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Abstract: Hans-Jorg Kreowski was among the first researchers to pointhat
Place/Transition Petri nets can be interpreted as instamic&raph Transformation
Systems, a fact now considered folklore. We elaborate andhbservation, dis-
cussing how several different models of Petri nets can bedatt faithfully into
Graph Transformation Systems. The key idea we pursue ighibatet encoding is
uniquely determined, and distinct net models are mappelldmative approaches
to graph transformation.

Keywords: Petri nets, graph transformation, single and double pusiygproach.

1 Introduction

The success of Petri nets as specification formalism for woect or distributed systems is
due (among other things) to the fact that they can descritzenatural way the evolution of
systems whose states have a distributed nature. For exaimldlace/Transition net like the
one depicted in Figl, a state of the system is represented by a marking, i.e., af $ekens
distributed among a set of places. Hence the state is imdailhs distributed, thus allowing for
an easy explicit representation of phenomenaiiikgual exclusionconcurrency causality and
non-determinism

(@) (b)
Figure 1: (a) A marked P/T net. (b) The marking after the fimhd¢ransitiont.

Nets and their semantics are therefore a reference poiabfoformalism intended to describe
concurrent and distributed systems, and thus also for GFaphsformation Systems (GTSSs).

* Research partially supported by the MIUR PRIN 2008 SisteR.
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From Petri Nets to Graph Transformation Systems ﬂ

Figure 2: Encoding of nets as grammars according to Kreowski

Indeed, it belongs to the folklore that Graph Transfornmafsystems can be seen as a generali-
sation of Petri nets. The first formalization of this intaitj to our knowledge, was proposed by
Hans-Jorg Kreowski in{re81] using the double-pushoub$o) approach, and it is illustrated
in Fig. 2. The marked net of Figl (a) is represented in Fi@ by the graphKr(Mp) having
three kinds of nodes (for transitions, places, and tokesspactively) and where edges connect
either places and transitions (modelling the causal degrenydrelation) or tokens and places
(determining the place where a token lies). Transiti@represented by rulér (t) (the top row

of the figure): The rule does not modify the topological dinoe of the net (nodes and edges
corresponding to places, transitions and causal depeyndelation are also in the interface), but
only deletes and creates the nodes representing tokertbe¢ogéth the edges connecting them
to places. It is easy to check that the rule is applicable aplyKr(Mp) (the gluing conditions

are satisfied), and since the two squares in the figure areopissithatkr(Mo) il Kr(My);
moreover, the derived gragér (M;) represents the markirg,, such thatMp [t) M;.

Several encodings of Petri nets as GTSs have been proposedtisen, and it is impossible
even to summarize them here: for some of the earliest, Gef] and the references therein.
In this paper we elaborate on this idea, starting from theslagion that P/T nets are only
one (a noticeable one) among the alternative models of Retsi which have been proposed
along the years. Sticking to “low level” Petri nets, otherdals of nets may allow at most one
token at a time in a place, as f@ondition/Event (C/E) nef8C97 or Elementary Net Systems
(ENS) [RE9q, and correspondingly a transition can fire only if the postiditions are empty. In
the so-calledConsume-Produce-ReadKR) nets|[BBCG0g, more permissively, the transition
can fire anyhow, but the token produced on a place is “coaléseith a possibly pre-existing
token. Orthogonally, nets of all kinds can be equipped wethd or inhibitor arcs specifying
that the presence or the absence of a token on a place is agcksdiring, but it does not affect
the result CH93 MR95, JK95, Vog97, AF73]. Another type of arcs, callegeset arc§ AK77],
allows to specify that the firing of a transition deletes la# tokens, if any, from a given place.

What about representing these models of nets as GTSs? kipbteinall of them can be
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encoded usin@Po rewriting, because the latter is Turing compldtd’D1]. We prefer to follow

a different approach, which on the one hand allows us to Keegncoding very simple for all
the models of nets mentioned above, and on the other handitsxihlie fact that also for GTSs
alternative formalisms have been proposed. From the GT&w@ shall stick to the family
of algebraic approaches, among which we consider the cissingle- and double-pushout
approachesljow93, EPS73, and the less known Subobject Transformation Systebi$J04g.
The latter basically consists of rewriting in the latticesabgraphs of a given graph, and it turns
out to be the natural framework for encoding net models whibébhw at most one token on a
place (where a state is a subset of places).

We encode nets using a very simple kind of graphs, containgugs and unary edges only.
A marking of a net is represented by a set of edges, one forteeh, each attached to a node
representing a place. It is thus reminiscent of the encoblyngreowski discussed above, even
if the transitions are not represented explicitly in theesta They are encoded only as rules of
the GTS. Interestingly, inhibitor and reset arcs can be @egexactly in the same way: The
different behaviour is determined by the choice of the GTi@agch.

