
Electronic Communications of the EASST
Volume 24 (2009)

Guest Editors: J. Cabot, J. Chimiak-Opoka, F. Jouault, M. Gogolla, A. Knapp
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the Workshop
The Pragmatics of OCL and Other Textual

Specification Languages
at MoDELS 2009

Generation of Formal Model Metrics for MOF based Domain
Specific Languages

Marcus Engelhardt, Christian Hein, Tom Ritter, Michael Wagner

16 Pages

 ECEASST

2 / 16 Volume 24 (2009)

Generation of Formal Model Metrics for MOF based Domain Specific
Languages

Marcus Engelhardt, Christian Hein, Tom Ritter, Michael Wagner

Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31,

10589 Berlin, Germany
{Marcus.Engelhardt, Christian.Hein, Tom.Ritter, Michael.Wagner}@fokus.fraunhofer.de

Abstract: The assessment of quality in a software development process is vital for the
quality of the final system. A number of approaches exist, which can be used to determine
such quality properties. In a model-driven development process models are the primary
artifacts. Novel technologies are needed in order to assess the quality of those artifacts.
Often, the Object Constraint Language is used to formulate model metrics and to compute
them automatically afterwards. This paper describes an approach for the generation of
model metrics expressed as OCL statements based on a set of generic rules. These rules
can be applied on any domain specific modeling languages for creating a basic set of
metrics which can be tailored for the specific needs of a development process. The paper
also briefly describes a prototype of a tool for the generation, computation, and
management of these model metrics by using the Software Metrics Meta-model - SMM.

Keywords: model metrics, OCL, SMM

1 Introduction
Quality of software has become essential to Software Engineering so that increasingly more
resources are provided for tasks dealing with quality assurance in software development
processes. In particular, the early and continuous quality assessment can provide quantitative
indicators for model quality and help to locate structural problems. But measuring certain
properties of software is a hard, time- and resource-consuming task since the tool support for
automated quality measurement is still lacking and hence a lot of manual work is required.
In Model Driven Engineering the model is the primary artifact of the development process.
The quality of the involved models has a significant influence on the quality of the final
software. Due to the central relevance of a model, the quality requirements for it increase.
While numerous quality characteristics for code artifacts have been identified and standardized
in various quality models in recent years, the definition of appropriate quality criteria for
models is still not well established.
An often used means to determine software quality are metrics. Applied to several artifacts of
the software during its whole life cycle, they can produce comparable evaluations of these
artifacts as a basis for later assessments of quality properties. Numerous metrics defined on
code level can be found in literature. In terms of model driven development, a number of
approaches to define metrics, which are useful to determine the quality of models, have been
proposed in the meantime. A number of them are referenced in section 2.
Due to the fact that there is no standard terminology for defining metrics, a great challenge is
to find an appropriate mechanism to define them. While the first software metrics had been
mostly defined using natural language, which may cause ambiguous definition, others have

Generation of Formal Model Metrics

Proc. OCL 2009 3 / 16

been expressed using mathematical formalism. However, the latter requires some kind of
formal background and a good mathematical comprehension for understanding. In our
approach we use the Object Constraint Language (OCL) [6] for metrics definition which is
widely accepted as an interesting balance between formality and understandability.
Most of the model metrics proposed up to now aim to measure quality properties related to
architectural design. Therefore, many of these metrics are defined on the UML meta-model in
context of UML classes, etc., but are not usable at a lower level. Thus, a tool which defines
and deals with metrics for domain specific languages (DSL) written in OCL, in particular with
capabilities to generate these, is still missing. In this paper we present an approach to
automatically generate domain specific metrics for MOF based meta-models and a concept to
manage and compute them on models which conforms to these meta-models.
The paper is organized as follows. In section 2 we briefly summarize related work of model
metric definitions and tools for applying metrics to models. In section 3 our approach of how
to derive formal model metrics from meta-models will be described. Thereby, we briefly
introduce the Software Metrics Meta-model SMM by the Object Management Group (OMG)
and describe the main phases of the tool's metrics management and computation concept.
Furthermore, an overview over some metric generation rules is given including a description
and an example for each of them. In section 4 we describe a prototype implementation of the
above mentioned approach called Metrino. Finally, in section 5, we draw conclusions of our
work.

