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Abstract: Hans-Jörg Kreowski was among the first researchers to pointout that
Place/Transition Petri nets can be interpreted as instances of Graph Transformation
Systems, a fact now considered folklore. We elaborate on this observation, dis-
cussing how several different models of Petri nets can be encoded faithfully into
Graph Transformation Systems. The key idea we pursue is thatthe net encoding is
uniquely determined, and distinct net models are mapped to alternative approaches
to graph transformation.

Keywords: Petri nets, graph transformation, single and double pushout approach.

1 Introduction

The success of Petri nets as specification formalism for concurrent or distributed systems is
due (among other things) to the fact that they can describe ina natural way the evolution of
systems whose states have a distributed nature. For example, in a Place/Transition net like the
one depicted in Fig.1, a state of the system is represented by a marking, i.e., a setof tokens
distributed among a set of places. Hence the state is intrinsically distributed, thus allowing for
an easy explicit representation of phenomena likemutual exclusion, concurrency, causality, and
non-determinism.
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Figure 1: (a) A marked P/T net. (b) The marking after the firingof transitiont.

Nets and their semantics are therefore a reference point forany formalism intended to describe
concurrent and distributed systems, and thus also for GraphTransformation Systems (GTSs).
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From Petri Nets to Graph Transformation Systems
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Figure 2: Encoding of nets as grammars according to Kreowski.

Indeed, it belongs to the folklore that Graph Transformation Systems can be seen as a generali-
sation of Petri nets. The first formalization of this intuition, to our knowledge, was proposed by
Hans-Jörg Kreowski in [Kre81] using the double-pushout (DPO) approach, and it is illustrated
in Fig. 2. The marked net of Fig.1 (a) is represented in Fig.2 by the graphKr(M0) having
three kinds of nodes (for transitions, places, and tokens, respectively) and where edges connect
either places and transitions (modelling the causal dependency relation) or tokens and places
(determining the place where a token lies). Transitiont is represented by ruleKr(t) (the top row
of the figure): The rule does not modify the topological structure of the net (nodes and edges
corresponding to places, transitions and causal dependency relation are also in the interface), but
only deletes and creates the nodes representing tokens together with the edges connecting them
to places. It is easy to check that the rule is applicable to graphKr(M0) (the gluing conditions

are satisfied), and since the two squares in the figure are pushouts, thatKr(M0)
Kr(t)
=⇒ Kr(M1);

moreover, the derived graphKr(M1) represents the markingM1, such thatM0 [t〉M1.
Several encodings of Petri nets as GTSs have been proposed since then, and it is impossible

even to summarize them here: for some of the earliest, see [Cor96] and the references therein.
In this paper we elaborate on this idea, starting from the observation that P/T nets are only
one (a noticeable one) among the alternative models of Petrinets which have been proposed
along the years. Sticking to “low level” Petri nets, other models of nets may allow at most one
token at a time in a place, as forCondition/Event (C/E) nets[BC92] or Elementary Net Systems
(ENS) [RE96], and correspondingly a transition can fire only if the post-conditions are empty. In
the so-calledConsume-Produce-Read (CPR) nets[BBCG08], more permissively, the transition
can fire anyhow, but the token produced on a place is “coalesced” with a possibly pre-existing
token. Orthogonally, nets of all kinds can be equipped withread or inhibitor arcs, specifying
that the presence or the absence of a token on a place is necessary for firing, but it does not affect
the result [CH93, MR95, JK95, Vog97, AF73]. Another type of arcs, calledreset arcs[AK77],
allows to specify that the firing of a transition deletes all the tokens, if any, from a given place.

What about representing these models of nets as GTSs? In principle, all of them can be
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encoded usingDPO rewriting, because the latter is Turing complete [HP01]. We prefer to follow
a different approach, which on the one hand allows us to keep the encoding very simple for all
the models of nets mentioned above, and on the other hand exploits the fact that also for GTSs
alternative formalisms have been proposed. From the GTS side we shall stick to the family
of algebraic approaches, among which we consider the classical single- and double-pushout
approaches [Löw93, EPS73], and the less known Subobject Transformation Systems [CHS08].
The latter basically consists of rewriting in the lattice ofsubgraphs of a given graph, and it turns
out to be the natural framework for encoding net models whichallow at most one token on a
place (where a state is a subset of places).

