Electronic Communications of the EASST

Volume 25 (2010)

Proceedings of the Workshop
Visual Formalisms for Patterns
at VL/HCC 2009

Pattern Catalogs using the Pattern Language Meta Language
Andreas Wolff, Peter Forbrig

11 pages

Guest Editors: Paolo Bottoni, Esther Guerra, Juan de Lara

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Ea ECEASST

Pattern Catalogs using the Pattern Language Meta Language

Andreas Wolff!, Peter Forbrig?

1 andreas.wolff@uni-rostock.&meter.forbrig@uni—rostock.de
http://wwwswt.informatik.uni-rostock.de
Universitt Rostock, Germany

Institut fur Informatik

Abstract: This article focuses on the pattern language PLML. Some enhancements
and corrections to it are proposed to make use of PLML in pattern catalalgs-
tionally, a textual domain specific language as human-readable variabtif B
proposed. Supporting editors, textual and graphical, which werdapma using
model-based techniques are presented.

Keywords: HCI pattern, pattern language, model-based editor

1 Introduction

Object-oriented design patterns, as introduced by Gamma etGalJ\J0d, are considered a
valuable aid in software development. Patterns were identified in many othrei® of com-
puter science. One such domain is human computer interaction (HCI). Hermado exist
for many different aspects of the user interface of an application. ¥amnple for navigation
through an interface, its layout, input modalities or presentation.

A number of pattern catalogs has been compiled by the HCI community. Wellrkegam-
ples are the catalogs of Tidwellid] and Van Welie yW]. On examining HCI patterns in those
catalogs one soon discovers certain problems:

e There is no consistent naming of patterns across those collections. Multipilesefor
what is essentially the same pattern are likely.

Intra-catalog references are rare, cross-catalog referencestaloreexistant.

Aspects of a pattern that are detailed in a pattern entry differ. This is tpironaming
but also in extent. (e.g. a problem or solution description is omitted)

The abstraction level differs from pattern to pattern.

The pattern solution is given very informal, mostly text accompanied by pi&forellus-
tration purposes.

Of course, the findings above are not novel. There are approxbesdardize pattern catalogs.
The XML dialect PLML [Fin03 is such an attempt. It was developed to define a common base
of how to describe patterns. PLML defines a pattern language and &arge format. It
was constructed to cover generic patterns, not for HCI patterns in ylartidVithout having a
specific domain as boundary, it was not possible to restrict the langlemers beyond very

1/11 Volume 25 (2010)

mailto:andreas.wolff@uni-rostock.de
mailto:peter.forbrig@uni-rostock.de
http://wwwswt.informatik.uni-rostock.de

Pattern Catalogs using the Pattern Language Meta Language Eﬁ

class
diagram

class
diagram
(analysis)

(design)

S—_—_

application
model

relation

transformation

o —_———

N L4 V 4
el dialog <’
> graph

Figure 1: General view on a transformational model-based developrmwdss

basic constraints. Therefore PLML itself does not overcome the lactrofdiization problem
mentioned earlier.Section 20of this paper presents PLML in some detail and also introduces
some enhancements proposed by us.

In our research we develop a pattern-based approach to modat-disez interface engi-
neering. Therein we consider software development as a sequenaesibrmations of models.
Figure 1shows the source and target models and the in-between transformatmapproach.
Further details of this process are described for examplé/iCjR0OT.

More important, than the details of our approach, for the scope of this ajtee ubiquitous
use of pattern-based transformations. One consequence of this wasetthé¢o specify those
transformations. Our goal always was to create a semi-automatic humanoHeahoverall pro-
cess, which will be supported by appropriate tools for every transfitmmatep. Therefore we
had to store patterns in a machine readable manner.

The current focus of our research is the lower parfigfure 1, the generation of user inter-
faces (Ul). We attempt to represent HCI-patterns for Uls in a suitabjeswdhey can be used
within our MDA process. This is done by transforming the pattern idea intecaked pattern
instance component (PIC). Such a PIC is basically an attributed template thatcheae some
programming logic. Itis called instance component, since we consider the tertgolee already
an instance of the pattern that is described through this component. Weaaeed the fact that,
due to their nature, not all known HCI patterns can be treated as or tethgiéo an algorithm
oraPIC.