The following table summarizes the results we shall preséat each of the three basic net
models, we indicate the GTS approach that can be used toeiidngresence of read, inhibitor
and/or reset arcs: note that we do not allow for nets whicludeboth inhibitor and reset arcs.

Read arcs Read + Inhibitor Read + Reset
P/T nets DPOOr SPO DPO SPO
ENS STSOr STS= STS STS=
CPR nets STSm Or STS STSn STS:

Table 1: Summary of the proposed encodings.

The few variants of theTs approach referred to in the table will be introduced later Time
encodings of P/T Petri nets with read, inhibitor and reset as GTSs were originally discussed
in [BCMO5]. The present paper provides a systematic view of such emggdviewing them in
a much more general framework which recomprises Elemeiatysystems andPRnets.

The paper is structured as follows. Sectibpresents the three GTS approaches we deal with
in our work, and it is complemented in Secti8rby the kinds of nets for which we present an
encoding. Sectiod discusses these encodings, and the correspondence betiezaative net
models and GTS approaches. Sectiodraws some conclusions and offers pointers to future
work.

2 Algebraic approaches to graph transformation

This section introduces some basic notions concerninglgledeaic formalisms for graph rewrit-
ing considered in the paper. We concentrateyped Graph Transformations Syste(as ss),
both in thesingle-pushout(spo [Low93, EHK97] and thedouble-pushou(pro) [EPS73
CMR™'97] approach, and oBubobject Transformation Systefssss) [CHS0§. Typed rewrit-
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From Petri Nets to Graph Transformation Systems @

ing is a well-established variant of the classical proposdhere rewriting takes place on so-
called typed graphs, i.e., graphs labelled over a struotdrieh is itself a graph CMR96,
LKW93].

2.1 Graphs and graph morphisms

We introduce here the basic concepts concerning graphsheitdhtorphisms. For the sake of
simplicity, our introduction to GTSs will deal with unary pgr-graphs only, since they are just
what is needed for the encoding of Petri nets that we are goipgesent. Indeed, all the remarks
in this section could be generalized to any kind of (hypeapds or, albeit with some additional
care, to anyadhesivecategory [S05. Similarly, the encodings presented later would work in
standard categories of (hyper-)graphs.

Given a partial functionf : A — B we denote bydom(f) its domain i.e., the set{fa € A |
f(a) is defined. Let f,g: A — B be two partial functions. We writé < g whendom(f) C
dom(g) and f (x) = g(x) for all x € dom(f).

Definition 1 (graph and graph morphism) @inary) graph Gis a triple G = (Vg, Eg,Cg),
where\ is a set of noded< is a set of edges am; : Eg — Vg is a function mapping each
edge to the node it is connected to.

A partial graph morphism f G — H is a pair of partial functions = (fy : Ng — Ny, fg :
Eg — En) such thaty o fg < fyocs (see Fig3.(a))

We denote byPGraph the category of (unlabelled) graphs and partial graph nisnph A
morphism is calledotal if both components are total, and the corresponding suppogteof
PGraph is denoted byGraph.

Notice that if a partial graph morphisiinis defined over an edge, then it must be defined on
the node the edge is connected to: This ensures that the mafmfis a well-formed graph.

Definition 2 (subgraph lattice) A grapfl is a subgraphof H, written G C H, if Ng € Ny,
Ec C Ey, and the inclusions form a graph morphism. The subgraphs afdered by inclusion
form a distributive lattice, denote8ub(H), where the meet and the joinU are defined as
component-wise intersection and union, respectively.

Given graphdH andG C H, we will write, a bit informally,H \ G to denote the set of items
(nodes and edges) of which do not belong té.

fe

EG _— EH |G1| —> |G2|
Cc;l > CHl \/ /Gz
NGf4> Ny
N

(@) (b)
Figure 3: Diagrams for partial graph and typed graph morphis

Festschrift H.-J. Kreowski 4/18



@ ECEASST

Given a graphT, atyped graph Gover T is a graph|G|, together with a total morphism
tc : |G| — T. A partial morphismbetweenT-typed graphsf : G; — G, is a partial graph
morphismf : |G1| — |G| consistent with the typing, i.e., such thaf > tg, o f (see Fig3.(b)).
A typed graphG is calledinjectiveif the typing morphismnig is injective. The category of -
typed graphs and partial typed graph morphisms is denotdd®graph.

Given a partial typed graph morphisin: G; — G, we denote bydom(f) the domain off
typed in the obvious way. Given a subgra®lof T, i.e., an element dub(T), we often consider
it as a graph typed ovér by the inclusion. Since we work only with typed notions, wealy
omit the qualification “typed”.