2 Related Work
A large number of object oriented metrics is available in literature. A broad overview and
comparison obj object oriented design model metrics are given in [12]. Several approaches can
be found in literature addressing the problem of ambiguous metric definitions. A tool which
calculates metrics for object-oriented languages is presented in [1]. In this approach, the
metrics are written as SQL queries over a relational database schema which serves as the meta-
model for the definition of metrics. In [2] the XML Query Language (XQuery) [18] is used to
define metrics based on the XMI serializations of meta-models. Another approach [3] proposes
a formal model for object-oriented design called ODEM (Object-oriented Design Model) as a
foundation to formally define metrics dealing with object-oriented design.
Baroni et al. [4] were the first authors who proposed the use of OCL (Object Constraint
Language) to formalize object oriented metrics. They described the MOOD metrics based on a
meta-model called GOODLY using OCL. Inspired of well known suites of metrics like
MOOD, MOOD2, MOOSE, EMOOSE AND QMOOD, they have developed a library called
FLAME (Formal Library for Aiding Metrics Extraction) [5] which contains several object
oriented design metrics upon the UML 1.3 meta-model formally expressed with OCL
invariants.
While numerous approaches for metric tools dealing with formal metrics on code level like
EMBER [13] has been proposed in recent years, the set of metric tools on model level is
comparatively small. One approach for the latter is the MOVA tool [14]. Beside some facilities
to draw UML class and object diagrams and formulate OCL constraints to precise models, the
tool provides some metrics functionality to manually create and compute OCL based metrics
for user models in a proprietary environment. For the metric application, the tool internally
maps a user model to instances of the MOVA meta-model which itself is a subset of the UML
meta-model. However, the metrics the tool can deal with, are only applicable to the user

 ECEASST

4 / 16 Volume 24 (2009)

models, but not on instances of them. Thus, it is not able to provide the ability to define
specific metrics based on the domain the user-defined meta-model describes.
[15] proposes a set of tools named MOODKIT G2 for the extraction of MOOD design metrics
from various OOD formalism such as code of OO programming languages like C++ and Java
and models expressed in modeling languages like UML. For each input type, a specific parser
implementation is needed. MOODKIT G2 uses a textural object oriented design language
named GOODLY as a meta-model for the metric definition.
Furthermore, Borland Together [20] is a representative of a so called COTS tool which
supports metric computation as well. Basically, it is a modeling tool that follows the MDA
approach by supporting the essential technologies such as UML modeling, OCL and QVT. In
terms of quality assurance, it utilizes the approach of Baroni et al. [4]. The metrics and
modeling guidelines, called audits, are also specified as OCL expressions. A standard set of
metrics, applicable to UML2 models, is provided. The metric set can be adapted and extended.
However, they are limited to UML2 models and no metric generation for DSLs is available.
There are not many tools available which take domain specific languages into account. One of
these tools to mention in this context is DMML (Defining Metrics at the Meta Level) [17].
They picked up the approach of [4] and decoupled its metric definitions from the underlying
meta-model by defining a separate metrics package containing a single class. Each metric is
specified as an operation in this class using an OCL body expression. In order to prove the
concept, they implemented the Chidamber and Kemerer metric suite upon the UML 2.0 meta-
model for the DMML tool. However, the tool is relatively hard to extend with other meta-
models since the user manually has to define a transformation/mapping of the meta-model to a
XML schema the tool understands. In addition, the user manually has to create the metrics as
OCL queries in a separate file according to the metric names he has to specify when loading
the corresponding meta-model. This is necessary, because the tool first creates the metrics
package extension to the meta-model needed as the basis for the generation of the
corresponding Java classes for the metric computation on instances of a model conform to the
meta-model. Although the DMML tool is - with some effort - usable to define metrics for
domain specific languages, it does not provide any concept for an approach for the generation
of metrics for DSLs.
Another relevant approach is the one presented in [20]. It deals with the visual specification of
measurements (metrics) and refactorings for any Domain Specific Visual Language (DSVL).
The approach is based on graph pattern matching. Visual patterns expressed in a DSVL called
SLAMMER are used to specify relevant elements for a measurement and refactoring type.
Within a meta-modeling tool called AToM, these patterns can be applied to a DSVL in order
to generate a modeling environment for the language providing corresponding concrete
measurements and refactorings. In addition, the generated environment allows to trigger
refactorings when a metric’ threshold is reached or exceeded. Though this approach is
dedicated to the same problem, it works in a complete different way since it does not OCL but
graphical patterns.