Comparable work has been done for the original Gamma patterns by Arowi4], who

Proc. VFfP 2009 2/11

Ea ECEASST

investigated and, where possible, created usable components of dettigmgp for the Eiffel
programming language.

The language used for our pattern instance components is domain specsfés toterfaces, it
was outlined in RWF0§. Nevertheless, it is a XML-based language and therefore it is possible
to contain it in or link to it from most existing pattern languages.

As our whole approach is model-based, we developed a pattern lanthsgdso is based
on models. It is compliant to PLML and able to hold PICs. Also it is possible te@ giattern
descriptions of patterns whose solution cannot be specified using a RéQest of this paper
presents this pattern languag8ection 3shows a textual domain specific language (DSL) as
interface to our catalog. I18ection 4a possile graphical interface is discussed and generated as
model-based graphical editor.

2 Pattern Language Meta Language

2.1 Overview PLML

The pattern language meta language PLML was developed by a groujxetiaiders during a
workshop. The idea behind, was to formalize the description of patterneiually merge all

existing pattern languages or at least to have a general interchamggt.fdt was designed to
be able to describe patterns on any abstraction level and of any domaideBlee pure pattern
description a number of identifying meta data became standardized.

[<IELEMENT pattern (
name?, confidence?, aliasynopsis?, illustration?,
context?, problem?, forces?, evidence?, solution?, alia@y
implementation?, relatecgpatterns?, patterdink,
literature?, management?)
<!IELEMENT management (
author?, revisiornumber?, creationdate?, lastmodified?,
change-log?, credits?}
<IATTLIST pattern
patternIDCDATA #REQUIRED
collectionCDATA #REQUIRED
>
<IATTLIST context mylabeCDATA #IMPLIED >
<IATTLIST pattern-link
type CDATA #REQUIRED
patternIDCDATA #REQUIRED
collectionCDATA #REQUIRED
label CDATA #REQUIRED

>
- J

Listing 1. DTD of the PLML standardqLM]

Listing 1shows the document type definition of PLML, official version 1.1.2. Eebeynent that
is not explained in further detail is of type #PCDATA or ANKable 1lhas a short description for
all pattern related language elements. The meta-data elememiznaigemenseem to be self

3/11 Volume 25 (2010)

Pattern Catalogs using the Pattern Language Meta Language Eﬁ

Element Description
patterniD Collection-unique id of a pattern
name Name, as short as possible
alias Alternative names
illustration Picture that illustrates a particularly good pattern instance
problem Design situation which the pattern addresses
context Conditions when application of a pattern is most useful
forces Forces which are resolved by application of the pattern
solution Instructions to follow the idea of the pattern
synopsis Summary of the pattern idea
diagram Schematic visualization of the pattern, sketched or formal
evidence Justification that a pattern actually is a pattern by:
example - known uses
rationale - principled reasons, axioms, common sense or the like
confidence Star rating whether the entry is a true pattern (0 to 2 stars)
literature References to related work
implementation| Code or fragments of code or other technical documentation
related-pattern | Container for connections to other patterns
pattern-link Connection to other pattern:
type - kind of connection, either dé-a, is-contained-by, contains
patterniD - connection endpoint
collectionID | - connection endpoint in collection named collectionID
label - descriptive text of connection

Table 1. Summarization of the meanings of PLML'’s language elem&msJ

explanatory.

As mentioned before, the degree of freedoisting 1 permits was modeled deliberately. How-
ever, some aspects that are discussed in the workshop reépdrg[were not put into the stan-
dard. Additionally there is a lack of meta-data storage area if PLML is usecttaley build a
pattern catalogSubsection 2.®utlines our enhancements to PLML and provides a rationale for
each amendment.

2.2 Enhancing PLML

Building a pattern catalog using PLML, as definedSiaction 2 quickly reveals a first problem.
There is no root element to attach the entries to. Also no XML-tags arevezstr describe the
catalog itself, i.e. its authors, revision or certain datesting 2 introduces such a catalog root
element to meet these basic requirements. Attributes are provided to namiog aathassign
a global identificator to it. The latter feature is needed for cross-catalibgrpdinks. Other,
catalog describing, meta-data is stored using the already existing elerapagement

<!ELEMENT catalog (management, patterp-+)
<IATTLIST catalog

Proc. VFfP 2009 4/11

Ea ECEASST

t id CDATA #REQUIRED J

nameCDATA #IMPLIED >

Listing 2: Introducing catalog meta information into PLML

The PLML explanation inffin03 explains that theonfidencewhether an entry is a true pattern,
is expressed using a star rating. It is possible to include this into the doctyperdefinition of
PLML. Listing 3 defines an attributkevelfor the elementonfidenceand limits its value space
to one of the three entries. The elemeahfidencas redefined to not contain content any more.
Through this amendment the notation of confidence levels is fixed anddaheezsy to parse.

