
Electronic Communications of the EASST
Volume 25 (2010)

Proceedings of the Workshop
Visual Formalisms for Patterns

at VL/HCC 2009

Design Pattern Modeling with Constraint Relaxation

Tamás Vajk, Tamás Mészáros and Tihamér Levendovszky

12 pages

Guest Editors: Paolo Bottoni, Esther Guerra, Juan de Lara
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Design Pattern Modeling with Constraint Relaxation

Tamás Vajk, Tamás Mészáros and Tihamér Levendovszky

[tamas.vajk, mesztam, tihamer]@aut.bme.hu
Department of Automation and Applied Informatics

Budapest University of Technology and Economics, Budapest, Hungary

Abstract: Metamodeling is a widely applied technique in the field of graphical lan-
guage engineering. Environments supporting metamodeling aid rapid and flexible
domain-specific modeling language (DSML) definition and utilization. In software
engineering, design patterns are efficient solutions for recurring problems. With
the proliferation of DSMLs, there is a need for domain-specific design patterns to
offer solutions to problems recurring in different domains. The aim of this paper
is to illustrate a concept that integrates modeling patterns into a metamodeling en-
vironment. The introduced approach utilizes the modeling functionalities of the
environment; a visual design pattern metamodel, a system architectural metamodel
extended with textual constraints are introduced. Furthermore, design patterns are
validated against relaxed constraints defined in the metamodel to only allow the
creation of patterns that can be extended to valid instance models.

Keywords: Design pattern, DSML, VMTS, OCL constraint, relaxation

1 Introduction

Design patterns in software engineering describe a problem that recurs, and then describe the
core of the solution to that problem, in a way that the solution can be used many times, without
ever doing it the same way twice [GHJV94]. In general, patterns have four essential elements:
a name for identification, a problem description, the solution and the consequences, meaning
the achieved results and trade-offs. As an example, a pattern ensuring that a class only has one
instance with a global point of access is named Singleton pattern. The solution (in C++) is to
create a protected constructor, a private member variable that stores the globally unique instance
and a static query method that instantiates the instance if it has not been already done, and returns
it. And finally, as an example benefit of the use of this pattern is that it can have strict control
over how and when clients access the sole instance. Together this four elements define a design
pattern.

Graphical modeling languages have been applied in software engineering since the beginning
of the field. One of the most successful techniques to define the rules of graphical modeling
languages is metamodeling. Domain-specific modeling [KT08] can be aided by design pattern
[GHJV94] utilization. Domain-specific design patterns are design patterns inserted into domain-
specific instance models. In DSMLs, not only design patterns can be developed, but model
patterns for many other purposes as well. Design patterns can be considered UML-like best
practice structural patterns, while model patterns are general purpose submodels that can be
reused several times. In this sense, design patterns are specialized model patterns.

1 / 12 Volume 25 (2010)

mailto:[tamas.vajk, mesztam, tihamer]@aut.bme.hu

Design Pattern Modeling with Constraint Relaxation

Design patterns aid rapid development only if the tool support is flexibly solved. Defining and
reusing patterns should be seamless, otherwise users would remodel the pattern instead. Also,
design-time validation should be available to support validated pattern development and inser-
tion. A pattern is only valid, if it can be extended to an instance of the metamodel, this instance
should satisfy all the hierarchical restrictions defined by the metamodel and none of the textual
constraints should fail on it. We have developed tool support for domain-specific model pat-
terns for our metamodeling and model transformation environment called Visual Modeling and
Transformation System (VMTS). In our solution, the four essential elements of design patterns
are integrated as follows: a name should be given for identification purposes, a pattern model
is created as a solution and finally, problem statement and consequences can be explained in
description fields.