We encode nets using a very simple kind of graphs, containingnodes and unary edges only.
A marking of a net is represented by a set of edges, one for eachtoken, each attached to a node
representing a place. It is thus reminiscent of the encodingby Kreowski discussed above, even
if the transitions are not represented explicitly in the states: They are encoded only as rules of
the GTS. Interestingly, inhibitor and reset arcs can be encoded exactly in the same way: The
different behaviour is determined by the choice of the GTS approach.

The following table summarizes the results we shall present. For each of the three basic net
models, we indicate the GTS approach that can be used to encode it in presence of read, inhibitor
and/or reset arcs: note that we do not allow for nets which include both inhibitor and reset arcs.

Read arcs Read + Inhibitor Read + Reset

P/T nets DPO or SPO DPO SPO

ENS STSor STS⊆ STS STS⊆

CPR nets STSm or STS⊆m STSm STS⊆m

Table 1: Summary of the proposed encodings.

The few variants of theSTS approach referred to in the table will be introduced later on. The
encodings of P/T Petri nets with read, inhibitor and reset arcs as GTSs were originally discussed
in [BCM05]. The present paper provides a systematic view of such encodings, viewing them in
a much more general framework which recomprises ElementaryNet Systems andCPRnets.

The paper is structured as follows. Section2 presents the three GTS approaches we deal with
in our work, and it is complemented in Section3 by the kinds of nets for which we present an
encoding. Section4 discusses these encodings, and the correspondence betweenalternative net
models and GTS approaches. Section5 draws some conclusions and offers pointers to future
work.

2 Algebraic approaches to graph transformation

This section introduces some basic notions concerning the algebraic formalisms for graph rewrit-
ing considered in the paper. We concentrate ontyped Graph Transformations Systems(GTSs),
both in thesingle-pushout(SPO) [Löw93, EHK+97] and thedouble-pushout(DPO) [EPS73,
CMR+97] approach, and onSubobject Transformation Systems(STSs) [CHS08]. Typed rewrit-
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ing is a well-established variant of the classical proposals where rewriting takes place on so-
called typed graphs, i.e., graphs labelled over a structurewhich is itself a graph [CMR96,
LKW93].

2.1 Graphs and graph morphisms

We introduce here the basic concepts concerning graphs and their morphisms. For the sake of
simplicity, our introduction to GTSs will deal with unary hyper-graphs only, since they are just
what is needed for the encoding of Petri nets that we are goingto present. Indeed, all the remarks
in this section could be generalized to any kind of (hyper-)graphs or, albeit with some additional
care, to anyadhesivecategory [LS05]. Similarly, the encodings presented later would work in
standard categories of (hyper-)graphs.

Given a partial functionf : A ֌ B we denote bydom( f ) its domain, i.e., the set{a ∈ A |
f (a) is defined}. Let f ,g : A ֌ B be two partial functions. We writef ≤ g whendom( f ) ⊆
dom(g) and f (x) = g(x) for all x∈ dom( f ).

Definition 1 (graph and graph morphism) A(unary) graph Gis a triple G = (VG,EG,cG),
whereVG is a set of nodes,EG is a set of edges andcG : EG→VG is a function mapping each
edge to the node it is connected to.

A partial graph morphism f: G ֌ H is a pair of partial functionsf = 〈 fN : NG ֌ NH , fE :
EG ֌ EH〉 such thatcH ◦ fE ≤ fN ◦cG (see Fig.3.(a))

We denote byPGraph the category of (unlabelled) graphs and partial graph morphisms. A
morphism is calledtotal if both components are total, and the corresponding subcategory of
PGraph is denoted byGraph.

