Electronic Communications of the EASST

Volume 24 (2009)

Proceedings of the Workshop
The Pragmatics of OCL and Other Textual Specification
Languages
at MoDELS 2009

Requirements Analysis for
an Integrated OCL Development Environment

Joanna Chimiak—Opoka, Birgit Demuth,
Darius Silingas, Nicolas F. Rouquette

15 pages

Guest Editors: J. Cabot, J. Chimiak-Opoka, F. Jouault, M. Gogolla, A. Knapp

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Requirements Analysis for
an Integrated OCL Development Environment

Joanna Chimiak—Opokal, Birgit Demuth?,
Darius Silingas®, Nicolas F. Rouquetté

1 Institute of Computer Science, University of Innsbruck, Ausanna.opoka@uibk.ac.at
2 Department of Computer Science, Technische UnivarBitesden, Germany
birgit.demuth@tu-dresden.de
3 No Magic Europe, Savanoriu av. 363, 49425 Kaunas, Lithuaaiais.silingas@nomagic.com
4 Jet Propulsion Laboratory, Caltech, M/S 301-270, 4800 Oak Growe Pasadena, CA
91109, USAnicolas.f.rouquette@jpl.nasa.gov

Abstract: An Integrated OCL Development Environment (IDE4OCL) can signifi-
cantly improve the pragmatics and praxis of OCL. We present the domaieisnc
tool-level interactions with OCL and the use cases we identified in a systematic
analysis of requirements for an IDE4OCL. The domain concepts is an inmporta
contribution of our work as it attempts to clarify inconsistencies in the relesyzat-
ifications. Because OCL is not a stand—alone language, the OCL larmdscaples
several interacting tools including an IDE4OCL. The use cases desxuribgsion

of the desired functionality unique to an IDE4OCL. The results of our aimbnd
the long term vision of our work should be relevant to developers of OGls tas
well as to the OMG Request for Information regarding the UML Futurér work

is relevant to the UML Futures Roadmap because providing OCL for thetredmts

in the UML specification has been a longstanding problem at the OMG.

Keywords: OCL concepts, OCL development, OCL pragmatics, OCL tool support,
requirement specification

1 Introduction

The specification and implementation of the Object Constraint Language)(iD@ilves three
language definition aspectssyntax, semantics and pragmatics. For any langgggex must
be specified prior to semantics since meaning can be given only to cori@ctigd expressions
in a language; semantics needs to be formulated before considering tles isbpragmatics
since interaction with human users can be considered only for expressiomse meaning is un-
derstood SK95. For OCL, the dependencies amongst these aspects are reflectedlimahe-
logical phasing of their maturity with pragmatics lagging behind semantics whiclygsnig
behind syntax.

For OCL, the broad support for the syntactic and semantic aspects ststmatincontrast with
the dearth of support fgragmatics. Formalisations of OCL syntax and semantics are the basis
for building tool support for automatic checking of syntactical corresgrand formal reasoning

1 http:/iwvww.omg.org/news/releases/pr2009/06-18-09.htm

1/15 Volume 24 (2009)

mailto:joanna.opoka@uibk.ac.at
mailto:birgit.demuth@tu-dresden.de
mailto:darius.silingas@nomagic.com
mailto:nicolas.f.rouquette@jpl.nasa.gov
http://www.omg.org/news/releases/pr2009/06-18-09.htm

Requirements Analysis for IDE4OCL Eﬁ

about properties of OCL specifications. In contrast to syntax and sesagoragmatics cannot

be formalised Bjo06]. However, pragmatics entices programmers to use a language. This im-
plies the fact that pragmatics does not need theory, it needs practictbss. Despite recent
advances in tool support for OCB{ 05], much remains to be done conceptually and technically
to encourage practitioners to work with OCL tooBHP0§ as defining OCL expressions is still
difficult, error—prone and a time—consuming tggtck01].

As a two—language hybrid artifact, a MOF-based model with OCL constrigiim&erently
moredifficult to understand and evolthan an equivalent single—language artifact. For hybrid
models, there is ample empirical evidence that the organization of the MO#d-bazdel has
a strong influence on the understandability of OCL constraints for that Impde07]. This
paper focuses on the pragmatics of OCL in the context of the life cyclewidhynodels. We
consider herénternal pragmatics, i.e. pragmatics within the OCL development process and
one considering its impact on developers.

In [CPPO0§, it was mentioned thabols’ constituents (editors, compilers, browsers) must im-
plement the functionalities established by integrated development envirts(hs). We want
to go one step further with a systematic requirement analysis for an inte@@&iedevelopment
environment, which we call IDE4OCL. Instead of targeting the ideal OCL, tee focus on an
IDE supporting the development of OCL specifications as part of amb@CL tools landscape.

In terms of an abstracted typical life cycle of an OCL specification tplar—do—check—act cy-
cle (Fig. 1), we focus on support of the second and the third steps where an pecifisation
is the focus of the development and verification activities. In the life cycleamsiderexternal
pragmatics, i.e. how the OCL specifications are used outside an IDE4OCL.

Act—use the OCL specifica-
tion to increase the quality of
systems built with the concep-
tual model. It is related to the
(external) pragmatics, as we
consider usage of the specifica
tion.