Visual Modeling and Transformation System [VMT09] is a general purpose metamodeling
environment supporting n-level metamodeling. N-level means in this context that the instance
models can be used as metamodels: they can be used to define model hierarchies such as meta-
class diagram - class diagram - object diagram. The maximum depth of these hierarchies is
not limited; we can construct an n-level modeling chain. VMTS uses a proprietary modeling
space. Models in VMTS are represented as directed, attributed graphs. In our approach, edges
are attributed as well.

The structure of this paper is as follows. Section 2 provides a brief overview of available mod-
eling tools. Section 3 describes the design pattern development process in VMTS. Afterwards
Section 4 details the hierarchical constraint relaxation in Section 4.1 and the general OCL con-
straint handling in Section 4.2. Finally, we draw the conclusions and describe future research
options in Section 5.

2 Related work

There are several modeling and metamodeling frameworks that support domain-specific model-
ing. The Generic Modeling Environment (GME) [LBM+01] is a highly configurable metamod-
eling tool supporting two layers: a metamodel, and a modeling layer. Diagram Editor Generator
(DiaGen) [Min02] provides an efficient solution to create visual editors for DSLs. DiaGen is
not based on metamodeling techniques, it uses its own specification language for defining the
structure of diagrams. Eclipse [BBM03] is probably the most popular, highly extensible, open
source modeling platform that supports metamodeling.

To the best of our knowledge, besides VMTS, only GME provides tool support for domain-
specific design patterns to certain extent. However, there are several implementations and indus-
trial applications that utilize patterns in UML environments.

Commercial applications, such as Rational Software Architect [IBM09], have the functionality
to define and apply patterns in a productive environment, but these tools only support UML as
modeling language, thus domain-specific patterns and models cannot be created.

The standardization of design patterns in UML diagrams is handled in [DYZ07], where de-
tailed formalism and implementation details have been given. The main idea of the paper is that
it is not enough to utilize design patterns, but information should be stored on how they have been
applied. In this way, refactoring and the comprehension of the developed system can be simpli-

Proc. VFfP 2009 2 / 12

ECEASST

fied. In the given solution, an UML profile has been provided to brand diagrams with stereotype
information. Based on the attached information, the applied design patterns and the role of each
element played in the pattern can be retrived from the system. The authors implemented a sys-
tem, named VisDP, in which the augmented information is not only stored but visualized in a
legible way. The complexity of the resulting diagrams are kept to a minimum based on several
aspects. The given solution could be integrated into VMTS to aid domain-specific design pattern
creation, however, our approach now deals with more fundamental problems, such as how to in-
tegrate design patterns into a DSL environment, and how to force valid pattern definition. Thus,
the UML related design pattern achievments given in [DYZ07] can be considered a future work
for our domain-specific pattern solution.

The Design Pattern Modeling Language (DPML) [MHG02] is a high level language which is
proposed to describe UML design patterns. With DPML one can model the static structure of a
pattern, however, the approach also provides a solution to identify the usage of a pattern in the
host model later as well. During the instantiation process, an instance model is created, that maps
the elements of the pattern to the elements of the host model. Compared to DPML, our solution
is not limited to UML, and we use the target domain and the concrete syntax to define patterns.
Although, we do not create a reference between the pattern elements and the concrete instances
of them. Furthermore, the focus of our research is to verify - at least partially - the constraints of
the metamodel on the patterns, which issue is not handled by DPML.

The work presented in [ZKDZ07] provides solutions for two different problems: (i) it verifies
whether a design observes the structural integrity of the pattern using spatial graph grammars.
(ii) Furthermore, it offers graph transformation to evolve models by preserving the properties of
the patterns: an individual graph transformation is suggested for each characteristic operations
related to a design pattern. Although [ZKDZ07] is limited to UML class diagrams, the approach
could be generalized to arbitrary modeling languages as well.

3 Design pattern modeling support in VMTS

As we are embedding design pattern support into a metamodeling environment, it is straightfor-
ward to use the modeling environment and its data repository to create and store patterns as well.
The simplest solution is to define patterns as general models, thus, we have a complete solution
to store default model element properties and layout information together with the patterns as
well.

