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Abstract: Tool support for design patterns is a critically important area of computer-
aided software engineering. With the proliferation of Domain-Specific Modeling
Languages (DSMLs), the adaptation of the notion of design patterns appears to be
a promising direction of research. This paper introduces a new approach to DSML
patterns, namely, the Active Model Pattern infrastructure. In this framework, not
only the traditional insertion of predefined partial models is supported, but interac-
tive, localized design-time manipulation of models. Optionally, the infrastructure
can be adapted to handling transactional tracing information as well as transactional
undo and redo operations. Possible realizations of the framework are also discussed
and compared.
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1 Introduction

The use of design patterns [GHJV95] has brought revolutionary changes to object-oriented (OO)
software design and development. Design patterns are reusable solutions to recurring design
problems. This definition often implies intuitive techniques that can be very hard to express and
document by models or program code. However, several patterns can be successfully represented
as incomplete models that will be inserted into complete models. This latter category can be
aided efficiently by engineering tools. The support for these patterns in OO design has mostly
been automated by the insertion of certain incomplete models into UML diagrams, especially
into class diagrams and sequence diagrams.

With the increasing popularity of Domain-Specific Modeling Languages (DSMLs), the de-
mand for the notion of pre-defined building blocks that can be readily inserted at modeling time
is observable in industrial development. The key issue of DSMLs lies in the tool support: this
is provided by highly customizable metamodeling environments and their model transformation
capabilities. Therefore, the adaptation of patterns for the DSML technology should include con-
cepts for the tool support and its seamless integration into metamodeling environments. Here,
we discuss only those patterns that can be expressed by modeling artifacts thus can be aided by
tool support.

This paper is devoted to the description of our ongoing work with domain-specific applications
of patterns. Our notion of DSML patterns is referred to as Active Model Patterns (AMPs)
introduced in Section 2. Section 3 discusses the classical insertion approach to patterns. Section
4 summarizes related work, and Section 5 concludes the paper.
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Figure 1: The architecture of the active pattern infrastructure

2 Active Model Patterns

In order to adapt the notion of design patterns to DSML environments, we need to generalize the
original concept. In the OO world, there are several types of patterns: analysis patterns [Fow96],
design patterns, architectural patterns [BMR"96]. DSMLs are meant to be used in arbitrary
domains, thus, in accordance with [LLMO09], DSML patterns are referred to as model patterns.

Another direction of generalization is the level of sophistication of the provided operations.
The application of classical design patterns consists of an incomplete (partial) model, and an
intelligent insertion operation that places the chosen pattern into the model. The insertion may
involve binding to existing elements, creating new elements, or completing missing attributes
from user input. We call this approach static model patterns.

Active Model Patterns (Fig. 1) are an extension of static model patterns with universal design-
time model manipulations, optionally combined with tracing of the operations. The operations
can be viewed as on-demand localized model transformations applied interactively. These ma-
nipulations constitute the operational aspect of AMPs.

The tracing aspect of AMPs provides detailed and transactional log information on the model
manipulations. This can provide a basis for undo, redo, remove, and other operations. The
detailed discussion of the tracing aspect is beyond the scope of this paper.

Incorporating the universal properties of static model patterns, AMPs have the following ad-
vantages. (i) Not only traditional UML diagrams are treated but patterns over models expressed
in arbitrary DSMLs. (ii) Not only classical design patterns are supported but model patterns with
arbitrary objectives; they could be produced for analysis or other purposes. (iii) Not only the
traditional static model patterns are made possible, but any changes that can be described as a
set of model manipulations, such as refactorings, layout adjustments and many more. (iv) Not
only insertion of a pattern or the application of a model transformation is performed, but tracing
information is also maintained automatically. Thus, undo and remove operations over the entire
transaction of the pattern application are also possible.

Active Model Patterns can also be interpreted as the cross-fertilization of domain-specific de-
sign patterns and refactoring. Indeed, the tool infrastructure for AMPs includes the tool support
for both the insertion of static patterns and the application of model refactoring.

2.1 The operational aspect of AMPs

Suppose, in case of a DSML for specifying user interfaces (Fig. 2), the designer wants to define
operations for layout adjustment. While this cannot be specified as a “classical” static model
pattern, the operational aspect of Active Model Patterns provides a natural solution for this prob-
lem.
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Figure 2: (a) Static model pattern. (b) Inserted static model pattern.