3 Automatic Generation of Metrics

3.1 Meta‐model for Metric Definition
Our approach uses the Software Metrics Meta-model (SMM) for the definition of metrics and
their computational results. The SMM specification [11] distinguishes between measures as
the evaluation process of particular quality aspects of software artifacts and measurements

Generation of Formal Model Metrics

Proc. OCL 2009 5 / 16

which can be interpreted as the results of those processes. For consistency reasons, we will
follow this naming convention.
Currently being available in beta status, SMM is a specification consolidated by the OMG for
an extensible meta-model that primarily should establish an interchange of measurements over
existing software artifacts. Those artifacts could be source code or - more interesting in the
context of this paper – models, as well. SMM contains meta-model classes for numerous types
of measures and their measurements including a set of contextual information.
As mentioned above, the meta-model specifies several types of measures and measurements
for different outcome values of the evaluation processes (measures). The latter could assign
either numeric values of a domain with a pre-defined ordering relation or numeric values
representing ratios (e.g. percentages). In addition, the SMM provides appropriate classes for
the mapping of values of a particular interval to a related symbol. In terms of SMM, these
types of measures are called Ranking. Symbolic values like “good”, “satisfying” and “bad” can
be considered as such a Ranking.
The two basic measure types are DimensionalMeasure for numerical evaluation result values
and Ranking for correspondent symbolic result values. Furthermore, the meta-model specifies
three subtypes of the DimensionalMeasure class. One of them is DirectMeasure whose result
value refers to the return value of a given operation stated in the corresponding property of the
class. Another type is the BinaryMeasure which associates two base measures and
accumulates their evaluation results using a binary function (functor). The last to mention
subtype of DimensionalMeasure is the CollectiveMeasure class. Measures of this type are
usable for model elements which aggregate other elements (children). Applied to such a
container, a CollectiveMeasure itself applies its related base measure to each aggregated
element to obtain a set of base measurements. Afterwards, these values are combined to the
overall value for the measurement of the CollectiveMeasure itself using a particular
accumulator like sum, minimum, maximum, etc. The set of available accumulators is
extensible by providing corresponding specializations of the CollectiveMeasure class.
The last to mention SMM measure type in this paper is the Counting class which is a subclass
of DirectMeasure. The given operation of a Counting measure acts as a recognizer function
and has to return either 0 or 1 based upon recognizing the measurand.

Fig. 1. Fundamental approach of the SMM meta-model

The fundamental approach of the SMM meta-model is shown in Fig. 1. Each measure has a
Scope which determines the set of possible elements the measure can be applied to. This set
can be constraint either by mentioning a class name each element in the scope should be an
instance of, the explicit enumeration of member elements (a set of MOF::elements) or the

 ECEASST

6 / 16 Volume 24 (2009)

reference to a boolean operation. Referred to as the recognizer, the latter provides a boolean
value for each element of the examined model which determines whether the particular
element should be a member of the scope or not.
As already mentioned, each measure produces a Measurement as result of the evaluation
process. For each measure type the SMM specifies a corresponding subtype of the
Measurement class, e.g. for DirectMeasure the DirectMeasurement class with a property value
holding the result value of the related operation. Each measurement has an association to an
object of type Observation which stores various contextual information related to the
measurement, such as the time of evaluation, the responsible tool, etc.