In addition to defining design patterns, there is a natural need to organize them into categories,
and attach meta information to them. For this purpose, we have created a simple language that
can model the hierarchy of pattern categories, and the position of design patterns in this hierarchy.

3.1 Defining design patterns in VMTS

Recall that design patterns can be created as any other models, however, the modeling environ-
ment can be less restrictive when performing editing operations compared to traditional model-
ing. A criterion that does not have to be verified for design patterns is the existence of dangling
edges. Obviously, a model with a dangling edge cannot be valid, however, a design pattern may

3 / 12 Volume 25 (2010)

Design Pattern Modeling with Constraint Relaxation

(a) Transitive closure (b) Registering design pattern

Figure 1: Design pattern definition in VMTS

contain edges with only one endpoint set, as the another endpoint can be set in the target model
the design pattern is inserted into. Another criterion that can be checked less restrictively is the
correspondence of the containment hierarchy to the one defined in the metamodel: when build-
ing a model, the container node of an element has to be exactly of the type that was defined in the
metamodel. However, when a design pattern is built, each element can also be placed directly
onto the diagram, and we have to check at insert time, whether the target container is correct or
not.

Figure 1 illustrates a general transitive closure pattern for graph rewriting rules, and the in-
terface to register a pattern in the central repository. When registering a design pattern, one can
select among existing pattern categories for the container of the new element (or create a new
category in the tree), and provide a name and description for the pattern.

3.2 Organization of design patterns

Design patterns can be organized into categories. These categories correspond to the elements
of a unique model, its metamodel is depicted in Figure 2 (a).

On the diagram, the Repository element corresponds to the categories. Repositories can be
embedded into each other, and they can contain Patterns. Each pattern contains a Description
attribute, and a Re f erence attribute pointing to a model that contains a design pattern.

3.3 Inserting patterns

Design pattern instances can be inserted into any target model, however, verifications have to
be performed whether the pattern can be inserted into the selected context or not. The most
important constraint is that the design pattern must have the same metamodel as the target model.
Figure 2 (b) depicts the window used to insert patterns into the target model. Design patterns
with non matching metamodels are not even provided for insertion. Another important criterion
is that the root elements of the pattern (the elements that are placed directly onto the diagram
of the pattern model) should be able to be contained by the target element in the target model
according to the metamodel.

During the insertion, one can also customize the properties of the inserted elements. In addi-
tion to providing a new name for each element, the attributes that are not specified in the pattern
model can also be set.

Proc. VFfP 2009 4 / 12

ECEASST

(a) (b)

Figure 2: (a) Pattern repository metamodel (b) Pattern insertion window

When a design pattern is being inserted, it is common that several elements of the pattern
are already defined by the target model. These elements are the connection points between the
pattern and the target model. Therefore, VMTS also provides the possibility to select a matching
target model element for pattern elements. Pattern elements with matching target model elements
are not inserted again, but the remaining parts are glued to the existing ones.

4 Constraint relaxation

Restrictions applied to models can be divided into two categories: (i) general restrictions that
the modeling environment forces onto the models and (ii) domain-specific constraints defined
in the metamodels. The former ones can be considered domain independent constraints that are
given by the tool-set of the environment. Generally, these are structural constraints, such as
the disallowance of dangling edges. The latter ones are developed by the metamodel creator,
these constraints are restrictions that cannot be defined visually by the metamodel. A platform-
independent, standardized language for this purpose is the Object Constraint Language (OCL)
[WK03].

During the pattern creation, constraint validation should be performed to filter invalid patterns.
A pattern can be considered invalid, if there is no possible augmentation to create a valid instance
model from it. The two types of constraint require different constraint relaxation approaches,
which are introduced in the following sections.