<IENTITY % confidenceLevel3(0 |x|sx)" >
<!ELEMENT confidenceEMPTY >
<IATTLIST confidence level %confidenceLevets EQUIRED >

Listing 3: Narrowing the value space of confidence information

The PLML standard often refers to illustrations to describe certain aspeetpattern. Nev-
ertheless, there was little support to actually integrate pictures or at lsastrce locators of
pictures in a catalog. While it is possible to include pictures as binary data ifvilndcu-
ment, we resorted to annotate URLSs of pictures in our pattern entiiisg 4 defines optional
url attributes for three PLML elements.

<IATTLIST context urlCDATA #IMPLIED >
<IATTLIST diagram urlCDATA #IMPLIED >
<IATTLIST example uriCDATA #IMPLIED >

Listing 4: Annotating picture URLSs to certain elements

Another notable change to the original standard was to giattern-linkonly as subelements of
related-pattern Also there were minor changes to the representationasfagemenmeta-data.

3 PLML as textual DSL

PLML was designed as storage and interchange format, human-readabityot of primary
concern. But, when writing and maintaining a catalog it is sometimes inconverenérror-
prone to edit in XML structures. There are different ways to cope with ghisation. One
solution is to use dedicated XML editors or to develop a specialized editor.

Since we work in a model-based context we decided to create a dedicatéld dtlitor using
model-based technology. We defined a grammar for a textual domain specifitage (DSL)
resembling PLML. From this grammar we generate a fully featured text editba aneta-model
of PLML. Having a proper meta-model enables us to easily include the pattéthe catalog
within our software engineering approachrofiure 1 The meta-model also is a prerequisite to
keep our pattern catalog compliant to PLML standard. Using the model itysteightforward

to generate valid PLML from our modified pattern language and thus atthére interchange-
ability concept of PLML.

The grammar of our textual DSL is a xTeXVY] grammar. XText is a model-based framework
for such DSLs. It is a plugin to the Eclipse rich client platform. Providedangnar, xText

5/11 Volume 25 (2010)

Pattern Catalogs using the Pattern Language Meta Language Eﬁ

generates a text editor and an EMF Ecarenf meta-model. Through simple customizations
this text editor supports:

e Syntax highlighting, keywords or structuring elements are emphasized

e Syntax completion, there is an editing help which offers keyword completiorinnitie
text editor

e Error checking, the text is permanently checked against the languagergr and viola-
tions are marked within the editor.

e Astructured outline view provides an overview and simple navigation thrthegbatalog.

A xText grammar is context-free and its notation is EBNF-like. Nonterminal sysdtart with
a capital letter, terminal symbols are in quotation marks. Several syntax éteamehpredefined
types were introduced through xText to derive better meta-models.

(RelatedPatterns:
"RelatedPattern” ” {" (references+=PatternLink} }";
PatternLink:
type=PatternLinkTypé&id=" targetld=STRING
(hasCollection?=ollection=""collection=ID)?
(hasLabel?4abel=" label=STRING)?;
Enum PatternLinkType:
isA="is —a"|containedIn3s —contained-by” |contains=contains”;

-

Listing 5: Grammar for a pattern-link entry

Listing 5is an excerpt from the xText grammar of PLML. It shows the specificatigrattern re-
lations. Apattern-linkis specified using the nontermir@atternLink PatternLinks occur within
the nonterminaRelatedPatterns RelatedPatternss defined as starting with the terminal (or
String) "RelatedPattern” followed by zero-to-maRgtternLinks included in curly braces within
the text. In the meta-model evePatternLinkwill be stored in the references aggregation of the
RelatedPatterns type. HasCollection and hasLabel are simple markersr¢hieyerpreted as
boolean values to easily check whether a collection or label value was alét ahe enumer-
ation typePatternLinkTypeestricts the value space of tRatternLinktype to one of the three
values, this is very much like ihisting 3 for confidence level stars.