2.2 Double-pushout rewriting

Chosen a type graph, a (T -typed)DpPo rule g= (L L K < R) is a pair ofinjective (total,
T-typed) graph morphisms K — L andr : K — R, where|L|, |K| and|R| are finite graphs. The
graphsL, K andR are called théeft-hand sidetheinterface and theright-hand sideof the rule,
respectively.

Definition 3 (bPo direct derivation) Given a grapB, abPo rule g, and amatch(i.e., a total
graph morphismy : L — G, abpro direct derivation from G to H using g (based one&ists,
written G =g"°H, if the diagram

q: LQK;}R

| ]

can be constructed, where both squares are pushoutsiraph.

Given an injective morphism : K — L and a matchg: L — G as in the above diagram,
their pushout complemeite., a graptD with morphismsk andb such that the left square is a
pushout) exists if and only if thgluing conditionis satisfied. This consists of two parts:

¢ theidentification conditionrequiring that if two distinct nodes or edgesloare mapped
by g to the same image, then both are in the imagke of

¢ the dangling condition stating that no edge iG \ g(L) should be connected to a node
in g(L \ I(K)) (because otherwise the application of the rule would leavh sn edge
“dangling”).

2.3 Single-pushout rewriting

Chosen a type graph, a (T -typed)sporule g= (L N R) is an injective partial typed graph
morphismr : L — R. The graphd. andR are called théeft-hand sideand theright-hand sideof
the rule, respectively.

Definition 4 (spodirect derivation) Given a grapB, ansporule r, and amatch(i.e., a total
graph morphismy) : L — G, we say that there is aspodirect derivation from G to H using r
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From Petri Nets to Graph Transformation Systems ﬂ

(based on g)written G =->F°H, if the following is a pushout square -PGraph.

Roughly speaking, the rewriting step removes from the g@apihe image of the items of the
left-hand side which are not in the domainrgfnamelyg(L \ dom(r)), adding the items of the
right-hand side which are not in the imagerohamelyR\ r(dom(r)). The items in the image
of dom(r) are “preserved” by the rewriting step (intuitively, theyeaccessed in a “read-only”
manner).

A relevant difference with respect to tb@o approach is that here there is d@angling condi-
tion preventing a rule to be applied whenever its applicationld/®ave dangling edges. In fact,
as a consequence of the way pushouts are construcliedP@raph, when a node is deleted by
the application of a rule also all the edges connected to sade are deleted by the rewriting
step, as a kind of side-effect. For instance, e the top row of Fig4, which consumes node
B, can be applied to the gragh in the same figure. As a result both noBexnd edge. are

removed.
e
c — ]

Figure 4: Side-effects iBPOrewriting.

Even if the category?Graph has all pushouts, still we will consider a condition whichiree
sponds to thédentification conditiorof the bpPo approach.

Definition 5 (valid match) Let :L — Rbe arule. Amatcly: L — G of r is calledvalid when
for anyx,y € |L|, if g(x) = g(y) thenx,y € dom(r).

Conceptually, a match is not valid if it requires a singleotese to be consumed twice, or
to be consumed and preserved at the same time. In the papensie@r derivations where all
matches are valid: This is needed to have a resource-caissciterpretation for derivations, i.e.,
where each resource is consumed at most once.

We close this section noting that for eazho rule we can easily construct @porule, which
behaves like the original one when the dangling conditiosassfied. Clearly, the converse
construction is possible as well.

Definition 6 (from DPOto sPorules, and vice versa) Let= (L L K < R) be aT-typedbrPO
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rule. Then, the associaté-typed sporule, denoted by (q), is given by the partial graph
morphismrol* : L — R, wherel* : L — K is the partial inverse df, defined in the obvious way.

Vice versa, for & -typedsporuleq = (L . R), the associatedporule is defined a®/(q) =
(L — dom(r) < R).

2.4 Subgraph Transformation Systems

In the typed approaches to graph transformation, the tygehgplays a role analogous to the set
of places in Petri nets. In particular, the constraint thalbae can contain at most one token can
be translated into the requirement that the typing morplssnjective. This condition is built-in
in the instance of th8ubobject Transformation Systamproach CHS09 that we present here.
In the original formulation, the framework where rewritirsgdefined is the distributive lattice
of subobjects of a fixed object of an adhesive category. Sederglity is unnecessary here,
and we instantiate the definitions to the case where the @ated concern iSGraph, which is
indeed adhesive. As a consequence, in the following we rgeadl ‘as Subgraphlransformation
Systems.
Chosen a type graph, a(T -typed)sTsrule qis a tripleq= (L,K,R), whereL,K,Re Sub(T),
K CLandK CR. The graph4., K andRare called théeft-hand sidetheinterfaceand theright-
hand sideof the rule, respectively.