4.1 Structural constraint relaxation

In VMTS, metamodels can be extended with Object Constraint Language restrictions that are
checked on the instance models during their design [VML08]. These domain-specific textual
constraints that cannot be expressed with graphical notations give a fine control over our models.
As mentioned before, to extend the modeling environment, it is a straightforward approach to

5 / 12 Volume 25 (2010)

Design Pattern Modeling with Constraint Relaxation

utilize previously implemented functionalities.

4.1.1 Interface hierarchy of VMTS Models

To utilize OCL constraints for validating general structural properties, such as cardinality, edge
multiplicity or whether a model contains dangling edges or not, a technique is needed to define
general constraints that do not correspond to a specific domain. Extending OCL with non-domain
specific features would require changing the language definition, thus, this is not considered a
viable solution. As illustrated in [AALa09], VMTS translates metamodels into C# class libraries
that are instantiated when instance models are created. Naturally, the generated classes imple-
ment a predefined interface hierarchy, called VMTS Domain Interface (VDI). To support domain
independent constraints, this VDI has been modeled in VMTS as a standard domain-specific
model, which is depicted in Figure 3. The illustrated model gives the possibility to express con-
straints that apply to all the domains, which implement the VDI. The modeled VDI hierarchy
strictly follows the one used in the actual VDI implementation. Thus, for further reference see
[AALa09].

Figure 3: Modeled VMTS Domain Interface (VDI)

General model constraints that can be expressed with standard OCL are integrated into VMTS.
For example, during modeling, dangling edges should not be allowed, thus a constraint illustrated
in Figure 4 is defined to enforce valid edges.

4.1.2 Constraint relaxation in pattern definition

During pattern definition, general OCL constraints should be relaxed, as the defined constraints
need to be valid on models and not on patterns. However, patterns that cannot be augmented to a
valid model should be filtered. In most of the practical cases, partial instantiation means relaxing

Proc. VFfP 2009 6 / 12

ECEASST

context IEdgeBase
inv DanglingEdge:
not self.Left.oclIsUndefined() and not self.Right.oclIsUndefined()

Figure 4: Dangling edge invariant

the multiplicities on the edges, the cardinalities of the nodes in the metamodel and allowing
empty attributes [LLM]. In practice, this means that some of the general constraints should be
changed, such as the multiplicity checking; some should be omitted, such as the dangling edge
validation; and some may be left unchanged, such as enforcing model item naming conventions.

Figure 5 illustrates the constraint that validates edge multiplicities in design patterns. Note
that the minimum multiplicity verification is omitted. In Line 3, the code iterates through all
the nodes in the model. Line 4 selects an edge from the LeftEdges navigation. In Line 5, the
metaedge of the selected edge is stored in a local variable (let expression). In Line 6, edges
of the metaedge-type are counted from the LeftEdges. Finally, the previously computed value
is compared to the upper value of the right multiplicity. The code fragment only checks the
LeftEdges navigation on the node, similarly the RightEdges navigation should be validated as
well.

1 context IModelBase
2 inv RelaxedEdgeMultiplicity:
3 self.Nodes->forAll(node |
4 node.LeftEdges->forAll(edge |
5 let mEdge: IEdgeBase := edge.MetaItem.oclAsType(’IEdgeBase’) in
6 node.LeftEdges->select(e | e.MetaItem = mEdge)->size() <=
7 mEdge.RightMultiplicity.MaxInt)
8 and ...)

Figure 5: Relaxed edge multiplicity checking

Similarly, Figure 6 depicts the relaxed cardinality validation constraint. The code fragment
developed collects all the metamodel elements used in the current model into a set, and then the
number of the instances are compared to the maximum value of the cardinality.