Check—assess if the OCL
specification meets the objec-
tives/requirements. It is related
to thesemantics as semantical
properties of the specification
are tested or verified, and (in-
ternal) pragmatics focusing on
ease of assessment.

Plan—determine objec-
tives/requirements of an OCL
specification for a conceptual
model.

Do—define the OCL specifica-
tion or a part of it to opera-
tionalize the specification ob-
jectives. It is related to theyn-
tax, as the syntactically correct
specification is defined using
error prevention mechanisms,
and (internal) pragmatics focus-
ing on ease of development.

Figure 1: A life cycle of an OCL specification seen as the Deming cy2t{84.

To flesh out the requirements for an IDE4OCL, we start with domain anaysisiefine the
system context specifying what are the responsibilities of an IDE4O@GEnTwe decompose

Proc. OCL 2009

2/15

@ ECEASST

the identified use cases into tool features that are similar to the features impteinmemodern

integrated development environments like Eclipse platform. The applied eeggiits analysis
approach is presented in more detail 8808 SB09. On first approximation, we identified
three classes of requirements: domain analysis, system context, andseseadel. Domain
analysis is based on a refined OCL metamodel, which is re—categorizedHeoptagmatical

view and extended with additional concepts from programming, such atimas of Project

and Library. For defining the system context, we focus on the informatoon lfetween tools
that either make use of OCL expressions or can help a developer speeifgluate them.

The structure of the paper corresponds to the requirement analysdatem IDE4OCL. At
first we analyse the domain of an IDE4OCL (Secti®)n Next we describe the identified use
cases and features (Secti®n The last section provides conclusion, and discusses relevance of
our work and future steps.

2 Domain Specification

In the subsequent subsections we define domain concepts and giviext @b an IDE4OCL.

2.1 Domain Concepts

Our proposal is based on our academic teaching and tool developrpeniesce PW09, C*0§]

and aims to clarify problems with understanding different concepts of Qu@tication by stu-
dents and developers. We also introduce axillary conc&i®7, CO09 as means to improve
OCL application to different metamodels and OCL development procesbelier understand-
ing we introduce domain concepts in three stages. At first we review thé @@s standard
specification PMGO4 (in the rest of the paper calletie standardor short) and introduce our
categorisation of related concepts (F&. Next we relate the OCL concepts with the model-
ing abstractions levels (Fig). Finally, we introduce concepts necessary for the context and
requirement specification for an IDE4OCL (Fi).

2.1.1 OCL Concepts

We propose 2—-layer viewof the domain concept for OCIOMGO0€g. It introduces a categori-
sation of these concepts considering a language defini#g®9 with syntax, semantics and
pragmatics. Within the domain description we preserve the original syntageamantics given

by the standard and we add the third perspective, namely (externathatiag, to express how
the concepts are used at a level of abstraction that matters for the IDEAQGIrements. This
model leaves out several aspects of pragmatics that are simply outpsf fwathe purposes of
this paper. In Fig2 we give an overview of concepts and show separation between syatactic
and pragmatic view.

The top row of thesyntactic context layer(above the dashed line in Fig) presents the top
level concepts with their meaning and relations correspondinQéG06, Clause 12.12]: Pack-
age(12121) Context Declaratioft2122) and Expression€?. The middle row introduces fur-
ther categorisation of context declarations depending on the type otextaal element'212),
i.e. for Classifier, Operation and Attribute or Association. The bottom ranesponds to the

3/15 Volume 24 (2009)

[

syntactical categories fronDMGO06, Section 12] with their original meaning preserved: Defini-
tion (12512126) '|nyariant(12612126) preconditiorf127:12129) postconditiod27212129) Op-

eration Body Expressioff21012128) |njtial Value Expressiol2812124) and Derived Value
Expressiori12912124)

Requirements Analysis for IDE4OCL

SYNTACTICAL VIEW

Package
o

Context Declaration

OCL Expression
1.

Classifier Context Operation Context Attribute Or Association
Context
Definition Invariant Precondition Postcondition Operation Initial Derived
Body Value Value
N N N N N N N
f f f f f f f
| <<abstraction>> I<<abslraction>> |<<abstraction>> I<<abstractic>n>> |<<abstraction>> |<<abstraction>> I<<abstraction>>
I ’ Explicit Constraint ’ Implicit Constraint |
|
| [[
AV \Z
Element Constraint
Definition

Statement |

PRAGMATIC VIEW
Figure 2: OCL concepts from syntactic and pragmatic point of view.

The leaf concepts of the syntactic context layer relate to the conceptsprtipmatic domain

layer (below the dashed line in Fig). A description of these concepts from left—to—right in the
figure follows.

Element Definition is a new model element added by the OCL specification. It is a Defini-
tion (12512127) which can introduce an attribute, an association or an operation.

Constraint is any construct used to impose restrictions on a model instance. It casfibedd
explicitly or implicitly.

Explicit Constraint groups syntactical categories that are explicitly classified as a constraint
the standard and which consist of an OCL expression of Boolean typenagiant, post-
and precondition. The standard explicitly introdugesirds(121% as a semantic concept.
We skipped guards in our domain concepts because a guard is a ptecofrdm the
syntactical view as well as from the pragmatic view.