Definition 7 (sTsdirect derivation) Given a grapB in Sub(T) and ansTsruleq= (L,K,R),
there is asTsdirect derivation from G to H using,qvritten G =§™H, if H € Sub(T) and there
existsD € Sub(T) such that

(i) LUD=G; (i) DUR=H;
(i) LND=K; (iv) DNR=K.

If such a graptD exists, we shall refer to it as thewntextof the direct derivatiorc =§™H.

It is instructive to consider the relationship betweersas direct derivation and apo direct
derivation as introduced above. First observe 8at(T) can be seen as a category where the
arrows are the inclusions, and a ryle K,R) can be seen as a spgr= (L DK CR), i.e., a
pair of arrows inSub(T). Next, we shall say that there iscantact situatiorfor a rule (L,K,R)
at a subgraplc D L € Sub(T) if GANRZ L. Intuitively, this means that some items of the
subgraphG are created but not deleted by the rule: If we were allowegpdyathe rule at this
match via ebpo direct derivation, the resulting object would contain thexnon part twice and
consequently the resulting morphismTownould not be injective; i.e., the result would not be a
subgraph off . The next result, presented iGIHS0§, shows that asTsdirect derivation is also
aDPodirect derivation if no contact occurs.

Proposition 1 (sTs derivations are contact-free double pushoutket G and H be graphs in
Sub(T) and g= (L,K,R) be ansTsrule. Then G:>§TS Hifand only if LC G, GNRC L,
and G:>3P° H, i.e., if there is a graph D= T-Graph such that the diagram below forms two
pushouts in TGraph.
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L+ K——R

oo | e |

G D H

In the last result we used the fact that srs rule can be considered asTatypedDPoO rule,

considering the inclusions as arrowsGmaph. Conversely, & -typedDporuleq= (L Lk,
R) induces arsTsrule .#(q) obtained by considering the images|bf, |K| and|R| in the type

graph, i.e..7(q) = (t.(|L]), t (IK]),tr(IR])).-

2.5 Other kinds of STSS

We introduce here three variations of the definitiorso§ direct derivation, obtained by slightly
changing the properties satisfied by the context giaph

The first definition is reminiscent of theesqui-pushoudpproach CHHKO0€], and it leads to
anspolike approach foisTs where rules can be applied regardless of the dangling tondi
removing, as a side-effect, those edges which would rerneglahg.

Definition 8 (sTs= direct derivation) Given a grap@in Sub(T) and ansTsruleq= (L,K,R),
there is arsTs= direct derivation from G to H using,qvritten G :>3TSg H,if H € Sub(T) and
there existd € Sub(T) such that

(i LUD CG;

(i)’ D is the largest subgraph & such thal ND = K;
(ii) DUR=H;

(iv) DNR=K.

Weakening the first condition of Definitiohand imposing the “largest subgraph” requirement
in (i)’ implies that some items @ \ L may not occur irD, like when deleting a node forces the
deletion of incident edges in tre®oapproach. The superscript §Ts= reminds the weakening
of the first condition.

The next variants drop the requiremé&ht R= K. This allows for some overlap between the
items preserved in the conteRtand those newly introduced B The injectivity of the typing
forces these items to be coalesced, similarly to what happerPr nets. This is done fogTss
in bothbPo andsPostyle.

Definition 9 (sTsy andsTss, direct derivations) Given a grapgh in Sub(T) and ansTsrule
g = (L,K,R), there is ansTsy, direct derivation from G to H using,qwritten G :>3T5“ H, if
H € Sub(T) and there exist® € Sub(T) such that

(i) LUD=G; (i) LND=K; (i) DUR=H.

Analogously, there is asTs, direct derivation from G to H using,qwritten G :>§T% H, if
H € Sub(T) and there exist® € Sub(T)

(i LUD CG;
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(i)’ D is the largest subgraph &f such thalL ND = K;
(i) DUR=H.

The figure to the right shows the differences among the
various kinds ofsTsdirect derivations introduced in Def-
initions 7, 8 and 9. The type graphl on the top con-
tains two nodese and e, and one edge connected to
o. The lattice of subgraphs ofF is depicted undeiT,
with dashed lines representing inclusions. The arrows
show all the possible direct derivations among elements
of Sub(T) using thesTsrule g = ({o},0,{e}) and the
following approaches introduced in Definitioiis 8 and

9 1=5TS2=STS=,3=STSn,4=STS.

2.6 Graph grammars

In the previous sections we presented six different dedimgtiof direct derivation, each of which
determines a different algebraic approach to graph tramsfiton. For each one of those ap-
proaches, a graph grammar contains a type graph, a staft, ggaget of rule names, and a
mapping from rule names to corresponding rules. Clearly,pifecise definition of start graph
and of rule depends on the chosen approach.