1 context IModelBase
2 inv RelaxedCardinality:
3 self.Items->collect(element |
4 element.MetaItem.oclAsType(’IModelElement’))->asSet()->
5 forAll(meta |
6 self.Items->select(i | i.MetaItem = meta)->size() <=
7 meta.Cardinality.MaxInt)

Figure 6: Relaxed cardinality multiplicity checking

7 / 12 Volume 25 (2010)

Design Pattern Modeling with Constraint Relaxation

4.2 Constraint relaxation

The structural constraint relaxation introduced above works only because the hierarchical relax-
ation rules in patterns do not change based on the actual domain, but only on general restrictions,
such as the allowance of dangling edges. However, metamodels are augmented with domain-
specific constraints that should be enforced on the instance models. Thus, a mechanism is needed
to handle OCL constraint relaxation as well. If a comprehensive method is given for OCL relax-
ation, the development tool can force restrictions on the developed pattern to ensure that patterns
that cannot be augmented to a conforming model cannot be created at all.

Figure 7 illustrates the general overview of the constraint relaxation. MM illustrates the meta-
model, M the instance model, PM is the pattern model. PM

′
marks a modified pattern on which

the relaxed C
′

constraints should be checked. PM
′

is an extended version of PM, in which each
dangling edge is augmented with the appropriate end node. This is by no mean a restriction, as
all the edges are typed, the types of the end nodes are well-known. Thus adding an element to the
end does not cause any ambiguities. However, the constraint evaluation can be facilitated by pro-
viding the evaluator as much information as possible. Figure 7 depicts the schematic overview
of the constraint relaxation.

MM C
de f ines

oo

��
equals

��

PM

con f orms

OO

// PM
′

C
′

validates
oo

M

augments

OOcon f orms

GG

C
validates

oo

WW

Figure 7: General constraint relaxation overview

4.2.1 Relationship between OCL and relaxation

To handle OCL relaxation comprehensively, the relationship between OCL constraints and de-
sign patterns should be examined. Figure 8 depicts the basic structure of the OCL expression
metalanguage.

Studying the figure reveals that the only point where an OCL code fragment interacts with
the underlying model is the CallExp, more precisely, the FeatureCallExp non-terminal of the
language. A FeatureCallExp can express attribute calls, navigations and method calls on model
items.

4.2.2 Relaxation

A simple OCL constraint relaxation can be provided as follows: (i) If there is at least one Fea-
tureCallExp in the currently checked constraint, the constraint is omitted, and it is reported to
the user that it cannot be validated. (ii) If there is no FeatureCallExp, the constraint is validated
on the design pattern. This is a simple and bullet-proof constraint relaxation algorithm that can

Proc. VFfP 2009 8 / 12

ECEASST

Figure 8: OCL language overview

be further refined if the constraint is separated into several independent parts, and only those
subexpressions are omitted that contain FeatureCallExps. The separation can be implemented
alongside Boolean operations, such as and or or, and possibly, lazy evaluation may not require
the evaluation of undecidable expressions. However simple this method is, it is not useful in
practice, as OCL constraints rarely omit model element retrieval, since the main aim of the con-
straint is to restrict the models somehow.

Handling the model element access is a complex task, as different programming constructs
react differently to a subpart that cannot be evaluated. For instance, in an if expression, if the
condition is undecidable, the true and false branches should not be evaluated at all, and all the
expressions that rely on this if have undecidable value. Unless, of course, the true and false
branches contain the same evaluatable expressions. On the other hand there are cases, when
there is no need to evaluate an expression on a pattern, for instance, consider the following
expression: element.navigation→ includes(expression). If navigation is a navigation with 0..∗
multiplicity, the expression does not need to be evaluated as the pattern is always amendable
with a new item connected to element that satisfies the expression. Thus in this case, we can see
that includes should always return true on a pattern.

In general, expressions that contain a body part can hardly be evaluated without all the infor-
mation. Thus iterate and the iterators that needs complex program comprehension to analyze
them in an off-line way can be considered undecidable. However, methods on collection types,
such as size(), includes(), count(), etc., can be handled. Naturally, these differ from collection
type to collection type. In the following, a simple Set is examined, more precisely a navigation,
whose multiplicity is 0..∗, thus returns a set of elements. Table 1 summarizes the methods avail-

9 / 12 Volume 25 (2010)

Design Pattern Modeling with Constraint Relaxation

able on OCL sets, their meanings and how they should be handled during constraint relaxation.