Implicit Constraint groups syntactical categories that are not classified as constraints in the
standard and consist of OCL expressions of arbitrary types, i.e.at@erbody, initial
and derived value. This concept groups elements thatised as constraintd.e. to
impose restrictions on a model instance. They provide an expected ejurd. as a
derived value for an attribute, which is compared with an actual value @otdiom a

Proc. OCL 2009 4/15

@ ECEASST

model instanced), e.g. of the attribute, and this comparison forms an equation, a Boolean
expressiond=a), which is an implicitly—defined constraint.

Statement is the most general term in the pragmatic view. It is introduced to denote a single
chunk of an OCL specification that can be developed within an IDE4OCL.

2.1.2 Modeling Abstraction Levels

As mentioned before, OCL is a language which always depends on anwbdeling language.
Without another language used for modeling, it does not make any sedséirie constraints
because OCL is used for constraint specification but not for modelif it$ris, besides OCL,
a modeling language is required to define a model on which OCL constraait$etspecified
(Fig. 3). We assume the OMG MOF Four Layer Metadata Architecture which is usstaoge

and structure the metamodel, the model, and its model instances into a laydriectrce.

Generally, four layers exist, the meta—metamodel layer (M3), the metamodel (M), the

model layer (M1), and the model instance layer (MO).

Metamodel adaptedTo Pivotmodel extends_ | EssentialOCL

Mn+1 I / \
... e
I <<instanceOf>> <<instanceOf>> / \g<instanceOf>>
|
\
| isDefinedFor /
. [7 -
Model | Element Element Definition Constraint
0.*
Mn N 1 |
Mn-1 | <<instanceOf>> I |

isEvaluated | isEvaluatedFor |
Model Instance Element Instance ¢ — — — — — B
0 e k- - - - - - - - - = - —

Figure 3: Generic Three Metadata Layer Architecture for OCL

OCL statements can be defined on both, metamodels or models and be evaiuatediets or
model instances, respectively. Thus, the four layer metadata archéteetuibe generalized to a
Generic Three Metadata Layer Architecture [DW09]. On the Mn+1 layer lies the metamodel
that is used to define the model that shall be constrained. The metamodelsdefinodeling
language. Itis required that it is a MOF (or EMOF/Ecore)-based modeMid-/EMOF/Ecore
itself or an instance of MOF/EMOF/Ecore, like UML or a DSL (domain specifigleage). The
used metamodel has to be adapted to the so—called Pivot nizider] .

Pivot Model is an intermediate metamodel that allows the alignment of arbitrary metamodels
with that of OCL. By directly supporting generics in this metamodel, modeling dhef
template types and operations in the OCL standard library becomes posdilelgivdt
model is designed for any OCL tools and understood as a generalptanqeattern.

The Pivot model based architectureprovides therefore a flexible model repository adapta-
tion mechanism and allows using OCL for any modeling languages which is amtanpfeature

5/15 Volume 24 (2009)

Requirements Analysis for IDE4OCL Eﬁ

for an IDE4OCL. The Pivot model is designed on base of Essential [MBLG0q. Essential
OCL plays the role of the OCL metamodel. However, it should be noted thankssOCL

is currently not very well-defined. I'RG99, a more founded metamodel was proposed for
the first version of OCL. From a pragmatic point of view, Essential OCLdisqaate for the
implementation of the Pivot model, how it is proven in Dresden OCL2 for Ecligsethe Mn
layer lies the model which is an instance of the metamodel that is enriched byeti@cation

of OCL constraints. Finally, on the Mn-1 layer lies the model instance on whiel®CL con-
straints shall be verified. Please note, that in the context of such aigéa@r architecture, a
model instance can be both a model (like an UML class diagram) or an olifeca Java object
or relational data).

2.1.3 OCL Development Concepts

In the last stage of the concepts definition we introduce concepts4Figlated to the OCL
development process within an IDE4OCL and information exchange within @iet@ol land-
scape (Figb).

Model context Project userData | Model Instance
1 0.*
]
testData
packages (0..” usedLibraries |[0..* |0.* libraries
Package b Library tests Test Unit

usedLibraries |0..* 0.

Figure 4. OCL Development Concepts and their interrelations.

Project is a collection of packages and libraries that are developed within an IDE4OEC
braries can be imported (used). A project refers to a contextual modeltfich OCL
statements are defined and to model instances on which OCL statementdzatedva

Library is a kind of package with intent to be reusabl®J09. Libraries as reusable artifacts
can be imported into a library and form a hierarchy of libraries. Additionallijbrary
contains test units.

Test Unit is used to test an element definition before it is reused in another librarypar@CL
statement. It is related to a model instance which provides test data and iseacénsf
the library contextual modelJO09.

2.2 Context Specification

After a decade of several prototype implementations of OCL based tootsaletiains for mul-
tiple purposes, the OCL landscape is already manifold. This makes it difficalassify these
tools. We propose a simplified view on &CL tool landscape(Fig. 5) required to define the

Proc. OCL 2009 6/15

@ ECEASST

context of an IDE4OCL which is based on possible usage scenario€lof@W09]. Based on
our academic and industrial practice in OCL software development we i@eittifdl-integration
requirements for an IDE4OCL, which is responsible for developmemmwéct OCL statements
(corresponding talo andcheckin Fig. 1), whereas other tools consume OCL statements (cor-
responding taactin Fig. 1). The character of the overall architecture can be considered as a
toolchain or a collection of plug—ins.

