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Abstract: When creating an editor for a visual language, a challenging task is
the layout specification. Many visual languages, e.g., Ecore diagrams or Petri nets,
show similar layout characteristics, and hence reuse of layout behavior should be
enabled. For that purpose, we introduce the concept of layout patterns, which en-
capsulates certain layout behavior. With the approach, it is possible to combine
different layout algorithms, e.g., standard graph drawing algorithms and constraint-
based algorithms. In addition, rule-based layout algorithms may be used that are
specifically tailored to the interactive nature of visual language editors.
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1 Introduction

Examples of visual languages are Ecore diagrams [BBM03], Petri nets, Nassi-Shneiderman di-
agrams or VEX diagrams [CHZ95]. Many visual languages show similar layout characteristics,
e.g., Ecore diagrams and Petri nets both have a graph-like structure and allow for nesting of
nodes, and hence reuse of layout behavior should be enabled. For different layout characteris-
tics, different layout algorithms should be used. E.g., for the graph-like structure of a language,
standard graph drawing algorithms, such as force-directed layout or tree layout, should be ap-
plied. For other characteristics, constraint-based algorithms are more appropriate. Many layout
characteristics require a layout algorithm that is specifically tailored to the interactive nature of
diagram editors. Therefore, we added a rule-based layout algorithm, which may be used, too.

In this paper, we introduce layout patterns, which encapsulate certain layout behavior. The
idea is to define layout behavior on top of a language-independent, but pattern-specific meta
model. The behavior of a layout pattern may either be defined by our rule-based layout algorithm
or by any other layout algorithm. This way, a layout pattern provides a reusable and language-
independent “solution” for common layout characteristics.

Our approach is used in the context of diagram editors. Here, the layout engine runs con-
tinuously and improves the layout in response to user interaction in real-time. The approach
supports structured editing as well as freehand editing, which means that diagram components
may be freely positioned on the screen. This way, also (temporarily) incorrect diagrams are
allowed, and the editor user is more flexible.
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Pattern-Based Layout Specification

Section 2 introduces Ecore diagrams, the running example used in this paper. The different
layout algorithms are presented in Section 3. The concept of layout patterns is presented in
Section 4, and related work is discussed in Section 5. Section 6 concludes the paper.

2 Running Example

In the following, we briefly revisit Ecore diagrams. Ecore diagrams are similar to UML class di-
agrams. The simplified version considered in this paper consists of packages, classes, attributes,
generalizations and associations. In Figure 2, an Ecore diagram editor, which was created with
the editor generation framework DiaMeta [Min06], is shown.

For each visual language editor, a layout meta model (LMM) is specified, on which the
layout specification is based on. When a diagram is drawn, the editor instantiates the LMM,
obtaining the layout model (LM). The LMM consists of two parts: the abstract syntax meta
model (ASMM), representing the languages abstract syntax, and the concrete syntax meta model
(CSMM), representing the languages concrete syntax (see Figure 1). Both meta models are con-
nected via the associations named modelObject, as denoted in Figure 1b. The CSMM resem-
bles all visual components and their spatial relationships, whereas the ASMM is an instance of
the diagram language’s meta model that defines the language’s abstract syntax.

(a) Abstract Syntax Meta Model (ASMM)
(b) Concrete Syntax Meta Model (CSMM)

together with the connection to the ASMM

Figure 1: Layout Meta Model (LMM)

In the CSMM, each component type is represented by a class, which is connected with its ab-
stract syntax counterpart, if available.1 In addition, in the CSMM, each meaningful relationship
between component types is represented by an association. For Ecore diagrams, the components

1 There is no correspondence available for the class CGeneralization in the Ecore meta model.
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package, class, attribute, generalization and association are represented by classes. The relation-
ships contains, contained, overlap and attach are represented by associations. In our example,
the ASMM exactly is the Ecore specification [BBM03] and hence is unmodifiable.