The realization of a universal operational aspect may happen in several ways. The most obvi-
ous ones are as follows. (i) Using a modified model transformation environment. (ii) Manipu-
lating the models via the exposed model database APIs. (iii) Developing a proprietary domain-
specific language and a related model processor.

In case of applying a model transformation system, the existing transformation environments
must be slightly modified for this purpose. The pattern application is an interactive process con-
trolled by the designer. Graph rewriting-based model transformation systems consist of transfor-
mation rules that have a left-hand-side graph (LHS) to be matched in the model and a right-hand-
side graph (RHS) with which the match is replaced. For active model patterns, matching the LHS
must be accomplished with the involvement of the designer: the tool should offer manual bind-
ing of certain LHS elements. The advantage of this approach is that the tracing aspect may be
easier to store and restore. Transformation systems using triple graph grammars (TGG) or other
tracing formalisms can gain the advantage of their mechanisms. The drawback of using a model
transformation system is that these tools are quite complex and require a certain amount of in-
sight not easy for the domain experts/modelers to master. However, the transformation engines
can be used when one decides to take the DSML approach discussed below.

Programming using the object-oriented APIs exposed by a modeling tool is also a possible
implementation of the model manipulation in the operational aspect. These APIs range from
general, model traversal functions to generated domain-specific APIs. The abstraction level of
operations may be low, and maintaining the tracing information could be very complicated with
this approach. The domain experts and modelers cannot be expected to be familiar with an
object-oriented programming language.

The third alternative is developing a DSML for this purpose. The main requirements of the
language are the following. (i) Usability for domain experts and modelers. (ii) Provide enough
information for generating the data structures for the tracing aspects. (iii) It should be possi-
ble that the pattern DSML’s model processor generates input for either a model transformation
engine or the APIs discussed above. We believe that this is an important open problem.

3 The static aspect of AMPs

The universality of the operational aspect makes it possible to describe static model patterns as
well. However, a DSML describing model manipulations or a model transformation system does
not provide an easy way to define “classical” static model patterns.
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Figure 3: The original metamodel of the Signal Flow paradigm

In the example above, it is hard to specify the insertion of the pattern (Fig. 2) element by
element with multiple insertion operations. Although a few model transformation systems allow
the use of DSML model elements with their icons, it is hard for the designer to develop static
patterns this way.

Therefore it is reasonable to provide a user interface on top of the operational aspect for defin-
ing and editing incomplete models of a given DSML. The application of the patterns can be
accomplished either directly with an intelligent insertion operation, or the patterns can be trans-
lated to one of the platforms that realize the operational aspect (i.e. via model transformations or
directly using the APIs).

Our goal is to define incomplete models in a given DSML. We assume that the metamodel
of the DSML is available. For the realization of a static pattern definition environment, we
have identified the following approaches. (i) The metamodel extension method modifies the
metamodel preferably in an automatic way such that the modified metamodel provides a DSML
environment for pattern definitions. (ii) The tagged pattern method turns the elements of the
original DSML into patterns by tagging them.

3.1 Creating pattern environments with metamodel extension

When using the metamodel extension method, we process the original metamodel in a tool that
generates a DSML for the pattern environment. In our case study, we use the metamodel of
our Signal Flow paradigm to illustrate the different methods. Figure 3 shows the original Signal
Flow metamodel.

The data processing blocks are organized into a composite pattern: the compound containers
can recursively contain primitive blocks or further composites. Inside the processing blocks,
signals can be defined as either input or output signals. The signals can be connected with
dataflow connections. The processing units can contain parameters that can be connected with
parameter connections.

The pattern environment generator takes the Signal Flow metamodel (Figure 3), and creates a
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Figure 4: The extensions to original metamodel of the Signal Flow paradigm

new metamodel (Figure 4): the pattern environment.

The metamodel of the pattern environment consists of the original metamodel, a copy of the
original metamodel where each element (class, association, etc.) is renamed with the extension
Pattern and is extended with action attributes that hold insertion-time instructions for the pat-
terns. The attributes are inserted at the roots of the inheritance hierarchy. In our case study, only
the SignalPattern, ProcessingPattern, and ParameterBasePattern elements are extended with the
action attributes, along with the connections. It is really important to notice that both the orig-
inal metamodel and the elements of the pattern definition (Figure 4 constitute the final pattern
environment).