The xText framework parses the grammar into an ANTLR grammar. ANTAR [s an object
oriented parser generator. XText uses ANTLR to generate pardeéexar for the text editor.

(Catalog SampleCatalog
MasterData {
Author "Andreas Wolff”
CreationDate 2008-12—31
Revision1.0.2

}

Pattern ync”Yes—No—Cancel” {

Proc. VFfP 2009 6/11

Ea ECEASST

Alias "feedback” collection hciPatterns
Problem "Decide a binary question or cancel the current operation”
Evidence{
Rationale
"A user should be able to cancel an operation,
not only decide between two possibly undesired consequerste
}
Confidencesxx
RelatedPattern{
containsid="yn”"
}
MasterData {
Author "andreas”
CreationDate 2009-02—-15
Revision1.0

}

}

-

Listing 6: Catalog containing one pattern entry using our textual DSL

In Listing 6a sample catalog can be seen. This catalog contains only a single patteiptaesc
the "Yes-No-Cancel” patterrPle] which got the id "ync” assigned. The confidence in "ync” be-
ing a pattern is high and it is related to a pattern "yn” within the same catalog.” graiso
known as the pattern "feedback” in another catalog which has the id "teiRa’. A problem
description and a rationale for this pattern are given textually, no illustratiatiagrams are
used.Listing 6is a minimum example to illustrate the idea.

Figure 2shows the meta-model which was derived from the grammar. Again, toeeaxtun-
plexity, it is only an excerpt of the complete model. Tyyanagemenis actually not an empty
class. Catalog management data has been left out too. The enumPeatemnLinkTypavhich
consists of three constant values is also not displayed.

While the pattern catalog itself is a plain-text file, the data it contains is accessattances

of the meta-model. XText parses the catalog text file and builds such instiiooethe textual
entries. The root class of the model is the tHadtern whose objects have an association to an
object of classPatternDescription PatternDescriptioris a container class where most aspects
of a pattern are defined by creating aggregrations to their respectae typ

4 Graphical representation of PLML

The meta-model of PLML is a useful tool. It can be used to generate aigededitor or viewer
for PLML based catalogs. There is another model-based frameworkngiraot such editors
from EMF Ecore models, the Eclipse Graphical Modeling Framework (Gdfif]. GMF pro-
vides runtime components and a generator framework to build graphicalsditese editors are
generated as Eclipse plugins. A number of auxiliary models are necegdlairythis process:

e GMFGraph is the model to define figures. The appearance of any diagram element is

7111 Volume 25 (2010)

Pattern Catalogs using the Pattern Language Meta Language Eﬁ

H example H Rationale H Forces [E Rrelatedpatternd El patternLink H Problem
= description : EString = text : EString = text : EString = collection : ESfring = text: EString
= url : EString = hasCollection : EBoolean

= hasURL: EBoolean " .1 rilat .5"1 referencasiabeal : EString

forc = type ! PatternLinkType

5 roblef
07 a targetid : EString P
1
= hastabel : EBoolean E Dizgram
= hasURL ; EBoolean
= url : EString
[= text ; ESiring
evidence

Hl Context

= url 1 EString =
o text 1 EString [“Eontext
= hasURL: EBoolean
sgfution

lementation |2 Implementatio
= = text ; ESiring
Hl Solution
0.2 lias = text : EString confidence literature
iligtration SYRCPSIE :
£ Alias & 0.1 H Confidence - -
3 : 0. 0.1 = H Literature
= collection : EString T g E Pattern = zero:EBoolean | = :
= aliasid : EString =l [”LISJEtI[?r\ E S.yrsupm.s = id : EString o two : EBoolean o= references | EString
= hasCollection : EBoolean = fext: EString = text: EString = name : EString o pne ; EBoolean

Figure 2: Overview of the meta-model of PLML

described here.
e GMFTool describes the various menus, toolbars and the palette of an editor.
e Ecoreis the underlying meta-model of the application domain.

e Genmodelis for generating source code for access and modification of the model in-
stances.