Figure 2 shows an Ecore diagram (Figure 2a) together with its CSM and ASM (Figure 2b),
where modelObject links are omitted. The diagram consists of the following components: the
package university, the two classes Person and Student, the two attributes name of type String and
age of type Integer and the generalization g. The CSM is an instance of the concrete syntax meta
model (CSMM), and shows the diagram components together with their spatial relationships.
The ASM is an instance of the abstract syntax meta model (ASMM), which conforms to the
Ecore specification.

(a) Example Ecore Diagram (b) CSM and ASM (modelObject links are omitted)

Figure 2: Ecore Diagram Editor

3 Layout Algorithms

In the context of diagram editors, usually one of the following layout concepts is chosen: the
layouter is written by hand, a standard graph drawing algorithm is applied, or a constraint-based
layout algorithm is used. To better support the interactive nature of diagram editors, we ex-
tended this list with rule-based layout algorithms. The underlying concept is already known,
e.g., interaction dynamics are defined via rules in [BGL06].

With the approach presented in this paper, it is possible to reuse the layout behavior. More
details are given in Section 4. Furthermore, all these layout algorithms may be combined. This
way, a powerful layouter may be created. Different layout algorithms are combined via the
application control, a language-specific control program. If two algorithms are in conflict, a
prioritization of the algorithms resolves this conflict.
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3.1 Graph Drawing Algorithms

Examples for standard graph drawing algorithms are force-directed layout or layered layout. As
graph drawing algorithms tend to be quite complex, it is reasonable to implement them, not to
define them on an abstract level. To support interactive diagram drawing, we added several graph
drawing algorithms to DiaMeta, following the descriptions of [TDET98, DK08]. The meaningful
implementation of these algorithms enables reuse for different visual language editors.

3.2 Constraint-Based Layout Algorithms

A constraint-based algorithm is defined by providing a set of declarative constraints. Many tools
that deal with dynamic graph drawing are based on declarative constraints, e.g., [DMW09]. In
our approach, the constraints are attached to the LM. A standard constraint solver then com-
putes a solution to this constraint satisfaction problem. As constraints are defined on top of the
language-specific LM, they need to be redefined for every visual language.

3.3 Rule-Based Layout Algorithms

The layout algorithm outlined in this section was introduced in [MMM08a, MMM08b]. To give
an overview of the algorithm, we use the simple example shown in Figure 3. When the editor
user moves a class, or more generally, changes the diagram, the layout engine is called, and the
diagram is updated. In our example, the user has moved class A right (Figure 3a). As classes
are not correctly nested after movement, the sizes of both packages (Figure 3b) are updated by
the layout engine. This requires the layout engine to run continuously, and to provide immediate
feedback about the effect of user changes.

(a) Before (b) After (c) Instance of LMM

Figure 3: Example User Interaction

The layout engine gets an instance of the LMM and the component(s) changed by the user
as input. The LM of our example is shown in Figure 3c and the component changed is class A.
When the layout engine is called, roughly speaking, layout rules, that are based on this LM, are
applied to the diagram. The order in which a single layout rule is applied to different parts of the
diagram, and the order in which several layout rules are applied follows an exact plan.
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Layout Rule A layout rule operates on the LM. An example for a layout rule is the rule con-
tainment, which takes care of the correct nesting of classes and packages. For each rule, one
diagram component is given as input. This usually is a component changed by the user, or a
component changed by the layout engine. In the example of Figure 3, this is class A. Then, other
components that are necessary for the layout rule are identified by the layout engine. Here, this
is package pack2. Afterwards, if a rule-specific condition is fulfilled, a rule-specific action is
applied. For the rule containment, the condition checks if the “package is not large enough”. If
this is the case, the action “enlarges the package”.

Specification of a Layout Rule Layout rules are defined on the LMM, and hence they need to
be re-specified for every visual language. To define a layout rule, the developer needs to proceed
as follows: he has to provide a left-hand side2, a condition (which is optional) and an action. The
left-hand side identifies a component, which has been changed previously, together with the local
context needed for layout computation. The condition describes the circumstances, in which an
action is applied (e.g., “package is not large enough” as described earlier). The action defines
the changes that are actually performed if the condition is fulfilled (e.g., “enlarge the package”).