From atoolchain perspective, portability of OCL expressions across tools requiresad to
to produce consistent OCL interpretations of the same OCL expressibissagproach requires
a complete OCL specification to be respected by every tool vendor invalvete toolchain,
including consideration of factors beyond the standard sucBRB(8 Section 3].

From aplug—in architecture perspective, there must be only one component responsible for
OCL interpretation. In this paper we assume possibility of exchanging O@tessions with
the full preservation of their semantics. This assumption enables us to amatea feedback
from usage of an OCL specification and thus impact its further developmenétime continuous
improvement in an OCL specification life cycle.

Modeling Tool 2]| Evaluation Results MDE Tool =]
» d
= <<Realizations>> - <<Realizations>>
onaECKage" Analyse Model Instance with OCL Transform OCL into Code
XPression | pesign Models and Model Instances Use OCL for Model Transformations
Verify Model Instances with OCL
Project
Package,
Model IDE4OCL]| ModelInsigrce | A Formal Verification Tool %]
> <<Realizations>> <<Realizations>>
Evaluate Statement Reason on/ Check Project
_ Manage Project Evaluation Results Project
> Specify Statement < >
Model, Verify Statement
Model Instance,
Project A4
Repository = Testing Tool =]
<<Realizations>> Project | <<Realizations>>
Store and manage models/projects Transform OCL into Tests
Project
»

L

Figure 5: The OCL tools landscape: relations between tools.

Below we will discuss particular tools in the OCL tool landscape iafmmation exchange
between them and an IDE4OCL, which itself will be described in the netibsedn the context
of an IDE4OCL, the most tightly related tools with bidirectional communication anedeling
tool, arepository and a formal verification tool. The remaining two tools, naeBIRE tool and
a testing tool, only consume OCL statements developed within an IDE4OCL.\‘éovedl tools
in the landscape exchange different artifacts, in the diagram we onlg foic communication
with an IDE4OCL.

A modeling toolis typically an UML tool that allows specification of constraints in any lan-
guage, most frequently just as strings. In this case the integration shtigthb(e.g. via plug—in
mechanism) as both tools provide services for one another and constiyuté@sis required by

7115 Volume 24 (2009)

Requirements Analysis for IDE4OCL Eﬁ

the hybrid nature of the models. On one side IDE4OCL provides OCL Expmes/Package for
a given model designed in the modeling tool, next they can be evaluated vitB#OCL. The
evaluation results can be returned to the modeling tool, where model verificat@nalysis is
performed. On the other side, model and model instances are requiredte ©CL statements.
Then they can be designed within the modeling tool.

Another possibility to obtain models and model instances is to fetch them frepoaitory.

In our architecture we consider a repository which plays a role similar tosgovemanagement
system in software development or a data warehouse in a database syktenepository is a
generic one, i.e. it is a kind of MOF repository whose structure is not méted by an under-
lying metamodel, thus it can store any MOF based metamodels, models, modeatéssiacL

expressions and projects. The artefacts from the repository can dedid@o an IDE4OCL as
working copies and subsequently modified and archived. Specifyingaimplete functional-
ity of a repository is a complex topic beyond the scope of this paper, thuomgder only it

realizing storage and management of models/projects. Other tools cas Hueespository to
obtain desired OCL expressions together with related models, but as merieioee we focus
on communication with an IDE4OCL only.

The last tool which is tightly related to an IDE4OCL igamal verification tool . This tool
has a producer and consumer role, as it can help to obtain semanticaligtd®€L specifica-
tions and use them to formally verify model instances. It is crucial to hayeiaa of formal
reasoning supporting an IDE4OCL to be able, e.g. to determine a specifisatisfiability or
to detect contradicting constraints. However, formal verification is a togptex problem to be
considered as an integral part of an IDE4OCL. Instead we considartegration of existing
approaches, such as HOL-OTIBWO08] an interactive proof environment based on a semantic
framework described ingru07), an interactive theorem proveBHSO07 (the transformation is
a part of the KeY toodl) based on a translation of UML class diagrams with OCL constraints into
first—order predicate logic described BHS02Z], PVS* a theorem prover together with a trans-
lation of UML class diagrams and a subset of OCL into its input languageidedadn [Kya04d|.

Two approaches regarding the OCL evaluation can be consideredyrettgion and code
generation. The first one we consider to be in the scope of an IDE4Q@itibnality, but the
second one not; we outsource it like the formal verification. We considsida generation
to several target languages, such as Java and SQL, to be in the $@pBIDE tool (model
driven engineering), which obtains OCL Statements and related informagionain IDE4OCL.