¢ GMFMap merges above four models. The mapping model defines how meta-model ele-
ments are mapped on diagram nodes or connections. Other mappings thelwdanec-
tion between menu entries and diagram nodes.

e GMFGen s the basis for editor generation. Itis derived from the mapping modell@af-
As itis the very last step before generating the actual editor, a lot of fimegwan be ex-
ecuted here.

An important decision for every meta-model class and attribute is whethdramtb display it
in an editor. Basically every such element can be a free-form figuream@ection link or a label
or a composed figure or have no figure at all. Property sheets areegsaevery class figure.
This way properties that are not displayed as a figure are editable gwniiw&MF-editors we
can also choose to display elements as container, i.e. that they can haverchiithin their
graphical representation.

For the initial PLML meta-model we map the clas$gtern PatternDescriptiorand Man-
agemenbnto graphical container®atternwill be the root container of pattern description and
its associated master datBatternLinks will be editable as connections and have labels about
their type attached. Attributes of type string are mapped to labels and cantée iedplace.
They are arrange into their appropriate category, either managemeattempdescription data.
Boolean attributes and the link type of a pattern relation can only be edited themyoperty

Proc. VFfP 2009 8/11

Ea ECEASST

[E) model.plml (1} *modelplml_diagram £

+ Yes-No «yna 4 <SampleCataloga

4 Decide 2 binary question < Andreas Wolff

4 Confidence; *

< andress
10

- 2008-12-1F Tcontanes]

l-contains»

< 2008-12-1°

21 problems | @ Javadoc [Dectaration | X Properties 52 Era~"
4 Pattern Link

e Property Value

Collection =
Has Collection
Has Label
Label
Source
Target
Targetld
Type '= contains

Figure 3: Graphical PLML editor in Eclipse

sheet.

After all mappings are done GMF generates a complete graphical editoclipseEplugin.
Figure 3is a screenshot of such an editor. For this specific editor the master damaHtalog
itself was mapped to an own graphical element. Two patterns are defined cathisg and a
bi-directional relation exists between them. The lower pattern node (YeSdxael) is the re-
sult of the textual definition ilisting 6. The other pattern node for a Yes-No pattern is defined
very similar. Only the containment relation was reversed and the confiden¥ed$-No to be a
pattern was set to 1-star. Figure 3the pattern relation "contains” between Yes-No-Cancel and
Yes-No was selected within the editor window. The property sheet belowssall attributes of
this relation. Changing the attribute values here directly effects the corittrg editor.

The property sheet of the link reveals two attributes which are not defirtbé meta-model of
Figure 2 Attributessourceandtargetwere introduced while preparing the GMFMap mapping
model, both are of typPattern They were specified to be derived and transient, i.e. their value
is a direct consequence of other attribute values and they therefa@oe® be serialized. The
value oftargetfor example is the pattern object whose id equals the targetID d?dtternLink

Another notable difference is ionfidence The meta-model declares three boolean at-
tributes, this is a direct result from xText's grammar to model transformattienthese attributes
are a technical necessity, but somewhat impractical. To visualize the miiderce level a star-
like labeling was desired. So again an transient derived attriabed was introduced whose
value is displayed instead of the booleans.

Of course, the concrete valuestafget sourceandlabel need to be calculated somewhere.
To achieve this we had to leave the model level and actually write some sadee Through

9/11 Volume 25 (2010)

Pattern Catalogs using the Pattern Language Meta Language Eﬁ

modification of the meta-model edit code, which was generated usinGehenodel| getting
and setting the value of the derived attributes also modifies the underlyingttiétates.

Using GMF for the graphical editors enables us to quickly modify the editSisce most
of the editors source code is generated from the models we can easilyt tnyaoy kinds of
visualizations. This is not only about the layout or form or color of a @ertagram node.
Through changes in the mapping model we could pursue a completely difféea of graphical
containment. But of course, all such editors would only be differentviewthe very same data.
The catalog data itself will always be serialized using the textual DSteofion 3

5 Conclusion

This paper describes the pattern language PLML. It is a XML-based#g®which can be used
to define pattern catalogs. Certain modifications to its original standard wepeged in the
paper to repair some issues with applying PLML in a real catalog.