Definition 10 (graph grammar) AIND graph grammaywherekIND € {DPO, SPQ STS, STS=,
STSm, STSR}, is a tuple? = (T, G, P, ), whereT € Graph is thetype graph P is a set ofrule
names T is a function which associateskanD rule! to each rule name iR, and Gs is the
start graph which has to be consistent witinD. That is, Gs is a T-typed graph ifKIND
€ {DPO,sP0}, andGs € Sub(T) in all other cases.

A derivationover akIND grammar¥ is a sequence ofIND direct derivations using rules in

P, starting from the start graph, namedy= {Gi_1 =§"? Gi}ic1....n}» With Go = Gs.

3 Enriched Petri nets

In this section we introduce some basic extensions of Petsi mamely, nets with read, inhibitor
and reset arcs. A study of the expressiveness of these Kiagssy along with a comparison with
other extensions proposed in the literature, like priesitiexclusive-or transitions and switches,
is carried out in Pet81 LC94].

To give the formal definition of these generalised nets wed rememe notation for sets and
multisets. Given a seX we write 2% for the powerset oX andX® for the free commutative
monoid overX, with monoidal operatior®, whose elements will be referred to amiltisets

1 To be precise, foKIND € {STS=,STSy, STSS}, aKIND rule is ansTsrule.
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From Petri Nets to Graph Transformation Systems @

over X. Given a multisetM € X%, with M = @,.x My - x, for x € X we will write M(x) to
denote the coefficierily. Moreover, we denote bjM] the underlying subset of, defined as
[M] = {xe X | M(x) > 0}. With little abuse of notation, we will writ& € M instead of € [M]].

GivenM, M’ € X® we writeM < M’ whenM(x) < M’(x) for all x € X. In this case thenultiset
difference M@ M is the multiseM” such thaM &M” = M'. ForY C X andM € X®, we denote
by M[Y] the restriction oM to Y, i.e., M[Y](x) = M(x) if x € Y, andM[Y](x) = O otherwise.
Finally, the symbol 0 denotes the empty multiset.

3.1 Place/Transition nets

We are now ready to define the enriched P/T nets considerée ipaiper. Besides ordinary flow
arcs and read arcs, the nets are endowed with so-calleihtglighed arcs” (represented by the
9(.) function below), which will be interpreted either as inhdvior reset arcs in the token game.

Definition 11 (enriched P/T nets) Aenriched (marked) Place/Transition (P/T) Petri neta
tupleN = (S Tr, *(.),(.)%, (), ©(.),m), where

e Sis a set ofplaces

e Tris a set oftransitions

*(.),(.)*: Tr — S” are functions mapping each transition to its pre-set antgeis re-
spectively;

():Tr— 2Sis a function mapping each transition to ésntext

©(.): Tr — 25is a function mapping each transition todlistinguished sedf places, such
that for allt € Tr, (*t@t®t*)[®t] = 0 (i.e., no token in®t can be either read, consumed
or produced by);

e me S’ is a multiset called thanitial marking.

We assume, as usual, tlanTr = 0. We shall denote with*(.),(.)*,(.) ©(.) also the

an
functions fromSto 2" defined as, fos€ S, *s= {t € Tr |sect*}, s* = {t eTr|se °t},
s={teTr|set},and%={t e Tr|se ©}.

A state of a P/T net is defined asraarking that is, a set of tokens distributed over the places.
Formally, a markingM is a multiset of places, i.eM € S”. Thetoken gamaletermines when
a transitiont is enabledat a given marking, and, if enabled, what marking is reacHest a
firing the transition. For a transitionto be enabled at a markindg, it is necessary foM to
contain the pre-set dfand an additional set of tokens which covers the contekt Aflditional
conditions for enabledness, as well as the result of firiegpedd on the interpretation given to
the distinguished arcs: As anticipated, we interpret th#gheeasinhibitor arcsor asreset arcs
obtaining the classes of nets below.

Definition 12 (inhibitor and reset P/T nets) Ainhibitor Place/Transition nets an enriched
P/Tnet(STr,*(.),(.)*,(.), ®(-),m) where the distinguished arcs are interpreted as inhibits. a
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Given a markingVl € S” and a transitiont € Tr, t isi-enabledif *t®&t <M andM[®t] =0 (i.e.,
M contains no token in any place 6f). Theinhibitor transition relationbetween markings is
defined as

M [t); M/ if t is i-enabled aM andM’ = (M © °t) @t°.