Figure 4: Layout Editor

2 In previous work, the left-hand side has been called pattern. We changed the name to avoid a mix up with the
other use of the term pattern in this paper.
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To allow a more intuitive description, we provide a visual language for layout rule definition.
In Figure 4, a screenshot of such an editor for Ecore diagrams is shown. In order to create a
layout rule, the editor developer draws a left-hand side using the language’s concrete syntax. In
the example, he uses the components class and package. The name of the layout rule, a condition
and an action are specified below. For specifying conditions and actions, he may access the
attributes shown on the right side of the editor, here attributes x1 and width of the components
C_Class and C_Package.

Strategy The order in which each layout rule is applied to different parts of the diagram usually
follows an exact plan, called strategy. In our example the strategy containment is used: Starting
with the class changed by the user, internal packages are moved and resized first, and surrounding
packages are updated afterwards. Besides, the order in which different strategies (and hence their
corresponding layout rules) are applied to the diagram has to be specified, too.

Specification of Strategies The definition of strategies is also based on the LMM of the dia-
gram language, and hence they need to be redefined for every visual language. For each strategy,
a traversal strategy is specified, which is based on the LMM. For the strategy containment de-
scribed earlier, the following is defined: If a class is moved, follow the link ePackage, and
retrieve the surrounding package. Apply the rule containment to this package, and resize the
package accordingly. If the package is changed, follow the link eSuperPackage, retrieve the
surrounding package, and apply the rule containment to the surrounding package. Besides, it
needs to be defined how strategies interact with each other.

3.4 Ecore Editor

The Ecore Editor example uses several layout algorithms. The following rule-based layout algo-
rithms are used:

• An algorithm that keeps the minimal size of classes and packages.

• An algorithm that takes care of the containment of classes and packages. The algorithm is
applied from inside-out.

• An algorithm that aligns attributes as a list. The algorithm is applied from top-to-bottom.

The following graph drawing algorithms are used:

• An algorithm that performs force-directed layout, which avoids overlapping of classes.

• An algorithm that executes an edge follower. The edge follower makes sure that associa-
tions and generalizations stay attached to components.

• An algorithm that performs an edge router, which is responsible for routing associations
and generalizations.

• An algorithm that executes a tree layouter or an algorithm that creates a layered layout.
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4 Pattern-Based Layout Specification

It is reasonable to reuse parts of the layout specification. To enable reuse, we introduce layout
patterns that encapsulate certain layout behavior. The term pattern is already known in the
context of layout specification [SK03] where the specification of a visual language editor is
based on a tree grammar instead of a meta model. In our approach, each layout pattern is based
on a language-independant, but pattern-specific meta model. Layout algorithms, graph drawing
algorithms and constraint-based algorithms are defined on top of these pattern-specific meta
models. In order to apply a layout pattern to a certain visual language, i.e., in order to instantiate
the pattern, a mapping between the pattern-specific meta model and the language-specific LMM
needs to be defined.

4.1 Meta Models

Layout behavior that belongs to a certain layout pattern is defined on top of the corresponding
pattern-specific meta model. The meta models SizeLMM, ListLMM and ContainmentLMM,
on which the patterns Size, List and Containment are based, are shown in Figure 5. The meta
model SizeLMM consists of a class SizeElem, which stands for the resizable component. The
meta model ListLMM describes a list in terms of many instances of class ListElem. The meta
model ContainmentLMM consists of a class Container. Each instance may contain one or
more Component objects. A Component object is either a ContainerElem instance or a
Container instance.

(a) SizeLMM (b) ListLMM (c) ContainmentLMM

Figure 5: LMM for Size, List, and Containment

Figure 6: LMM for Graphs (GLMM)

7 / 13 Volume 25 (2010)



Pattern-Based Layout Specification

A pattern-specific meta model is an abstraction of the situation in the LMM, meaning that
concrete classes in the pattern-specific meta model, that are named roles in the following, cor-
respond to classes in the LMM. E.g., the pattern Containment has the two roles ContainerElem
and Container. The mapping defines the occurrences of these roles in the LMM.