PLML is used as the pattern container in an integrated model-based envirbrirherefore the
pattern language was backed with model-based editing tools. A textual B3telka presented
that makes it easy to edit the pattern catalog using standard text editorse gdrtie time this
DSL is the meta-model or rather forms the foundation of an EMF Ecore metainbddhe
pattern language.

Two separate editors for the DSL where derived from models. Thédfistadvanced text editor,
that supports typical developer features like syntax highlighting andeartgeletion. A second
editor is a graphical editor that was developed using the eclipse graptodaling framework. It
was shown that such generated editors are highly flexible in terms of theigahrepresentation
of the language elements.

Bibliography

[ant] ANTLR - Another Tool for Language Recognitianttp://www.antlr.orglast visited
6th June 2009. University of San Francisco.

[Arn04] K. Arnout. From Pattern to ComponentBhD thesis, ETH Zurich, 2004.

[emf] Eclipse Modeling Framework Projecthttp://www.eclipse.org/modeling/emf/?
project=emf last visited 6th June 2009. Eclipse Foundation.

[EV] S. Efftinge, M. \Voelter. 0AW xText: A framework for tex-

tual DSLs. http://eclipsesummit.org/summiteurope2006/presentations/

ESE2006-EclipseModelingSymposiumgZextFramework.pdf last visited
6th June 20009.

[Fin03] S. Fincher. Perspectives on HCI patterns: concepts and(totisducing PLML).
In Workshop at CHI 2003Sept. 2003.

[GHJV02] E. Gamma, R. Helm, R. Johnson, J. VlissidBgsign Patterns - Elements of
Reusable Object-Oriented Softwakeldison-Wesley, 24th edition, 2002.

Proc. VFfP 2009 10/11

http://www.antlr.org
http://www.eclipse.org/modeling/emf/?project=emf
http://www.eclipse.org/modeling/emf/?project=emf
http://eclipsesummit.org/summiteurope2006/presentations/ESE2006-EclipseModelingSymposium12_xTextFramework.pdf
http://eclipsesummit.org/summiteurope2006/presentations/ESE2006-EclipseModelingSymposium12_xTextFramework.pdf

Eﬁ ECEASST

[gmf] Eclipse Graphical Modeling Framework Projelattp://www.eclipse.org/modeling/
gmf/, last visited 6th June 2009. Eclipse Foundation.

[Pet] R. Petrasch. Model Based User Interface Design: ModeleDrArchitecture und
HCI Patterns.http://pi.informatik.uni-siegen.de/stt/2303 TechnischeBeitraege/
MDA _HCI_PatternsPetraschShort.pdf last visited 6th June 2009.

[PLM] DTD of PLML. http://www.hcipatterns.org/tiki-downloafile.php?fileld=7 last
visited 6th June 2009.

[RWFO06] R.Rathsack, A. Wolff, P. Forbrig. Using HCI-Patterns withdébbased Generation
of Advanced User-Interfaces. In Pleuss et al. (et&sgceedings of the MoDELS'06
Workshop on Model Driven Development of Advanced User Intesfggenova,
Oct. 2006.
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-214/

[Tid] J. Tidwell. Pattern libraryhttp://www.designinginterfaces.cqast visited 6th June
2009.
[VW] M. van Welie. Pattern libranhttp://www.welie.com/patterns/index.pHpst visited

6th June 2009.

[WFDRO5] A. Wolff, P. Forbrig, A. Dittmar, D. Reichart. Development otéractive Systems
Based on Patterns. M/orkshop on Mapping User Needs into Interaction Design
Solutions at InteractRome, Italy, Sept. 2005.

11/11 Volume 25 (2010)

http://www.eclipse.org/modeling/gmf/
http://www.eclipse.org/modeling/gmf/
http://pi.informatik.uni-siegen.de/stt/27_3/03_Technische_Beitraege/MDA_HCI_Patterns_Petrasch_Short.pdf
http://pi.informatik.uni-siegen.de/stt/27_3/03_Technische_Beitraege/MDA_HCI_Patterns_Petrasch_Short.pdf
http://www.hcipatterns.org/tiki-download_file.php?fileId=7
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-214/
http://www.designinginterfaces.com
http://www.welie.com/patterns/index.php

	Introduction
	Pattern Language Meta Language
	Overview PLML
	Enhancing PLML

	PLML as textual DSL
	Graphical representation of PLML
	Conclusion