In case of &ode generatqithe execution of the target language code is done by a runtime system
independently of an IDE4OCL. The generative approach includesteps:s(1) The code for

an OCL statement must be generated, most frequently by using templatesgortmeation
rules defined on the metamodel elements for the model and its constraints @vid-Nn). (2)

The generated code must be woven with the model or application code. ékratittionality

of an MDE tool, where input from an IDE4OCL can be used, tsamsformationof a model

into another model defined on another metamodel. A model (Mn = M1) is trametbusing
transformation rules defined on its metamodel (M2). The OCL constraintffigpeon the model

2 http://www.brucker.ch/projects/hol-ocl/
3 http://www.key-project.org/
4 http://pvs.csl.sri.com/

Proc. OCL 2009 8/15

http://www.brucker.ch/projects/hol-ocl/
http://www.key-project.org/
http://pvs.csl.sri.com/

@ ECEASST

are transformed as well. Examples for model transformations are UML/O@Qio schema
transformatior?, or UML/OCL to XML/XQuery transformation.

A similar approach is used for testing.tésting toolgenerates code based on OCL constraints
to verify constraints for objects during software development. Typicallyl @onstraints are
defined on a model (Mn = M1) for which a code implementation shall be testéjl (M

As already mentioned, our view of the OCL tool landscape is simplified, banitoeeasily
extendedwith other tools like model execution tools, e.gZM07] or model simulation tools,
e.g. KDHO7] which would communicate with an IDE4OCL in mono- or bidirectional manner
to complete alternative OCL development or OCL usage scenarios. It istampoo precisely
define scope of responsibilities, information flow and later on requiredaties.

3 Requirements

Based on the domain description provided in the previous section and peri@xce in tool
development, we present the requirements for an IDE4OCL: use &aetsof3.1) and features
(Section3.2). We based our selection on passive observation of improvement in GChand

IDE landscape as well as an active participation in OCL tool developmentincfease the
completeness of the selected features we discussed our selection wittvelaper teams.

3.1 Use Cases

We distinguished four main use cases (to be realised by IDE4OCL, corfjgarg), namely
specification, evaluation and verification of statements and project manageme

Specify Statement This is the basic use case of an IDE4OCL, where an OCL developer spec
ifies an OCL statement. We consider here the creation of a new statementh&guoratch or
modification of an existing one. Since OCL has a well-defined textual censyatax, the re-
quirements for editing OCL expressions are similar to those for editing scode in textual
languages. In this use case we consider also such functionality amriafgcreuse, and debug-
ging, which are described in the feature subsection.

Evaluate Statement A specified statement can be evaluated by an OCL interpreter, which
parses and executes the statement defined on the model for the modelanstarking on the
model and its objects (Mn and Mn-1). This use case can be performextjoast from an OCL
developer or from another tool in the OCL tool landscape. As mentione@dtidh 2.2, we
consider the evaluation in form of code generation as an outsourcetiofuality.

Verify Statement We can consider formal and empirical attempts to verify an OCL specifi-
cation. The former one, as mentioned in Sectto?) we consider to be outsourced, due to its
complexity. The latter one in form of statement testing, should be supportad HYE4OCL.
Testing is a complementary means to a formal verification. It enables dynaalisesnas op-
posed to formal verification enabling a statical analysis of hybrid modeleaeler, testing of a

5 http://dresden-ocl.sourceforge.net/

9/15 Volume 24 (2009)

http://dresden-ocl.sourceforge.net/

Requirements Analysis for IDE4OCL Eﬁ

OCL statement is crucialJO09, it is not so well-accepted as testing of programs where it is
used as an evaluation and prevention mechan{ShiBE. There are many reasons for testing.
In the context of OCL the most important ones are the facts that testihges bugs in existing
and new features, is good documentation, reduces the cost of cremagges refactoring, de-
fends against other programmers and reduces fB&03. An IDE4OCL should at least support
testing at the unit test level, i.e. testing of single OCL statem&XBOd.

Manage Project For an efficient support of OCL development, especially if one has tb dea
with big projects, management of all artifacts within a project is required. d$gscase covers
management issues within an IDE4OCL and related to communication with other tiools
respect of an IDE4OCL, the current status and dependencies Imebilesertefacts as well as
navigation between them should be supported. Concerning the communiwgétiather tools,
fetching and storing artifacts from and to other tools should be supported.

3.2 Features elicitation

In this subsection we list general and specific features of an IDE4©@lsing on the statement
specification use case. To colleneral featureswe use experience with existing successful
tools covering different types of textual languages, namely programmiddcamal ones. The
general features are applicable to an IDE4OCL as OCL has a manifaldatba On the one
hand, regarding textual syntax OCL is similar to programming languages anldrig term
experience with tools supporting work of programmers can be inspiratiodefaglopment of
OCL tools. On the other hand, as it is more formal than programming langussiesly similar
difficulties appear as in the formal specification domain, therefore this feeldbe a further
inspiration. To collecspecific featuregin italics) we based on experience with OCL tool usage
and development as well as our involvement in the standardisation pro&ssge do not want to
prioritize features we list them in alphabetical order. The prioritizing ofufiess and completion
of the list should be a further discussion topic to become a referencerldg¢velopment of new
OCL tools or improvement of existing ones.