Meta Model for Graph Drawing Algorithms As we saw in the Ecore Editor example, it is
necessary to integrate graph drawing algorithms. To allow for reuse, graph drawing algorithms
are integrated as certain patterns, and hence, are based on a pattern-specific meta model. The
layout meta model for graphs (GLMM) is shown in Figure 6: A graph consists of several com-
ponents. A component is either an edge or a node. An edge has up to three labels and connects
two nodes.

4.2 Mappings

Table 1 shows four patterns, and enumerates the components of the visual languages Ecore dia-
grams and Petri nets, these patterns are applied to. The different roles are identified in the LMM.
For Ecore diagrams, the roles are visualized in Figure 7. E.g., for the pattern Containment,
classes may have the role ContainerElem, and packages may have the role Container.

Pattern Role Ecore diagrams Petri nets
Size SizeElem package & class state & transition
List ListElem attribute —
Containment Container package state

ContainerElem class token
Graph Node class state & transition

Edge generalization arrow

Table 1: Mappings of Ecore diagrams & Petri nets.

Figure 7: Roles Identified in the LMM
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Usually a pattern is not exactly represented in the meta model of a diagram language. Instead,
some variation can be found. E.g., in case of the pattern List, a next relationship is not explicitly
contained in the Ecore meta model (Figure 1). The order of attributes is only implicitly defined
by the values of the attribute yPos of the class CAttribute. To allow for pattern detection,
the LMM must be mapped to a pattern-specific meta model. In case of the pattern List, the class
CAttribute is mapped to the class ListElem. Furthermore, the attribute yPos of the class
CAttribute is mapped to the association next.

In the Ecore example, for each pattern, a mapping to the corresponding meta model must
be defined: the correspondence between the different models can be seen in Figure 8. Here,
instances of the meta models of Figure 5 are ListLM, SizeLM, ContainmentLM, GLM 1 and
GLM 2. The dashed arrows show the transformations between different models. Every ellipse
connected with a rectangle forms a pattern instance, e.g., List together with ListLM, or Edge
Router together with GLM 1. Each meta model is instantiated several times: once for each
occurrence in the LM. E.g., the pattern List is instantiated for each CClass that contains one or
more CAttributes.

Figure 8: Correlation of Diagram, LM, Pattern-Specific Models and Patterns

For different graph drawing algorithms, it may be the case that different mappings must be
specified. In our example, two mappings between LMM and GLMM are defined. Figure 9
shows an example diagram (Figure 9a) together with its LM (Figure 9b). The corresponding
instances of the GLMM can be seen in Figure 9c (GLM 1) and Figure 9d (GLM 2). In GLM 1
classes are mapped to nodes, and generalizations are mapped to edges. In GLM 2, classes are
mapped to nodes, and generalizations as well as associations are mapped to edges.

The easiest mapping, the mapping between LM and SizeLM, is visualized in Figure 10. The
visual language for the description of QVT transformations is used [OMG05] here. In the im-
plementation, the mappings are currently written by hand. In the example, the classes CClass
and CPackage are mapped to the class SizeElem. By the help of model transformation, it is
now possible to create an instance of each pattern-specific meta model.
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(a) Example Graph (b) LM (c) GLM 1 (d) GLM 2

Figure 9: Graph Drawing

Figure 10: Mapping between LM and SizeLM

Mapping of Attributes In the transformation, attributes of classes in the LM are mapped to
attributes of classes in the pattern-specific model. For the pattern Size (Figure 10), the class
SizeElem has the two parameters height and width. Besides, the two options minHeight
and minWidth can be set. For Ecore diagrams, the pattern Size is applied to packages and
classes. For packages and classes, height is mapped to the attribute height, and width
is mapped to the attribute width. For packages, the minimal height (minHeight) and the
minimal width (minWidth) are set to 40. Analogously, for classes, they are both set to 30:

SizeElem
height = CClass.height, width = CClass.width
minHeight = 30, minWidth = 30

SizeElem
height = CPackage.height, width = CPackage.width
minHeight = 40, minWidth = 40

Here, also a more sophisticated mapping is imaginable, e.g., for places of Petri nets, height
and width would be mapped to 2*radius.
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4.3 Rule-Based Layout Algorithms

The specification of rule-based layout algorithms is based on the pattern-specific meta model.
Layout rules as well as strategies must be specified on this meta model.

