistic processes.
In [HKO1], Hillston et al. show how the Kronecker representation of a parallel composition of
Markovian processes is an efficient representation, and allows us to create the generator matrix
as required. The Kronecker representation of a parallel composition of N component processes
is represented by a computation over their transition matrices R;, and including factors related
to their interaction (P; o, which represents a probability transition matrix for each component i
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associated with each interaction ), and normalization (P; 4, which normalizes the interaction
matrices for each component i and each interaction ¢, where ry, is the minimum of the rates of
action Q):

def N N N o
0L PR+ Y 1o (®a,a _®p,.,a)
i=1 i=1 i=1

acZ

In our example, if the matrix for monty was .# and the matrix for the contestant was %, then
the Kronecker representation is Q = .# ® € + f X [M; R C; — M, R E,]. Note that this repre-
sentation is compositional, and this is of use in that the sort of sparse matrices generated by our
process algebra expressions are compactly represented by the Kronecker expression. In addi-
tion, the unexpanded expression may itself give insights into the behaviour of the interacting
processes - for example, the interaction matrix may tell you about the degree of binding between
processes.

4.4.4 Markov Transition System

In our example, the first process expansion technique applied to the process expression results in
18 states - i.e. the size of the transition matrix is 18 x 18. The matrix is:

hide 0 1 £ 1 000 00O0O0O0O0O0OO0O0O0O
selecty 0 0 0 0 £ 1 4 00 0000O0O0O0O00O
select, 0 0 0 0 000+ 4 200000000
selectz; 0 0 0 00O O OOOTZL I 1 00000
monty,; 0 0 0 0 0 0 00O OO0OOO 3 3 000
monty, 0 0 0 0 0 00 00O 0O0O0O0O0 100
monty;; 0 0 0 0 0 000 OO 0OO0OOO0O 100
monty,; 0 0 0 0 0 00 00O 0OO0OO0O0O0 100
M | monty; 000 000000000003 3000
monty,; 0 0 0 0 0 00 0O O 0OO0OOO0O0 100
monty;; 0 0 0 0 0 000 OO 0OO0OOO0O 100
monty; 0 0 0 0 0 000 0O 0 OO0OO0O 100
monty;; 0 0 0 0 0 0 0 0 0 0 0 0O % 1 000
change, 0 0 0 0 0 0 0 0 0 0 0 0 0O 0010
change, 0 0 0 0 0 0 0 0 0 0 0 0O O OOT10
change, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
lose 100 000 0O0O0O0OOO0OOO0O0O0O0

| win 1.0 0000O0O0O0OO0OOOOO0O0O0 0|

Noting that the process cycles after four states, we calculate game = init x M* where init is the
initial state vector. From this we get a vector representing the probability of being in each state
after four cycles. The vector is game = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %, %) The values
associated with lose and win are % and % respectively, indicating that with this strategy, we will
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(in the long term) win! By contrast, if we change the definition of the change;; state to represent
the choice of not changing curtains:

win ifi=1

def . P
change;; = ¢ win ifi=r
lose ifi=o

By examination of this new matrix, we establish that the values associated with lose and win are
% and % respectively, indicating that this is not as good a strategy as the previous one.

4.4.5 Comment on Direct Evaluation

The transition laws for S may be directly applied to the original expression of the game, but they
do not result in an efficient reduction of the expression. Initially there are three possible transi-
tions, and each must be separately evaluated - i.e. the expression expands rather than reduces.
The point here is that the matrix representation is simpler to handle, and reduces mechanically
and quickly. In this section various techniques for evaluating the properties of probabilistic pro-
cesses were given. In summary:

The reduction of a parallel composition of probabilistic processes to a single Markov
transition matrix or chain allows a compact representation of the behaviour of the
process. This matrix/chain may then be evaluated using either algebraic or arith-
metic techniques to discover properties of the original processes.

This analysis is useful in directly evaluating the probabilistic behaviour of a process without
having to apply the more complex S7 rules a step at a time. The evaluation is done in a simple
manner on the transition matrix alone.