Association End NavigabilityOCL implementations should support association end navigabil-
ity independently of the navigability of the underlying association in the modeloAgh
navigability (as defined in UML) should not matter for OCL, the OCL spedificais suf-
ficiently vague on this poifitthat it creates significant problems for OCL implementations
that provide such support. Proposed improvements for OCL&& important for the
pragmatics of OCL as long as the MOF metamodels are sufficiently well-formedith a
ambiguities even if support for navigating non—navigable associationieastailablé.

Autocomplete enables predicting a word or phrase that the user wants to type in withaigehe
actually typing itin completely. Not only OCL grammar but also an underlying metaino
has to be included in the autocomplete mechanism. For example, selection drectass

6 http://www.omg.org/issues/ocl2-rtf.open.html#lIssue10825
7 See Clause 7.5.3 initp://www.omg.org/cgi-bin/doc?ptc/09-05-02
8 e.g., sednttps://bugs.eclipse.org/bugs/shbwg.cgi?id=194245

Proc. OCL 2009 10/15

http://www.omg.org/issues/ocl2-rtf.open.html#Issue10825
http://www.omg.org/cgi-bin/doc?ptc/09-05-02
https://bugs.eclipse.org/bugs/show_bug.cgi?id=194245

@ ECEASST

after typing the context keyword or suggestions for dot and arrowgatiens. The point
to address accessibility of elements, i.e. developing a well-formed OCL esquaareful
check that the references in an OCL expression resolve to accedsiblengs from the
context of that OCL expression. This feature can improve efficiendyease of editing
and additionally provide an error prevention mechanism.

Auto Indentation helps to better convey the structure of code to human readers. In case of
OCL, indentation can be used to show the relationship between nestedratsuctu

Basic Editing is a set of features related to editing any kind of text documents, whiche&an b
useful when editing OCL statements. In this category the following featae$e con-
sidered: spell checking, regular expression based find & replawidor multiple line),
encoding and newline conversion, multiple undo/redo, rectangular bédekton. These
features can improve ease of editing.

Code Folding enables user to selectively hide and display sections of an edited file, ighich
especially useful in case of editing large files.

Collaborative Editing allows several people to edit a file using different computers. This fea-
ture could be also realized as a repository functionality. The advantageiofplemen-
tation within an IDE4OCL is possibility of team/pair work to enable knowledge feains
(e.g. teacher—student) also in the case of geographically spreadpkngelo

Debugging, especially a systematic debugginge|05 is unavoidable and a major economi-
cal factor, especially if a language is perceived as difficult to undeista bugs are not
obvious. It should support developers in understanding a natureasedof a bug offer-
ing functions such as running a statement step by step, breaking a statersgatnine
the current state, and tracking the values of some variables. Additionaltwld enable
to modify the state of variables while an OCL statement is interpreted and settiag sta
guards. For traceability, automation and logging of all debugging activitiesgsrtant.

A support of test generation based on debugging activities is an opfioraionality.

Document Interface is a set of features supporting editing of multiple documents and it covers
support of: multiple instances, single and multiple document window splitting, multi-
ple document overlappable windows, tabbed document interface. pésiedly a useful
feature while working with hybrid models and enables following relationshgis/éen
textual and graphical notations.

Hybrid OCL/MOF View should provide an Abstract Syntax Tree and additionally highlight the
context of any OCL expression in the MOF-based metamodel. The prolflbaybaod
OCL/MOF metamodel view is new and the recent discussions amongst eqperis
OMG? indicates that experts could also benefit from better tool support fohttisd
view.

Macro mechanism enables short sequences of keystrokes and mouse actions to bertreausf
into other, usually more time—consuming, sequences of keystrokes ane aaiimms.

9 http://www.omg.org/issues/issue7364.txt

11/15 Volume 24 (2009)

http://www.omg.org/issues/issue7364.txt

Requirements Analysis for IDE4OCL Eﬁ

Name ResolutionThe environment of an OCL expression defines what model elementsare v
ible and can be referred to an expressioiV[G06, Clause 8.3]. Such references often take
the form of simple or package—qualified names. However, adequatersfi@pname res-
olution in OCL may require additional operations extending the metamodel obthaid
for name resolution purposes as indicated in the OCL specification for the tiisth-
model OMGO6, Clause 8.3.8]. In fact, the OCL specification is unnecessarily specific
regarding the UML as the additional operations would be required of a@y vheta-
model which includes the metaclasses extended in Clause 8.3.8. For exatepjeate
name resolution for foundational UML (fUML) model8would not require the additional
operations for State or Transition since fUML does not merge the Bel&taimiMachines
package of the UML superstructure.

Profiler enables performance analysis using information gathered when an OG- Sta
ment/Specification is evaluated. In case of programs, it is typically used tordete
for which sections of a program it is profitable to make optimization. Similarly,ntla
used to determine which OCL statements are most frequently evaluated asafotheir
optimization.

Refactoring Support for renaming and restructuring entities preserving the original semantics.
For full support dependencies between statements must be analyzetbtonpeeries of
renaming activities. Also, extracting a definition or a template from a statemeulishe
supported to avoid code duplications.

Reuse Supportcan be realized at different levels. At the same abstraction level OCé cal
be reused by composition of statements, template and library import mechanismesc-A
ification from the upper abstraction level can be reused during develdpha specifica-
tion at a lower level to to ensure correctness of metamodel instantiation (ceiQP08
Feature 2 in Section 5]).