3.2 Model Metrics Generation Rules
The definition of model measures using OCL expressions has been done extensively for UML
models as outlined in section 2. Following these approaches, we also use OCL in our concept
to describe measures formally. However, in contrast to many other available solutions, we
target on a general approach which is capable of dealing with measures on any model conform
to the MOF meta-model. In practical environment we have identified the necessity to provide
measures for DSLs whose significance increase.
The definition of domain specific measures could be a very time consuming task, so that a
generative approach would be desirable. Therefore, beside the possibility to define custom
concrete measures for a domain specific model, we provide concepts to automatically generate
domain specific measures based on a set of generic rules. Fig. 2 shows the correlation between
the different relevant terms.

Fig. 2. Correlations between models, rules and measures

The generation rules themselves are formulated as OCL expressions upon the Meta Object
Facility (MOF) [7] meta-model. As part of the Eclipse Modeling Framework [8], the Ecore
meta-model is a famous and widely used implementation of the essential part of MOF (EMOF)
and thereby practically suitable to serve as the meta-model for the OCL expressions used in
generation rule definitions. The evaluation of a rule’s OCL expression when applying the rule
to a MOF conform meta-model results in a set of OCL tuples. Each tuple provides measure
specific data, e.g. its scope and its generated name, which are required to generate the
corresponding SMM Measure for the meta-model in context. The type of the generated

Generation of Formal Model Metrics

Proc. OCL 2009 7 / 16

measures is always identical to the measure type of the corresponding rule. In case of a rule of
type DirectMeasure, the data additionally has to contain a value for the measure’s operation
property value which itself is an OCL expression. A detailed explanation of these correlations
is given for one of the generation rules presented in the remainder of this section.
Regarding the measures defined in the currently available metric sets, we encountered basic
patterns and common aims of particular groups of metrics. These patterns lead to the definition
of numerous generation rules which allow the automatic derivation of domain specific
measures depending on the meta-model, the rules are applied to. The generated measures are
almost ready to run on models (instances of the meta-model) they are derived from. The only
thing, the user has to add in order to make a measure runnable, is its threshold value which
naturally depends on the acceptable value for the particular quality property being measured.
The measures generated on the basis of this rules can be tailored for the specific requirements
of a particular development process. In fact, these measures are able to provide a new kind of
model quality assessment since they work on an arbitrary meta-model and assess quality
aspects within a particular domain.
In the following sections we describe the set of generation rules we identified so far. For each
rule we shortly summarize the pattern which upon the rule is based and we illustrate the rule
by applying them on a common example. Each application of a generation rule results in a set
of measures presented as well. Due to space limitation we only present the complete
specification of the first rule and of the resulting measures. For the specifications of all rules
detected so far we refer to the appendix.
The sample meta-model used for the following rule examples is based on a meta-model of the
Eclipse help [9] and illustrated in Fig. 3. It is a simplified version of a library concept space.

Fig. 3. Sample meta-model of a library

 ECEASST

8 / 16 Volume 24 (2009)

3.2.1 Partitioning based on enumeration typed class property
Description. The rule is applicable to classes in the analyzed meta-model having one or more
attributes with an enum type. Since an enumeration defines a data type with a finite domain, it
is possible to partition the set of instances of such a class based on the enumeration’s literals.
The rule generates a specific Collective measure with sum accumulator and a corresponding
Counting measure as base measure for each enumeration literal which aims to count the
instances of a matching class grouped by the particular values of the enumerated type.
Therefore, the number of the generated measures is equal to the number of the literals of the
examined enumeration type.
As mentioned above, rules in our approach are defined upon the MOF meta-model. Since we
use EMF in our prototype, a rule is defined with elements of the Ecore meta-model. The model
classes and associations, the rule uses, are shown in Fig. 4.

Fig. 4. Model elements in Ecore meta-model used by the rule

The OCL operation property of the base measure which has elements of type EClass in scope
is formally specified as:

self.eAttributes->select(a | a.eType.oclIsKindOf(EEnum))

 ->collect(a | a.eType.oclAsType(EEnum).eLiterals->collect(l | Tuple {

 scope = self, nameFragments = Sequence {'NoOf',

 a.eType.oclAsType(EEnum).getEEnumLiteral(l.value).literal.upperFirst(),

 self.name.upperFirst()}, operationFragments = Sequence{

Generation of Formal Model Metrics

Proc. OCL 2009 9 / 16

 'self.', a.name,

 ' = ', a.eType.name, '::', a.eType.oclAsType(EEnum).getEEnumLiteral(l.value)