A reset P/T nets an enriched P/T net where the distinguished arcs arepneted as reset arcs.
GivenM € S andt € Tr, t isr-enabledif *t ®t < M. Thereset transition relations defined as

M[t), M’ if tis r-enabled aM andM’ = (M & *t) &t*) e M[ ]

(i.e., the firing oft deletes all the tokens from places%tt Such places are certainly empty after
the firing, because they cannot belong to the post-sgt of

For a transitiort, if the distinguished se®t is empty the two alternative enabling conditions
coincide, as well as the induced transition relations onkimgs. In the following, we call
contextual Petri netthe class of nets such that all its transitions have thendjgished set empty.

Firing sequences and reachable markings are defined in dlaéway.

Examplel An example of an enriched P/T rigtcan be found in the left part of Fi§. Graph-
ically, transitions are connected to context places bynestéd arcs and to distinguished places
by dotted undirected arcs.

Starting from the initial markingo & s1 ® S & 4, @ possible firing sequence for all interpreta-
tions isty;t, leading to the marking, ® S3® 254 @ S.

If we first firet,, the net reaches the markisg® s, © s4©s. Now, if N is seen as an inhibitor
P/T net, the presence of a tokersimhibitst; which cannot fire. If, instead\ is seen as a reset
P/T net, transition; can fire and, as a consequence, pkeemptied, producing the marking
S D 3P 25;.

3.2 Elementary nets

Let us callelementarya net where the states are definedsas)setof places, rather thamulti-
setsof places as for P/T nets. Thus elementary nets comprisessesd models proposed in the
literature, including C/E net8[C97, Elementary Net System&E94q, Consume-Produce-Read
nets BBCGO9 and others.

An enriched elementary (marked) ng& Tr, *(.),(.)*,(.), ©(.),m) is defined as an enriched
P/T net in Definitionl1, requiring®(.),(.)* : Tr — 2Sandme 25 (i.e., *t andt® for all t € Tr, as
well as the initial markingn, are sets rather than multisets). Furthermore, besideldjoentness
condition on the distinguished places, that is formulated®aut Ut®) N ©t = 0, it is required
that no token irt is consumed or produced, i.€*tUt*) Nt =0 forallt € Tr.

Both inhibitor and reset elementary nets are easily definéerpreting the distinguished arcs
as expected. However, since the states are subsets of ,pleesnabling condition and the
transition relation must ensure that the marking reachefirimg a transition is a set. This is
obtained in a different way by the two models of nets that vil@@duce:ENSS require a stronger
enabling condition with respect to P/T nets, whiler nets, intuitively, change the transition
relation by allowing to merge tokens of the marking with tapsoduced by the transition.
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Definition 13 (inhibitor and reset Elementary Net Systems) iAhibitor ENS is an enriched
elementary netSTr, *(.),(.)*,(.), ©(.),m) where the distinguished arcs are interpreted as in-
hibitor arcs. Given a markinMg S and a transitiort € Tr, t is ie-enabledif °tuUt C M,

MN © =0, and(M\ °t)Nt* = 0. Theie-transition relationbetween markings is defined as

M [t)ie M’ if t is ie-enabled aM andM’ = (M \ °t) Ut".

A reseteENs is an enriched elementary net where the distinguished aecmirpreted as reset
arcs. GiverM C Sandt € Tr, t isre-enabledf *tUt C M and(M\ *t)Nt* = 0. There-transition
relation is defined as

M [t)re M’ if tis re-enabled @l andM’ = ((M\ *t) Ut®)\ ©t.

The condition(M \ °t) Nt* = 0 ensures that there is “no contact”, itfecan produce a token
only ifitis notinM, or if itis deleted byt itself. As a consequence theoperator in the definition
of M’ is actually a disjoint union. This is the main differencewitspect tacPRr nets, where
the “no contact” condition is omitted, and the arguments)af the definition of the successor
marking might not be disjoint.

Definition 14 (inhibitor and resetPRnets) Aninhibitor cPRnetis an enriched elementary net
where for a markingV C Sand a transition € Tr, t isic-enabledif *tUt C M andM N ©t = 0;
theic-transition relationis defined as

M [t)ic M’ if t is ic-enabled aM andM’ = (M \ °t) Ut®.

A resetCcPRnetis an enriched elementary net where FrC Sandt € Tr, t is rc-enabledif
*t Ut C M; therc-transition relationis defined as

M[t)cM’  if  tisrc-enabled abl andM’ = ((M\ °t)Ut*)\ ©t.

Example2 Observe that the n&t in Fig. 5 can be seen as ans. In this case, starting from the
initial marking {s,s1,S,%} the transitiort; cannot fire due to a contact situationsiy hence
the only possible firing sequencetis

If we interpretN as acPRnet, thert; can fire and the reached markind $s,s,, 3,4}, where,
intuitively, the token generated & is “merged” with the pre-existing one. In this statecan
fire producing the markings,,ss, s4,S}. If we start by firingt,, as in the P/T casg, is blocked
or can fire (emptying placs), depending on whether we interpiétas an inhibitor or a reset
CPRnNet.