An action attribute can hold the following values: insert, bind or insert, and bind or ignore
that determine what happens with the pattern element at insertion time. The value insert means
that the element must be inserted into the target model. The term bind refers to an insertion time
activity in which the user of the tool can manually assign the pattern element to model elements
that already exist. In this way, the user can define a context for the pattern. If the user decides
to leave these elements unassigned at insertion time, the second action, namely, insert or ignore,
will be performed.

When this method is used, a pattern will be contained in a folder, either because of the structure
of the original language or because the metamodel extension tool automatically generated one
for the patterns. It often happens that the incomplete model violates the structural or semantic
constraints of the DSML in general. In our example above, edit boxes cannot exist without
a form. As another example, assume UML class diagrams as the modeling language and a
modeler who wants to define an Observer pattern. Although classes are placed in class diagrams
as defined by the language, the class diagram itself should not be inserted. Deeper containment
hierarchies are very common in DSMLs. In this case the elements that are enforced by the
language but not to be inserted are marked as ignore.
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Figure 5: Tagging model elements

For the pattern elements marked as bind, there are two options. They can either be bound
to one element or multiple ones. In order to specify this option, we use the Bind Cardinality
attribute, which is considered only when the element is marked as bind, and can be either / or *
(many).

The insertion process is implemented as follows. The original model element types must be
located in the metamodel, based on the type of the pattern element, new model elements of
the original type must be created, and then the attributes must be copied from the pattern ele-
ment, except for the action attributes. The original model element type can be found by string
operations or via a mapping table kept in the pattern environment. The drawback of the first
solution is the string manipulation that the environment has to perform when instantiating the
metamodel. For instance, our implementation environment, the Generic Modeling Environment
(GME) [LBM01] appends suffixes to the role names, or if they are blank, it generates a role
name as the combination of the participant names. The additional table means external infor-
mation and needs to be maintained separately, which is obviously an additional burden on the
implementation.

3.2 Tagged Pattern Elements

In the previous section, the additional pattern information was added to the model as the part of
an extended DSML. It required the modification of the metamodel. As opposed to modifying
the metamodel, we can store the pattern information separately from the DSML creation mech-
anisms. We use the metamodel of the original DSML, and the pattern is created as any other
regular model in the DSML. What makes a partial model a pattern is the presence of certain
attached tags. In our approach, container type elements, such as UML packages and class dia-
grams, can be the root of a pattern. In GME, this is expressed by the meta-metamodel element
Model. The root element of the pattern is marked as PATTERN_ROOT . This tag turns all the
children of the root element into a pattern. In a containment hierarchy, there can be multiple
pattern roots, which means that not only the whole hierarchy, but also certain parts can also be
used as a pattern. Figure 5 illustrates the tagging process.
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This method requires a tool that supports tagging model elements. GME assigns a registry
tree to all model elements. The registry is a hierarchical key-value pair structure, where the
key is of type string. The action attributes of pattern elements are also stored in the registry.
Our implementation supports any container type element as a pattern root, as opposed to our
implementation of the extension method, where only folders can have this role. Therefore, we
do not need the ignore action anymore.

3.3 Attribute mangling

While using our tool, we identified a need to insert certain string attribute values other than
literals. For example, we may want to add a unique suffix to the name of the pattern elements,
because names must be unique in the target model. In order to address these issues, we introduced
certain attribute operations that are performed at insertion time. These operations are represented
by character sequences delimited by % used in the value of string-valued attributes of pattern
elements. The operations behave similarly to environment variables of operating systems: they
are replaced with actual values when the pattern is applied.

The first group of operations consists of counters. Counters can be local or global. Local
counters are local to pattern elements: if a pattern element using a local counter is processed
for the first time, its value is zero, the next time (in case of multiple bindings) it becomes
one, and it is similarly incremented at every subsequent occasion. Global counters are incre-
mented each time they are used. Local counters can be included in the attribute values by insert-
ing the string %$LOCAL_ COUNTER%, and global counters are embedded using the variable
%$SGLOBAL_ COUNTER%. If one wants to embed a counter value without incrementing it, the
value of the variable with the suffix _REF must be used. If a pattern element contains counter
variables and references, the counter variables are evaluated and incremented first, then all the
references reuse the result of the last increment.

The counters discussed above are initialized at every execution of the pattern applicator tool.
If one wants to guarantee a unique name between the executions, the %$UNIQUE (core)% and
%$UNIQUE REF (core)% are used. The first operation takes the name core, an internal counter,
and increments the counter until the core suffixed with the counter becomes unique in the subtree
into which the insertion is performed. The variable is substituted with this value, similarly to the
reference version of this operation.