4.5 First Passage Probabilities

In a previous example, we were interested in the time taken to get to the absorbing state set. In
Markov terms, this is known as the first passage probability. The first passage probability from
state i to state j at time ¢ is defined by the conditional probability that state j is entered at time ¢,
and state j is not entered before time t, this being conditional on starting at state i. The mean first
passage probability M;; from state i to state j in transition matrix .7 is derived from the mean
first passage matrix, which is given by

M = (I = Z + EZgiag)D

where [ is the identity matrix, Z is the fundamental matrix, £ is a matrix containing ones every-
where, Zgi,; 18 the matrix containing in its diagonal the components of the fundamental matrix
(and zeros everywhere else) and finally, D contains in its diagonal 1/¢;. (1 divided by the com-
ponents of the limit matrix). Z, the fundamental matrix, is computed by Z = (I — (P— 7)) ..
This gives us a technique for finding the mean passage time - the expected number of transi-
tions/steps performed to get from state i to state j. We begin by constructing the transition matrix
for our probabilistic expression. We next ensure that it is irreducible and stochastic, and we may
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then calculate the mean first passage probability matrix M. This matrix may be used to evaluate
mean first passage times for any transition of interest. Note that once again, this computation is
performed by manipulations of the transition matrix .7, which is used to derive the mean first
passage matrix. This matrix may in turn be used to derive specific useful properties as seen in
the next two sections.

4.5.1 Commute Time

A useful property that may be of interest is the commute time of a system. The commute time
between state i and state j is the expected time to return to state i after visiting state j at least
once. This is derived from the mean first passage matrix:

Cij=M;j+Mj;
An intuition about the usefulness of commute time may be gleaned from the following:

Consider the evaluation of two competing specifications for a probabilistic algo-
rithm. A particular cycle of states in the algorithm is of interest, as it is time critical.
The commute-time analysis will yield the faster specification.

This quantitative evaluation of two competing designs may assist in the correct selection of a
better design for implementation.

4.5.2 Cover Time

The cover time is the expected time to visit all components of a system. Again this has an
interpretation in the software design, specification and analysis field. The calculation of the
cover time is not as simple as the commute time, and involves analysis of the spanning tree for
the transition graph. However tight bounds may be efficiently calculated as seen in [Fei95]. An
intuition about the usefulness of cover time may be gleaned from the following:

Consider the evaluation of two competing specifications for a probabilistic algo-
rithm. Each of the states in the algorithm is of interest, and must be visited at least
once, and this is time critical. The cover-time analysis may yield the better one of
the two competing specifications.

Again, quantitative evaluation of two competing designs helps in the correct selection of a better
design for implementation.

4.6 Equilibrium

Another core concept in the analysis of ergodic Markov processes is that of equilibrium. The
calculation of the equilibrium of a Markov chain gives insight into the long-term behaviour
of the process. As an example of this, we consider an expression of a probabilistic algorithm
for a non-repudiation protocol. The purpose of this protocol is to ensure that two processes
agree that a transaction has taken place. At some time, one of the processes cannot violate the
protocol and later claim that it did not. The protocol probabilistically ensures that neither process
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can repudiate an agreement. We consider two expressions of the protocol, one in which both
processes act honourably, and a second in which the second process attempts to cheat by refusing
to send an acknowledgement. By looking at the long-term behaviour of the two expressions,
using an infinite Markov chain, we see that in the first case the likelihood of agreement is unity.
However in the second case the likelihood of agreement approaches zero.

This protocol is simplified for the purposes of the paper. The sender process randomly chooses
a message n out of M possible message numbers, and elects to transmit the (encrypted) trans-
action during this message. A friendly receiver immediately responds with a acknowledgement
containing the message, and then proceeds to decrypt the message (this process taking much
longer than the round-trip time of the messages). When the message decrypts correctly, the
protocol has ended, and the receiver cannot later attempt to deny the transaction, as it sent the
acknowledgement before it attempted to decrypt. An unfriendly receiver flips a coin to decide if
it wishes to NOT send an acknowledgement. If the process is lucky enough to do this when it
receives the correctly encrypted transaction, then it can deny the transaction ever took place. We
model the system with a sender and a receiver. The x channel is used for the messages from the
sender to the receiver, the y channel contains the acknowledgement. Beginning with the sender
process, and then defining a good and a bad receiver process, we have:

def .
protocol = sender | receiver

sender & (x(t,d(1)), ;) v.0+ (¥(q,d(r)),1 — 1) .y.Isender
. def (x(t,q),1.0) .y.public(T).0  ifd(q) =
goodie = {(x(t,q),1.0> §.lgoodie 1fd(q)7£t
e %> y.lbaddie  ifd(q) =1

baddic & { (x(1,9),3) -public(T).0+(x(1,q),
(x(t,q), 1) public(F).0+ (x(r,q), 1) 7. !baddie  ifd(q) #1