Statement/Element Browserenables to browse, navigate, or visualize (e.g. as an outline) the
structure of an OCL project, including OCL Statements, Elements and Elenstahtes
(compare CPP08 Feature 5 in Section 5]).

Statement Coverageis used to measure the degree to which an OCL specification has been
tested. To implement this feature coverage criteria have to be defined.

Static Statement/Specification Analysisis the analysis conducted without evaluation of a
Statement/Specification and provides highlighting possible coding errormatrits in
simple cases or proofs of program properties by applications of formtiads. The
second option we will consider as to be outsourced.

Symbol Databaseenables quick and easy location of Statements, Elements, Element Instances
and so on based on indexing.

10 http://www.omg.org/spec/FUMIOMG document ptc/2008-11-03

Proc. OCL 2009 12 /15

http://www.omg.org/spec/FUML/

@ ECEASST

Syntax Highlighting enables displaying OCL code in different colors and fonts according to
the category of terms. As OCL is not a stand alone language, additionally ©Ghe
grammar, an underlying metamodel should be considered.Error Highlighting can
be considered as a special type of this features, where syntactima etated to OCL or
the metamodel (e.g. unknown classifiers used as a context) are strgsgextial type of
highlighting. Brace Matching is also a syntax highlighting feature, which show matching
sets of braces to help to navigate through the code and spot any imprdpéimgaThose
mechanisms can improveadabilityand is an error prevention mechanism.

Template Support enables definition, usage and management of templates. Itis related to refac
toring and reuse features.

Visibility and Lexical Scoping MOF metamodels have complex visibility rules due to the se-
mantics of Element/Packagelmport and PackageMétgeThese rules are particularly
confusing because the same package can have two distinct interprethmersding on
its role as a source or as a target of a package merge or import relatiombBigontext—
sensitive interpretation of a package has subtle implications for the namati@sf
OCL constraints in the context of a package with two distinct interpretatioostats
extent.

4 Conclusions

In this paper we presented systematic analysis of requirements for afOICIE4vhich in our
opinion can significantly improve pragmatics of OCL. We identified domain quscénterac-
tions within OCL tools, use cases and features of an IDE4OCL from thaeaua, standardisa-
tion and industrial point of view represented by authors and their cobiédusr experience.

To improve results of our requirement analysis we want to discuss opogabwith members
of the OCL community (questionnairésand interviews). Based on their feedback we plan to
realise future design steps of an IDE4OCL and compare existing toolspaate® the final list
of features. Our work should also be considered as a first step toateegge heterogeneous
landscape of OCL tools. We hope it to be an inspiration for a cooperatioveba academic
and industrial tool developers, which enables standardisation of mgeharotocols between
tools and in the long term will increase usage of OCL by practitioners.

AcknowledgementWe would like to thank Dan Chiorean for his feedback on our work andringpdiscussions
during his visits in Innsbruck and Dresden. Furthermore, we thanksadieagues from the Dresden OCL developer
team, especially Michael Thiele, for discussing features for an IDH4OC

11 Clause 7.3.15,39,40 bftp://www.omg.org/spec/UML/2.2/Superstructure/RMG document formal/2009-02-
02
12 on-line surveys are accessibléngtp://squam.info/ide4ocl/

13/15 Volume 24 (2009)

http://www.omg.org/spec/UML/2.2/Superstructure/PDF
http://squam.info/ide4ocl/

Requirements Analysis for IDE4OCL Eﬁ

Bibliography

[Ack01]

[B+05]

[BCO3]

[BDO7]

[BHS07]

[Bjo06]

[BKS02]

[Bruo7]

[BWOS]

[C*07]

[C*08]

[CO09]

[CPPOS]

[Dem86]

J. Ackermann. Fallstudie zur Spezifikation von Fachkompomente2. Workshop
Modellierung und Spezifikation von Fachkomponengn 1-66. Bamberg, Deutsch-
land, 2001. (In German).

T. Baar et al. Tool Support for OCL and Related Formalisms - NeedSeends. In
MoDELS Satellite Evente NCS 3844, pp. 1-9. Springer, 2005.
http://Igl.epfl.ch/members/baar/oclwsAtModels05/reportOCLWSAtModels05.pdf

E. Burke, B. Coyner. Top 12 Reasons to Write Unit Tests. 2200
http://www.onjava.com/pub/a/onjava/2003/04/02/javaxpckbk.html

M. Brauer, B. Demuth. Model-Level Integration of the OCL Standard Librasing
a Pivot Model with Generics Support. Pp. 182—-193nm{07.

B. Beckert, R. Ehnle, P. H. Schmitt (eds¥erification of Object-Oriented Software:
The KeY ApproachLNCS 4334. Springer-Verlag, 2007.

D. Bjorner.Software Engineering 2: Specification of Systems and Languagesi(ilrexts
Theoretical Computer Science. An EATCS Seriggjinger-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

B. Beckert, U. Keller, P. H. Schmitt. Translating the Object CaistrLanguage
into First—order Predicate Logic. In Proceedings, VERIFY, Workshop at Federated
Logic Conferences (FLoCIPp. 113-123. 2002.