Other operations include embedding a globally unique identifier (GUID), %$USER_INPUT %
asks the user at insertion time.

Another group of operations references the attributes of the model element to which the pattern
element is bound. For example, %name% is substituted with the name attribute of the bound
model element.

3.4 Pattern Application

The insertion includes the following operations. (i) The user must specify a model that matches
the type of the pattern root. This is the insertion scope of the pattern. (ii) The user binds the
bindable elements or leaves them unassigned. This step is illustrated in Figure 6. On the left
of the dialog box, the element marked as bind are listed. On the right-hand-side list box the
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Figure 6: Inserting patterns

model elements with the matching type are enumerated. Marking the checkboxes pattern el-
ements can be bound to model elements. In GME, one can use typed references that refer to
model elements of a specific type. This construct can create a logical connection between model
elements that reside in different places in the containment hierarchy. For these elements, the tool
allows the user to bind elements outside of the insertion scope, however, if they are not used with
reference targets, the insertion is canceled with an error. (iii) The user provides values to the
%S$USER_INPUT % variables.

If the pattern is not legal with respect to the metamodel, the insertion is aborted with a
paradigm violation error message. In GME, we use the transaction capabilities provided by
the tool to roll back the whole insertion process.

4 Related Work

There are several mainstream tools that support UML design patterns, or describe design patterns
with a general languages, as opposed to using the metamodel of the DSMLs. Moreover, there
are several approaches for pattern formalizations. In this section, we reference the closest related
work only.

Previous work [LLMO9] has justified the demand for Domain-Specific Model Patterns by
contributing several DSMLs. Moreover, it describes relaxation conditions for the metamodels
in order to make metamodeling environments support the editing of incomplete models. As
opposed to this paper, it deals with static model patterns only. In our approach, relaxations can
be made on the metamodel of the pattern environment. The multiplicities can be substituted with
the upper bound of the multiplicity set, dangling edges can be defined with ignored end nodes
and transitive containment can be solved with ignored containers. Incomplete attributes can be
implemented the same way.
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[KFGS04] describes a UML-based language, namely, the Role-Based Metamodeling Lan-
guage (RBML), which is able to specify domain-specific design patterns. This approach treats
domain patterns as templates, where the parameters are roles. A tool generates models from
this language. Our approach manipulates the metamodel of the DSMLs. Moreover, we have
provided a vision for active model patterns.

In our architecture, the paper [KC09] proposes a formal way to specify the pattern embedding
for the static aspect. The behavioral formalization is closely coupled with design patterns defined
in UML.

The work described in [BGLO09] formalizes the embedding, tracing, and synchronization be-
tween several pattern aspects that may be defined in different languages. These results constitute
an excellent theoretical formalization of the tracing aspects for model patterns defined in the
static aspect.

An early work [Kar(O1] introduced a transformational approach to representing and applying
design patterns. The approach described there served as the foundation of the work presented
here.

5 Conclusions

We have contributed an infrastructure for Active Model Patterns. AMPs are a generalization of
classical design patterns in several ways. (i) They are applicable to arbitrary DSMLs. (ii) They
can specify arbitrary design-time model manipulations as well. (iii) Optionally, the infrastructure
can store and interpret trace information grouped by transactions.

We have outlined the tool support for the individual aspects, and compared the solutions. We
have provided two novel approaches to a static DSML pattern definition environment applica-
ble to an arbitrary metamodeling tool. Whereas existing solutions target the relaxation of the
instantiation relationship, our method is based on the metamodel. We have implemented this
environment within the tool Generic Modeling Environment (GME).

The metamodel extension method raises several practical issues. Wherever name-based type
identification is performed by the modeling tool, the pattern elements will behave differently
from their original counterparts. For example, if a decorator software component, which pro-
vides custom visualization for model elements in GME, presents a class according to the UML
standard, the pattern elements will not show up as such, unless the decorators are modified.
Also, the extension method causes the metamodels to become larger, and the whole architecture
is extremely sensitive to language evolution.

This is why we decided to implement the tagging method. The drawback of this method is
exactly the opposite. Since the patterns use the same types as the models, they can be differenti-
ated based on the tags. Therefore, the model interpreters that process the models have to check
the tags in order not to process the patterns.

Future work includes the design and implementation for the DSML approach of the opera-
tional aspect of AMPs.
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