 .literal}}))

This rule uses an OCL helper operation “upperFirst” to transform the first letter of a string into
the corresponding uppercase letter (see appendix).
Example. The Book class of the library model has an attribute category of the enumerated type
BookCategory. This enumeration type contains three literals, namely Mystery, ScienceFiction
and Biography. The generation process on the library model using this rule would result in the
following three OCL tuples describing the resulting base measures:

Tuple{scope = Book, nameFragments = [NoOf, Mystery, Books],
operationFragments = [self., category, = , BookCategory, ::,
Mystery]}
Tuple{scope = Book, nameFragments = [NoOf, ScienceFiction, Books],
operationFragments = [self., category, = , BookCategory, ::,
ScienceFiction]}
Tuple{scope = Book, nameFragments = [NoOf, Biography, Books],
operationFragments = [self., category, = , BookCategory, ::,
Biography]}

The information provided by a tuple for a base measure are also used to generate the Collective
measure for the model class having a containment reference to the class in scope of the
corresponding base measure. In case of the first tuple the Collective measure
NoOfMysteryBooks will be generated for the enumeration literal Mystery. This measure uses a
generated base measure of type Counting whose operation property in OCL will be defined as
follows:

self.category = BookCategory::Mystery

When computed on a snapshot (instance) model of the Library meta‐model, the
Collective measure NoOfMysteryBooks will apply its base measure to all Book
instances contained in an instance of the Library class. For each Book whose
category value is equal to the enumeration literal Mystery, the Counting base
measure will return the value “1” and thereby increment the measurement value
of the Collective measure.

3.2.2 Number of contained Elements
Description. The rule detects classes in a meta-model having containment references. For each
match a specific measure is derived which aims to count the referenced elements of a detected
containing element in an instance model of the meta-model.
Example. According to the example library meta-model the rule produces six measures for the
Library class. These are:

 NoOfBorrowersLibrary
 NoOfEmployeesLibrary
 NoOfWritersLibrary
 NoOfBranchesLibrary

 ECEASST

10 / 16 Volume 24 (2009)

 NoOfStockLibrary
 NoOfBooksLibrary

3.2.3 Partitioning based on boolean class property
Description. The rule matches to meta-model classes which have at least one attribute of type
Boolean. For each of these attributes the rule leads to the generation of a model specific
measure which counts the instances of a matching class whose value for the examined attribute
is “true”.
Example. Applied to the example library meta-model, the rule generates three measures for
the attribute damaged of the model class AudioVisualItem. First of all, the measure
NoOfDamagedAudioVisualItem will be generated. Due to the fact that the classes BookOnTape
and VideoCassette are subclasses of AudioVisualItem, the rule would additionally create the
measures NoOfDamagedBookOnTape and NoOfDamagedVideoCassette, respectively.

3.2.4 Referential optionality
Description. The rule matches to model classes that are the origin of an association with a
lower bound value equal to zero. For each match the rule causes the generation of a measure
which counts the instances of a matching model class where the reference’s upperbound value
is equal to zero.
Example. Applied to our example meta-model the rule generates the following measures:

 NoOfBookOnTapeWithoutAuthor
 NoOfBookOnTapeWithoutReader
 NoOfEmployeeWithoutManager
 NoOfLibraryWithoutParentBranch
 NoOfLibraryWithoutBranches
 NoOfLibraryWithoutBorrowers
 NoOfLibraryWithoutBooks
 NoOfLibraryWithoutStock
 NoOfLibraryWithoutEmployees
 NoOfLibraryWithoutWriters
 NoOfWriterWithoutBooks
 NoOfLendableWithoutBorrowers
 NoOfVideoCassetteWithoutCast

3.2.5 Depth of instance tree
Description. This rule matches to nested class structures in a meta-model. These hierarchies
are modeled through recursive class associations or associations between classes joining the
same inheritance hierarchy (composite), respectively.
This rule can be considered as a semantic equivalent to the Chidamber & Kemerer metric
Depth of inheritance tree (DIT) shifted to a lower model level.
Example. An example for a nested structure, this rule matches to, can be found in the example
meta-model. The Library class has a containment reference to the Library class itself. This
association is meant to model a branch hierarchy of a library.
Applied to the library model, the rule would create a measure named DepthInLibraryTree
which is useful to calculate the depth of each branch, e.g. instance of the Library class, in the

Generation of Formal Model Metrics

Proc. OCL 2009 11 / 16

library’s hierarchy of branches. In case of class inheritance the name of the top level
generalization class is used to compose the measure’s name.