Choosing an arbitrary (finite) value for M, it is easy to calculate that the probability for the goodie
to succeed will be 1.0, and for the baddie reduces to zero:

P(T) = yYXiilifdlg)=t (=1) and P(T) = yYE(;) ifdlg)=t (-0
In summary:

The equilibrium for a stochastic process is easily derived from the transition matrix,
and allows us to make assertions about the long term behaviour of the process.

The analysis is completely mechanical, and relies on an early use of abstraction, reducing a
relatively complicated process algebra expression to manipulations on a Markov chain.

4.7 Evaluation of System Behaviour: a hard problem

The final approach to the analysis of communicating systems suggested by the Markov abstrac-
tion is the prediction and evaluation of system behaviour even when we cannot complete the
quantification of the transition matrix. The view here is that we may not be able to quantify the
probabilities of certain events, or, because of the interaction with other events, be unable to exter-
nally monitor them. In this situation, we can still generate a Markov transition matrix, although
the matrix will contain variables (unknowns) in certain places.
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I—p
l—gq

} ) = 0 for A. This is simple for the

Consider a tiny example of a transition matrix .7: .7 = [ P } . To discover the eigen-

p—A 1-p

1—g—A
given problem: A2+ (¢—p—1)A+(p—q)=0 = A =1,p—q. Note that the single large
value 1 indicates that this is a stochastic matrix if p,q & {0, 1}. The solutions for A are then used
to generate the eigenvectors for the matrix .7 by solving v.7 = Av for v. However, in a more
general case, this is normally considered a hard problem, particularly if there are a large number
of variables and the matrix is large. Instead, this sort of problem is solved using arithmetic and
algorithmic techniques rather than algebraic ones. Again there are many well-known arithmetic
techniques for quickly finding solutions to large sets of equations. Let us now consider how this
sort of evaluation can assist in a software engineering process:

values of this, we need to solve det ( {

Consider the evaluation of a specification for a probabilistic algorithm in which
some of the probabilities are unknown. By constructing a transition matrix, and
then solving the eigenvector equations, we derive a compact set of information that
can be used to make assertions about the specification. (For example - in the trivial
example above, if p =1 and g = 0 we can immediately tell that the process is cyclic
with length 2. If p = q we can immediately tell that the process has an ephemeral
state. For any other values for p and q, the process is stochastic).

In this example, we see how the Markov abstraction can lead to a better understanding of a
process even in the absence of quantitative values.

5 Conclusion

In this paper we have concentrated on the mechanical calculation of properties of probabilistic
process algebra expressions using a matrix P which defines a Markov decision process for the
expression. The key point of the approach is that instead of reasoning about the detailed structure
of the process algebra expression, we reason at a higher level of abstraction using Markovian
abstractions. These abstractions include ones to predict long term behaviour of a system, identify
deadlock states, identify ephemeral states, and calculate system properties by direct manipulation
of P. Note that this approach is different from previous approaches, which do not concentrate on
the element of abstraction suggested by the use of Markovian processes.

This abstraction allows us to compactly represent aspects of the behaviour of processes. For
example, a single vector (the eigenvalues of the matrix) can be used to infer useful properties of a
process. In addition, efficient libraries and procedures for calculating probabilities or rates have
been developed over the long history of Markov processes, and we can obtain results using these
efficient arithmetic techniques. The results can not only give direct quantitative assessments
of the behaviour of a design or software element, but also can lead to comparisons between
competing designs. If two designs/implementations had similar properties in other areas, but
one was better in it’s cover time, then we might choose to pick this one.

In summary, we have outlined ways in which Markovian processes may be used as a high-level
abstraction tool to reason about program specifications expressed in a probabilistic 7-calculus.
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The abstractions include ones to check the structure of specifications, analyze the long-term
stability of the system, and provide guidance to improve the specifications.
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