A. D. Brucker.An Interactive Proof Environment for Object-oriented Specifications
PhD thesis, ETH Zurich, Mar. 2007. ETH Dissertation No. 17097.
http://www.brucker.ch/bibliography/abstract/brucker-interactive-2007

A. D. Brucker, B. Wolff. HOL-OCL: A Formal Proof Environnm for UML/OCL.
In FASE LNCS 4961, pp. 97-100. Springer, 2008.

A. L. Correa et al. An Empirical Study of the Impact of OCL Smells anthB®rings
on the Understandability of OCL Specifications. Pp. 76—90rind07.

J. Chimiak-Opoka et ahdvanced OCL Editobased on Eclipse OCIRresentation
in the OCL2008Workshop collocated witivioDELS’2008 9 2008.

J. Chimiak-OpokaOCLLib, OCLUnit, OCLDoc Pragmatic Extensions for the Ob-
ject Constraint Language. INodel Driven Engineering Languages and Systems,
MODELS 2009|-NCS 5795Pp. 665-669. Springer Verlag, 2009.

D. Chiorean, V. Petrascu, D. Petrascu. How my favorite tggbarting OCL must
look like. EC-EASSTOCL Concepts and Tools 200%, 2008.

W. Deming.Out of the Crisis MIT, Center for Advanced Engineering, Cambridge,
MA, USA, 1986.

Proc. OCL 2009 14 /15

http://lgl.epfl.ch/members/baar/oclwsAtModels05/reportOCLWSAtModels05.pdf
http://www.onjava.com/pub/a/onjava/2003/04/02/javaxpckbk.html
http://www.brucker.ch/bibliography/abstract/brucker-interactive-2007
http://squam.info/ocleditor/
http://squam.info/ocleditor/media/2008-09-30-OCLWorkshopDemo.html
http://www.fots.ua.ac.be/events/ocl2008/?page=Program
http://www.irit.fr/models/index.html
http://http://joanna.opoki.com/papers/Opoka2009OCLLibOCLUnitOCLDoc
http://www.springerlink.com/
http://eceasst.cs.tu-berlin.de/
http://eceasst.cs.tu-berlin.de/index.php/eceasst/issue/view/22

B

ECEASST

[DWOO]

[GH88]

[JZMO7]

B. Demuth, C. Wilke. Model and Object Verification by Using DresdOCL. In
Proceedings of the Russian-German Workshop Innovation Informa&icmologies:
theory and practiceUfa, Russia, July 2009.

D. Gelperin, B. Hetzel. The growth of software testi@@mmun. ACMB1(6):687—
695, 1988.
doi:http://doi.acm.org/10.1145/62959.62965

K. Jiang, L. Zhang, S. Miyake. OCL4X: An Action Semantics gaage for UML
Model ExecutionComputer Software and Applications Conference, Annual Interna-
tional 1:633-636, 2007.
doi:http://doi.ieeecomputersociety.org/10.1109/COMPSAC.2007.158

[KDHO7] A. Kirshin, D. Dotan, A. Hartman. A UML Simulator Based on a GeoeModel

Execution Engine. Pp. 324-326. 2007.
http://dx.doi.org/10.1007/978-3-540-6948%40

[Kya06] M. Kyas. Verifying OCL specifications of UML models : tool support and compo-
sitionality. PhD thesis, Lehmanns Media; Faculty of Mathematics and Natural Sci-
ences, Leiden University, 4 2006.
https://openaccess.leidenuniv.nl/dspace/handle/1887/4362

[mod07] Model Driven Engineering Languages and Systems, 10th Int. ConbBUS 2007,
Nashville, USA, ProceedingsNCS 4735. Springer, 2007.

[OMGO06] OMG. Object Constraint Language. OMG Available Specificati@rsion 2.0. May
2006.
http://www.omg.org/cgi-bin/doc?formal/2006-05-01

[RG99] M. Richters, M. Gogolla. A Metamodel for OCL. WML. LNCS 1723, pp. 156-171.
Springer, 1999.

[SB0O8] UML-Intensive Framework for Modeling Software Requireme2e8.

[SB09] D. Silingas, R. Butleris. Towards Implementing a Framework for &lind Software
Requirements in MagicDraw UMLUnformation Technology And Contr88(2):153
— 164, 2009.

[SK95] K. Slonneger, B. KurtzFormal Syntax and Semantics of Programming Languages:
A Laboratory Based Approaciddison-Wesley, 1995.

[Zel05] A. Zeller Why Programs Fail: A Guide to Systematic DebuggiMgrgan Kaufmann,
October 2005.

15/15 Volume 24 (2009)

http://dx.doi.org/http://doi.acm.org/10.1145/62959.62965
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/COMPSAC.2007.158
http://dx.doi.org/10.1007/978-3-540-69489-2_40
https://openaccess.leidenuniv.nl/dspace/handle/1887/4362
http://www.omg.org/cgi-bin/doc?formal/2006-05-01

	Introduction
	Domain Specification
	Domain Concepts
	OCL Concepts
	Modeling Abstraction Levels
	OCL Development Concepts

	Context Specification

	Requirements
	Use Cases
	Features elicitation

	Conclusions