3.2.6 Number of children of an instance
Description. Like the rule Depth of instance tree this rule is applicable to nested class
structures in a meta-model. For each match a specific measure will be generated which
calculates the number of children of each class instance in the hierarchy.
Example. Based on the example library model, the rule would generate a measure for the
Library class. This measure, which would be called NoOfChildrenLibrary, counts the number
of branches of each particular Library class instance.

3.2.7 Referential existence dependencies between classes
Description. This rule is meant to generate measures which will detect referential existence
dependencies between instances of model classes sharing an association. These dependencies
can be found regarding the lower bound value of the association. If this value is greater than
zero, the existence of the instances of a class at the opposite association end are logically
dependent on the existence of instances of the class with the mentioned association end
(having the lower bound value greater than zero). The number of minimal required class
instances is determined by this lower bound value.
This rule assumes that instances which are associated with just so many instances, as the lower
bound value suggests, have a greater significance in the model since the deletion of one of the
associated instances will affect the deletion of the independent instance in order to maintain
the model valid.
The rule generates measures for each model class having an association to another class with a
lower bound value greater than zero for the opposite association end. A created measure
counts the instances of the scope’s class associating just as many instances of the other class as
the lower bound value of the meant association end claims.
Example. In case of the example library meta-model, the rule would match to the association
between the Borrower class and the interface Lendable. A borrower will only be captured in
the model if he borrows at least one lendable item. This is modeled by the lower bound value
“1” for the association end borrowed. Applied to the example meta-model, the rule would
create the measure NoOfBorrowersMinimalBorrowed which will count those instances of the
Borrower class that are associated exactly with only one instance of a class implementing the
Lendable interface.

3.2.8 Instance (usage) ratio in inheritance structures
Description. The rule applies to inheritance structures in a meta-model. For each subclass in an
inheritance hierarchy it creates a measure which calculates the ratio of the number of its
instances to the total number of the (polymorphic) instances of its super type.
Example. Focusing the inheritance tree of the library meta-model’s class Item, the rule would
generate the following six measures:

 RatioOfCirculatingItemToItem
 RatioOfPeriodicialToItem
 RatioOfAudioVisualItemToCirculatingItem

 ECEASST

12 / 16 Volume 24 (2009)

 RatioOfBooksToCirculatingItem
 RatioOfBookOnTapeToAudioVisualItem
 RatioOfVideoCassetteToAudioVisualItem

3.2.9 Aggregation of associated elements
Description. This rule matches to classes which have at least one multiplicity-many
association. It creates measures which apply aggregate functions to the instances of such a
class to assess the class-wide maximum, minimal, average, etc. value of referenced elements
count.
Example. Regarding the association employees of the Library model the rule would create
measures like:

 MaxEmployeesAllLibrary
 MinEmployeesAllLibrary
 AvgEmployeesAllLibrary

3.2.10 Aggregation based on numeric property
Description. This rule matches to classes which have at least one property with a numeric
type. It generates measures which apply aggregate functions to the instances of such a class to
assess the class-wide maximum, minimal, average, etc. value for the examined property.
Example. Referring to the Book class of the library meta-model this rule would lead to the
generation of measures like:

 MaxPagesAllBook
 MinPagesAllBook
 AvgPagesAllBook

4 Tool Support – Metrino
In this section we introduce a prototype implementation of our approach for the generation of
domain specific measures and its main operational phases. To be practically useful, the tool
additionally provides the functionality to manage and compute generated or user-defined
measures and to visualize their computational results in appropriate charts. The application of
the presented rule set could result in a huge number of metrics (measures). Not all of them are
of the same importance and therefore an adequate and tool-supported metrics management is
inevitable. The tool is implemented as a set of plugins for the Eclipse IDE and uses the OSLO
library [10] for the evaluation of OCL expressions occurring in both, rules and measures.
Since rules and measures in our tool are defined using OCL query expressions, all values of
the operations defined in the SMM meta-model, like the recognizer property of the Scope class
and the operation property of a DirectMeasure, are OCL expressions which are evaluated by
the OSLO OCL processor used in the prototype implementation. An example OCL expression
is presented in section 3.2.1.
The Metrino tool basically operates in four phases: the rule management phase, the measure
generation phase, the measure management phase and the measure evaluation phase. An
overview of these phases is depicted in Fig. 5.

Generation of Formal Model Metrics

Proc. OCL 2009 13 / 16

Fig. 5. The four phases of Metrino

In the rule management phase, the user can either define generation rules from the scratch or
load an existing rule model (e.g. based on the rule set presented in section 3.2) and modify its
contained rules. The rules defined in the rule model serve as input for the measure generation
phase. In order to run the generation process, the user first has to load a meta-model, measures
should be derived from, and then select the rules to use from a selection dialog (rule selection).
The tool then applies each selected rule to the meta-model and generates a measure for each
match. By default, the generated measures are grouped in SMM categories on the basis of the
model types they are applicable for. The result of the measure generation is an
exportable/saveable measure model (SMM model) containing all the generated domain
specific measures or even a tailored subset of them. The measures are almost ready to be
applied to an instance model. The only property, the user has to specify/modify, is the
measure's threshold value in order to obtain feasible graphical reports of the measure's
evaluation results (measurements).
Measure management phase: The generated measures can be modified freely. Of course, the
user additionally can define custom measures for the model or drop existing ones. In addition,
the user can group a particular set of measures to run at once, which assess the same quality
aspect of the model, as a so called audit.
In the measure evaluation phase, the tool applies a set of measures, the user has selected
before, to an instance of the model these measures have been generated for. Along with the
evaluation time and some other contextual information, the resulting measurements are stored
in the corresponding measure model.
It is important to mention that the four phases do not necessarily have to be run through
starting from the first – the rule management – phase since the user can load a existing rule
model or measure model. In this case, the rule management phase and the measure
management phase are optional so that the user directly can continue with the measure
generation and the measure evaluation, respectively.
The tool provides several charts for the graphical processing of evaluation results available in
the measure model. Beside Kiviat graphs to display numerous measurements for an element at
once and various other graph types, the tool is able to visualize the change of measurements
over time since the date of each measurement is available in the measure model. Fig. 6 shows

 ECEASST

14 / 16 Volume 24 (2009)

a screenshot of the prototype implementation depicting the main views of the tool and a Kiviat
graph for some measurement results.

Fig. 6. Screenshot Metrino

5 Conclusion and Further Work
In this paper, we have identified the need for a metric tool which is able to deal with domain
specific model metrics. Since the definition of metrics on this level could be very time
consuming due to their uniqueness, an approach for the automatic generation of those
measures would be desirable. As outlined in section 4, we were not able to find an approach or
even (prototype) implementation which provides such a facility using OCL. In order to meet
this deficiency, we have introduced a set of generic rules derived from patterns of model
measures already available in literature. Furthermore, we have described the fundamentals of
our approach for generating metrics for domain specific languages. Following the work in [5,
16, 17] we use OCL for the formal definition of both rules and metrics.
In order to facilitate our approach, we have developed a prototype which allows the generation
and evaluation of model metrics for DSLs. Based on the SMM as the underlying meta-model
for the definition of metrics and their computational results, the prototype implementation
additionally offers some functionality to manage rules and measures as well as several
facilities for the graphical processing of measure evaluation results and even its comparison
over history.
 In further steps, we plan to enhance our approach and the Metrino tool in different ways. First
of all, we plan to extend the set of measure generation rules in order to provide a broader basis
for the generation of domain specific measures. In addition, we intend to realize the measure
generation process as a model-to-model transformation using Query View Transformation
(QVT) [19]. Therewith, we will avoid the creation of an intermediate structural specification
for the generated measures like the currently used OCL tuple sets a rule returns. Moreover, we
plan to extend the Metrino tool with several features to create comprehensive reports for
measure evaluation results in standard formats such as Microsoft Office document formats.