4 From enriched nets to graph transformation systems
This section shows how enriched Petri nets can be encoderhpls grammars. Interestingly,

the encoding is essentially the same for all kinds of net® different token game flavours are
obtained by changing the approach to rewriting.
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4.1 Encoding Petri nets as graph grammars

It is part of the folklore (see e.g. the discussion @of9q and the references therein) that (or-
dinary) Petri nets can be seen as a special kind of graph gassnnihe simplest idea is that
the marking of a net is represented as a graph with no edge=q tyver the places: A token in
placesis a node typed oves. Then transitions are seen as rules which consume and goduc
nodes, as prescribed by their pre- and post-set. In thisRety, nets exactly correspond to graph
grammars acting over graphs containing only nodes, whége pueserve no item.

To make the encoding parametric with respect to the chosess @f Petri nets, here we
consider a slightly different encoding, where edges, rdth@n nodes, play the role of tokens.
Roughly, the idea of the encoding is the following:

e aplace is represented as a node;
e tokens in a place are represented as unary edges connethedctmresponding node;

e a transition becomes a rule, which deletes the tokens inmétsgt, produces the post-set
and preserves the tokens in its context; for any place in istinduished set of, the
corresponding node is deleted and created again.

Note the chosen encoding for the distinguished seét Iof the DPO approach this will prevent
the application of the rule if there is at least one token €¢dg the place, thus causing an
inhibitor effect. In thespoapproach, the application of the rule will delete as a sitlzeany
edge possibly attached to the node, thus giving raise toch effect.

As a first step, we show how the set of places underlying arctesdi net (either P/T or ele-
mentary) gives raise to a type graph. In all cases there will hodesin the type graph for each
placesin the net, and the number of edges incident on the node typedsovill represent the
number of tokens in that place. Also the way in which markiagsencoded as graphs does not
depend on the specific kind of nets we are considering.

Definition 15 (type graph, markings) Le&tbe a set of places. Then, the associated type graph
Tsis (S, S c), wherec(s) =sforallse S

Given a subset of place8 C Sand a markingVl € S, we define the grapBs(S,M) as
(S,E(M),c), typed in the obvious way ovels, such thate(M) = {(s,i) | s€ [MJAO<i <
M(s)} andc((s,i)) = sfor all (s,i) € E(M). We write simplyGg(M) for Gs(SM).

So, each place contributes a naaled an edge in the type graphs, and a marking can be
regarded as a multiset of edges of the type graph.

Next we introduce the encoding of net transitions into grammles. As mentioned above,
the encoding is essentially independent of the kind of netsave considering: The different
firing behaviour will be obtained by changing the considemalriting approach. Indeed, next
we define the encoding of a transition asro rule, but changing the rewriting approach §eo
or sT9) will just require a syntactical change in the presentatibtihe rule.

Definition 16 (net transitions agppo rules) Lett be a transition of an enriched P/T net with
place set Thent is encoded as &-typedDPO transition
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Inhibitor Reset
DPO SPO
P/T nets
Gs(t) 7 (Gs(t))
STS STS=
ENS
7 (Gs(t)) J(Gs(t))
CPR nets STSn ST%
7 (Gs(t)) S (Gs(t))

Table 2: Encoding Petri nets as graph grammars.

Gs(t) = Gg(XU %t to °t) — Gg(X,t) — Gg(X U ©t,1_l@t')
whereX = [*t &t $t*] and the left and right morphisms are inclusions.

Thebpro rule Gs(t) corresponding to a transitidndeletes the edges in its pre-set, preserves
the edges in its context and produces the edges in its posifsenodes attached to edges in the
pre-set, context and post-set (i.e., theXgtare preserved. Finally, the nodes corresponding to
the places € @t in the distinguished set ¢fare deleted and produced again.

It is now immediate to provide the encoding for the differkimds of Petri nets into graph
grammars of the appropriate approach.

Definition 17 An enriched Petri nell = (S Tr,F,C,D,m) of one of the six types of nets pre-
sented in Definitiond2, 13 and14 is encoded as &IND graph gramma® (N) = (T, G, P, )
where

e T=Tg
e P=Tr
[ ] GSZGS(m)

MoreoverkIND and thekIND rule 7i(t) associated tb € P are defined, according to the type of
the net, as shown in Tabk

Obviously, the encoding also works for contextual nets {sedirst column of Tablé in the
Introduction).

It can be shown that the encoding preserves the firing relaia reachability, in the sense
specified by the next theorem.