Method name Meaning Handling
size() : int The size of the set Gives a lower bound
includes(T 1) : bool Whether the element is in the set Omit
excludes(T 1) : bool Opposite of includes Enforce
count(T 1) : int The number of occurrences of the argu-

ment
Gives a lower bound

includesAll(Set(T 1)) :
bool

Whether all the elements of the argument
is in the set

Omit

excludesAll(Set(T 1)) :
bool

Opposite of includesAll Enforce

isEmpty() : bool Whether the set is empty Enforce
notEmpty() : bool Whether the set is not empty Omit
sum() : T 1 The sum of the elements if + exists on T 1 No information
product(Coll(T 2)) :
T 3

The cross product of the two sets Gives a partial result

union(Set(T 1)) :
Set(T 1)

The union of the two sets Gives a partial result

intersect(Set(T 1)) :
Set(T 1)

The intersection of the two sets Gives an augmented
result

minus(Set(T 1)) :
Set(T 1)

The elements of the set that are not in the
argument

Gives a partial result

symmetricDi f f erence(
Set(T 1)) : Set(T 1)

The elements of the set that are in one of
the sets

No information

including(T 1) :
Set(T 1)

The set with the argument union added to
it

Gives a partial result

excluding(T 1) :
Set(T 1)

The set with the argument union sub-
tracted from it

Gives a partial result

Table 1: OCL set methods and relaxation

In the third column of Table 1, the following options are presented:

Gives a lower bound A number is returned and the evaluated constraint would give a smaller
number than it would return on the instance model.

Omit The constraint validation can be omitted on the design pattern as the instance can always
be augmented to return true.

Enforce The constraint validation should be enforced on the design pattern, if it returns f alse,
the evaluation on the instance would return f alse as well.

No information Nothing can be stated about the result of the method.

Proc. VFfP 2009 10 / 12

ECEASST

Gives a partial result The method executed on the pattern returns a subset of the real result.

Gives an augmented result The method executed on the pattern returns a superset of the real
result.

The last two can be considered undecidable as well, because in general we cannot state any-
thing based on approximate results. Omit and enforce are straightforward. And the first option
that states it gives a lower bound should be examined further. In this case, if we still consider
that the set is a result of a navigation, the multiplicity of the navigation gives another restric-
tion on the model. Thus the combination of the two multiplicity constraints should be utilized.
Multiplicity relaxation states that n1..n2 multiplicity should be changed to 0..n2, where n2 can
be infinity. The lower bound restriction (c1) coming from the constraint modifies it to c1..n2.
Note that if c1 > n2, there cannot be any instance model that satisfies all the restrictions thus the
pattern is not valid.

5 Conclusions and Future Work

This paper has presented an approach to treat domain-specific design patterns in metamodeling
environments. The Visual Modeling and Transformation System has been utilized as the im-
plementation framework. We have shown a way how a modeling environment can facilitate the
design pattern definition, categorization and utilization. Also, structural constraints defined in the
metamodels have to be partly checked in design patterns to allow only valid pattern definition.
Thus, relaxed versions of general constraints are given in the modeling environment. Also, OCL
constraints added to the metamodels should be considered during pattern validation, however,
comprehensive handling requires complex program analysis. The given solution for supporting
domain-specific design patterns reutilizes the modeling functionalities of the environment, thus,
it requires only few modifications in the system, and integrates well into the environment.