Generation of Formal Model Metrics

Proc. OCL 2009 15 / 16

Finally, we target on applying our approach to more industrial case studies in order to get more
detailed feedback on the usability of our approach.

6 Acknowledgement
This research has been co-funded by the European Commission within the 6th Framework
Programme project Modelplex contract number 034081 (cf. http://www.modelplex.org).

7 References
1. Wilkie, F.G., Harmer, T.J.: Tool Support for Measuring Complexity in Heterogeneous

Object-Oriented Software. In: Proceedings of the International Conference on
Software Maintenance (ICSM’02), 152 (2002)

2. El-Walkik, M. M., El-Bastawisi, A., Riad, M. B., Fahmy, A.A.: A novel approach to
formalize object-oriented design metrics. In: Proceedings of Evaluation and
Assessment in Software Engineering (EASE’05) (2005)

3. Reißing, R.: Towards a Model for Object-Oriented Design Measurement. In:
Quantitative Approaches in Object-Oriented Software Engineering, (QAOOSE’01),
2001

4. Baroni, A.L., Braz, S., Brito e Abreu, F.: Using OCL to Formalize Object Oriented
Design Metrics Definitions. In: Proceedings of ECOOP Workshop on Quantitative
Approaches in Object-Oriented Software Engineering, Malaga, Spain (2002)

5. Baroni, A., Brito e Abreu, F.: A Formal Library for Aiding Metrics Extraction. In: 4th
International Workshop on OO Reengineering, Darmstadt, Germany (2003)

6. OMG: Object Constraint Language. http://www.omg.org/docs/formal/06-05-01.pdf
7. OMG: Meta Object Facility (MOF) Core Specification.

http://www.omg.org/spec/MOF/2.0
8. Eclipse Foundation: Eclipse Modeling Framework.

http://www.eclipse.org/modeling/emf/
9. Eclipse Foundation: Eclipse documentation.

http://help.eclipse.org/ganymede/topic/org.eclipse.emf.validation.doc/references/exam
ples/exampleOverview.html

10. Fraunhofer Institute for Open Communication Systems: Open Source Library For
OCL. http://oslo-project.berlios.de/

11. OMG: Software Metrics Meta-Model (SMM) 1.0 – Beta 1.
http://www.omg.org/docs/ptc/09-03-03.pdf

12. El-Wakil, M., El Bastawissi, A., Boshra, M., Fahmy, A.: Object-Oriented Design
Quality Models A Survey and Comparison. In: 2nd International Conference on
Informatics and Systems (INFOS04), Cairo, Egypt, 2004

13. Wilkie, F.G., Harmer, T.J.: Tool Support for Measuring Complexity in Heterogenuous
Object-Oriented Software. In: Proceedings of the International Conference on
Software Maintenance (ICSM’02), Montreal, Canada (2002)

14. Clavel, M., Egea, M., Torres da Silva, V.: Model Metrication in MOVA: A
Metamodel-based Approach using OCL. (2007)

15. Brito e Abreu, F., Ochoa, L., Goulão, M.: The GOODLY Design Language for
MOOD Metrics Collection. (1997)

 ECEASST

16 / 16 Volume 24 (2009)

16. McQuillan, J.A., Power, J.F.: A definition of the Chidamber and Kemerer Metrics
Suite for UML. Report NUIM-CS-TR2006-03, Department of Computer Science,
National University of Ireland, Maynooth, Ireland (2006)

17. McQuillan, J.A., Power, J.F.: Towards the re-usability of software metric definitions at
the meta level. In: European Conference on Object-Oriented Programming, Nantes,
France (2006)

18. W3C: XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/
19. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.

http://www.omg.org/docs/formal/08-04-03.pdf
20. Guerra, E., De Lara, J., Díaz, P.: Visual Specification of Measurements and Redesigns

for Domain Specific Visual Languages. Journal of Visual Languages and Computing
Vol. 19(3), Elsevier (2008)