Theorem 1 Let N be an enriched Petri net of one of the types introduce8ection3, let
KIND be the type of grammar corresponding to the type of N accgrtbnTable2, and let M
be a marking of N. If Mt) M’ in N thenGg(M) ={""P? Gg(M’) in the KIND graph grammar
¢ (N); vice versa, iiGs(M) ={'""P G’ in thekIND graph grammarZ(N) then M[t) M” in N with
Gs(M") =G
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Figure 5: An enriched Petri n&t and the correspondingPO gramma.

4.2 Examples

In order to provide some more intuition, we briefly discuss ¢éimcoding for the various classes
of Petri nets.

4.2.1 P/T Petri nets.

As shown in Table?, the behaviour of P/T Petri nets is faithfully captured bgnstardbpo or
spograph grammars.

Inhibitor nets. WhenN is a P/T inhibitor net¥(N) is a bpo graph grammar, where the
effects of the dangling condition are used to encode irdnitdatcs. As an example, the net in
Fig. 5, seen as an inhibitor P/T net, is encoded by the grammar isaime figure, interpreted as
abppPogrammar. Observe that since place ©ty, i.e.,sinhibits transitiont;, the rule associated
with t; deletes and produces again the node correspondisg to this way the presence of
tokens in places, represented by edges connected to such node, will inhibitule because of
the dangling condition.

Reset nets. In the case of a P/T reset nidt the encodingZ(N) is anspogrammar and the
side-effects related to node deletion turn out to captueeipely the behaviour of reset arcs. As

an example the net in Fi¢p, seen as a reset P/T net, is encoded by the grammar in the same
figure, seen as aspogrammar (by transforming the rule using the functigf{.)). The fact that
rulet; deletes and produces again the nedetermines, as side effect, the deletion of all edges
connected to such node, representing tokens in glace

Contextual nets. For contextual P/T nets, i.e., P/T nets whéite= 0 for all t, the rules of
the corresponding grammar never delete nodes. Hencesptb@nd theDpo approaches are
interchangeable. In particular, ordinary P/T net traosit, such that = ©t =0, are represented
by rules with an interface containing only nodes (see the catresponding tt in Fig. 5).

15/18 Volume 26 (2010)



From Petri Nets to Graph Transformation Systems ﬂ

&)
)
@e{)

1

Lo
Ko
Qe
Lo
ne

De
Qe
wne

Col) — ge)

&e{)
&o{)
Yo{ ) —
Ko

Lo

Ko

g’.

Qe{)
$0)
L)

Figure 6: AnsTsy, derivation which is not a legaTs derivation.

4.2.2 Elementary nets.

As shown in Tabl&, ENSs are encoded asrss. As an example, let us consider again theMet
in Fig. 5, which can be interpreted as ans interpreting, correspondingly, the grammar on the
right as arsTs

Observe that, even though there is a match of thetiuile the start grapts, i.e., the left-
hand side of the rule is a subgraph@f, the rule cannot be applied, because there is a contact
situation. More precisely, referring to Fif, condition(iv) of Definition 7 (namely,D "R = K)
is not satisfied, as the intersection between the right-fsishel oft; and the context grapb
contains the edge connectedsiovhich is not inK.

If we interpretN as acPRnet and correspondingly the grammar asas,, then the diagram
in Fig. 6 is a legal derivation: in fact condition§ —iii) of Definition 8 are satisfied, while
condition(iv) is not required anymore.

5 Concluding remarks and future work

In this paper we discussed the encoding of different Petnmuelels into Graph Transformation
Systems. Our aim was of a methodological nature, and itsnaglishments are summarized
by the taxonomy proposed in Tablésand?2. Intuitively, the results can be synthesized by the
slogan “encode the net once”, that is, a Petri net is alwagedad essentially in the same way,
while different net models correspond to alternative apphes to graph transformation.

A relevant issue, which has been neglected in the presest,gamcerns the study of concur-
rency in Petri nets and in their graph grammar counterpadsnittedly, there is a shortcoming
as far as inhibitor nets are considered (already noteB@MO05]): If two transitions are inhib-
ited by the same plac® their encodings aspo rules cannot be executed in parallel, since both
rules delete and produce again the node correspondisig to

st (o) . (o) &

s O O%

For instance, in the inhibitor n@&, above the two transitiong andt, can fire concurrently.
However, in the correspondirmgpo grammar¥ (N,) the rules associated tp andt, delete and
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generate again the same nalnd thus they are forced to be executed sequentially. Thed-dev
opment of a theory encompassing the concurrent behaviateadhvolved models represents a
stimulating direction of future investigation. We beligbat, as it happened in the past, this can
lead to a fruitful technology transfer between the Petriamet GTS worlds.

Acknowledgements: We acknowledge the anonymous referees for the detailed @rsdrac-
tive comments which allowed us to improve the presentation.
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