Layout Rules E.g., the layout rules that belong to the layout pattern Containment are based on
the meta model ContainmentLM. The “language-specific version” of this pattern consists of two
layout rules, whereas the “generalized version” of this pattern consists of one rule. Figure 11
shows the left-hand sides of the layout rules that are based on the LM (Figure 11a) and the
left-hand side of the layout rule that is based on the ContainmentLM (Figure 11b).

(a) LMM (b) Pattern-Specific MM

Figure 11: Left-hand side of Layout Rule

Strategies Strategies are also defined on top of the pattern-specific meta model. E.g., the
strategy that belongs to the pattern Containment starts with the component changed, and then
follows the link container (see Figure 5), until no more components are available.

4.4 Graph Drawing Algorithms

Graph drawing algorithms are defined on the (predefined) GLMM. The algorithm is either hand-
coded or an external graph drawing algorithm. The graph drawing algorithms edge router, edge
follower, force-directed layout, tree layout and layered layout all operate on the same GLMM
(see Figure 8).

5 Related Work

We use the concept of layout patterns to encapsulate layout behavior. The term pattern is already
known in the context of layout specification [SK03] where the specification of a visual language
editor is based on a tree grammar instead of a meta model. We use layout patterns on the basis
of meta-model-based visual language editors.

Rules are the underlying concept of our layout algorithm, as also done in [BGL06]. Here,
interaction dynamics are defined via rules. In this work, the definition of interaction is based on
one language-independent meta model for all diagram languages. To enable reuse, we introduce
several language-independent meta models, one for each layout pattern.
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In [Bra01], special aspects are discussed that should be considered when dealing with dynamic
graph drawing. In this context, predictable results that preserve the mental map [PS08, MELS95]
are favored, instead of high quality layout derived from a standard layout algorithm. As most
diagram languages show a graph-like structure, these aspects also apply in our context and are
considered in our approach.

Many tools that deal with dynamic graph drawing are based on declarative constraints, e.g.,
[DMW09]. In our layout algorithm, conditions are defined, which are similar to constraints. In
addition, a solution is provided. This way, it is easier to define a target-oriented and, hence, a
more pleasant layout behavior. In addition, performance is usually increased since no compli-
cated constraint solver must be invoked. However, constraint-based layout algorithms can be
combined with rule-based layout algorithms with our approach of layout patterns.

6 Future Work and Conclusions

In this paper, we introduced layout patterns, which encapsulate certain layout behavior. With the
approach, it is possible to combine different layout algorithms: Rule-based layout algorithms that
are specifically tailored to the interactive nature of visual language editors may be combined with
standard graph drawing algorithms and constraint-based layout algorithms. Due to the language-
independant nature of layout patterns, reuse of layout behavior is enabled. Layout patterns are
defined on top of pattern-specific meta models. To allow for a seamless integration, transforma-
tions between the language-specific model and pattern-specific models were introduced. After
an editor developer specifies one or more transformations, he may reuse one or more layout
patterns. This way, he only needs to specify ”real” language-specific layout behavior.

Currently, transformations between models are written by hand. In future, they will be defined
on an abstract level. For that purpose, we currently analyze QVT transformations [OMG05],
which offer a visual language for model transformations. As a next step, an “automatic” model
mapping would be imaginable, too, as done in [BSG+04]. Besides, the application control is
also written by hand. Here, a visual language similar to AGG, Fujaba or PROGRES [FMRS07]
is under consideration.

At this point, the combination of different layout patterns is done via the application control,
a language-specific control program. Currently, we are working on a more general and formal
approach that replaces this part.

Our overall goal is to create a platform, on which new language-specific algorithms that are
tailored to interactive diagram drawing may be rapidly created and tested.
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