Pattern integration in VMTS could be further improved by providing automatic gluing of
patterns to the already existing model elements in the instance models. This requires common
subgraph matching, as the most appropriate gluing options should be returned to the user. Also
with drag and drop capabilities, this automatic gluing could be improved to aid pattern gluing
to a specific subpart of the model. Constraint relaxation requires further examination. It would
be highly useful to support the relaxation of iterator and iterate expressions. However, these
programming constructs require a high level of program comprehension that has not been yet
studied.

Acknowledgment

This paper was supported by the János Bolyai Research Scholarship of the Hungarian Academy
of Sciences.

11 / 12 Volume 25 (2010)

Design Pattern Modeling with Constraint Relaxation

Bibliography

[AALa09] L. Angyal, M. Asztalos, L. Lengyel, et al. Towards a Fast, Efficient and Customizable
Domain-Specific Modeling Framework. In Proceedings of the IASTED International
Conference. Volume 31, pp. 11–16. Innsbruck, Austria, February 2009.

[BBM03] F. Budinsky, S. A. Brodsky, E. Merks. Eclipse Modeling Framework. Pearson Educa-
tion, 2003.

[DYZ07] J. Dong, S. Yang, K. Zhang. Visualizing Design Patterns in Their Applications and
Compositions. IEEE Trans. Softw. Eng. 33(7):433–453, 2007.

[GHJV94] E. Gamma, R. Helm, R. Johnson, J. M. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software (Addison-Wesley Professional Computing Se-
ries). Addison-Wesley Professional, illustrated edition edition, November 1994.

[IBM09] IBM. Rational Software Architect website. 2009.
http://www-01.ibm.com/software/awdtools/architect/swarchitect/

[KT08] S. Kelly, J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full Code Generation.
John Wiley & Sons, March 2008.

[LBM+01] kos Ldeczi, rpd Bakay, M. Marti, P. Vlgyesi, G. Nordstrom, J. Sprinkle, G. Karsai.
Composing Domain-Specific Design Environments. Computer 34(11):44–51, 2001.

[LLM] T. Levendovszky, L. Lengyel, T. Mészáros. Supporting domain-specific model pat-
terns with metamodeling. Software and Systems Modeling. accepted.

[MHG02] D. Mapelsden, J. Hosking, J. Grundy. Design Pattern Modelling and Instantiation
using DPML. In Noble and Potter (eds.), Fortieth International Conference on Tech-
nology of Object-Oriented Languages and Systems (TOOLS Pacific 2002). CRPIT 10,
pp. 3–11. ACS, Sydney, Australia, 2002.

[Min02] M. Minas. Specifying Graph-like Diagrams with DiaGen. In Science of Computer
Programming. P. 2002. 2002.

[VML08] T. Vajk, G. Mezei, T. Levendovszky. OCL Compiler Support for Modeling En-
vironments with Incremental Compilation. Buletinul Stiintific al Universitatii ”Po-
litehnica” din Timisoara 53(1):19–24, 2008.

[VMT09] VMTS Team. Visual Modeling and Transformation System website. 2009.
http://vmts.aut.bme.hu

[WK03] J. Warmer, A. Kleppe. Object Constraint Language, The: Getting Your Models Ready
for MDA, Second Edition. Addison Wesley, 2003.

[ZKDZ07] C. Zhao, J. Kong, J. Dong, K. Zhang. Pattern-based design evolution using graph
transformation. Journal of Visual Languages & Computing 18(4):378–398, 2007. Vi-
sual Interactions in Software Artifacts.

Proc. VFfP 2009 12 / 12

http://www-01.ibm.com/software/awdtools/architect/swarchitect/
http://vmts.aut.bme.hu

	Introduction
	Related work
	Design pattern modeling support in VMTS
	Defining design patterns in VMTS
	Organization of design patterns
	Inserting patterns

	Constraint relaxation
	Structural constraint relaxation
	Interface hierarchy of VMTS Models
	Constraint relaxation in pattern definition

	Constraint relaxation
	Relationship between OCL and relaxation
	Relaxation

	Conclusions and Future Work