Notice that if a partial graph morphismf is defined over an edge, then it must be defined on
the node the edge is connected to: This ensures that the domain of f is a well-formed graph.

Definition 2 (subgraph lattice) A graphG is a subgraphof H, written G⊆ H, if NG ⊆ NH ,
EG⊆ EH , and the inclusions form a graph morphism. The subgraphs ofH ordered by inclusion
form a distributive lattice, denotedSub(H), where the meet∩ and the join∪ are defined as
component-wise intersection and union, respectively.

Given graphsH andG⊆ H, we will write, a bit informally,H \G to denote the set of items
(nodes and edges) ofH which do not belong toG.

EG
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fE
//

≥

EH

cH

��

NG fN
// NH

|G1|

tG1
��

33
33

33

f
//

≥
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����

��
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T

(a) (b)

Figure 3: Diagrams for partial graph and typed graph morphisms.
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Given a graphT, a typed graph Gover T is a graph|G|, together with a total morphism
tG : |G| → T. A partial morphismbetweenT-typed graphsf : G1 ֌ G2 is a partial graph
morphism f : |G1|֌ |G2| consistent with the typing, i.e., such thattG1 ≥ tG2 ◦ f (see Fig.3.(b)).
A typed graphG is calledinjective if the typing morphismtG is injective. The category ofT-
typed graphs and partial typed graph morphisms is denoted byT-PGraph.

Given a partial typed graph morphismf : G1 ֌ G2, we denote bydom( f ) the domain off
typed in the obvious way. Given a subgraphG of T, i.e., an element ofSub(T), we often consider
it as a graph typed overT by the inclusion. Since we work only with typed notions, we usually
omit the qualification “typed”.

2.2 Double-pushout rewriting

Chosen a type graphT, a (T -typed)DPO rule q = (L
l
←֓ K

r
→֒ R) is a pair of injective (total,

T-typed) graph morphismsl : K →֒ L andr : K →֒R, where|L|, |K| and|R| are finite graphs. The
graphsL, K andRare called theleft-hand side, theinterface, and theright-hand sideof the rule,
respectively.

Definition 3 (DPO direct derivation) Given a graphG, a DPO rule q, and amatch(i.e., a total
graph morphism)g : L→ G, a DPO direct derivation from G to H using q (based on g)exists,
written G⇒DPO

q H, if the diagram

Lq :

g
��

K?
_l

oo � � r
//

k
��

R

h
��

G D
b

oo

d
// H

can be constructed, where both squares are pushouts inT-Graph.

Given an injective morphisml : K →֒ L and a matchg : L → G as in the above diagram,
their pushout complement(i.e., a graphD with morphismsk andb such that the left square is a
pushout) exists if and only if thegluing conditionis satisfied. This consists of two parts:

• the identification condition, requiring that if two distinct nodes or edges ofL are mapped
by g to the same image, then both are in the image ofl ;

• the dangling condition, stating that no edge inG\ g(L) should be connected to a node
in g(L \ l(K)) (because otherwise the application of the rule would leave such an edge
“dangling”).

2.3 Single-pushout rewriting

Chosen a type graphT, a (T -typed)SPO rule q= (L
r

֌ R) is an injective partial typed graph
morphismr : L ֌ R. The graphsL andRare called theleft-hand sideand theright-hand sideof
the rule, respectively.

Definition 4 (SPOdirect derivation) Given a graphG, anSPO rule r, and amatch(i.e., a total
graph morphism)g : L→ G, we say that there is anSPOdirect derivation from G to H using r
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(based on g), writtenG⇒SPO
r H, if the following is a pushout square inT-PGraph.

L

g
��

//
r

// R
��

h
��

G //

d
// H

Roughly speaking, the rewriting step removes from the graphG the image of the items of the
left-hand side which are not in the domain ofr, namelyg(L \dom(r)), adding the items of the
right-hand side which are not in the image ofr, namelyR\ r(dom(r)). The items in the image
of dom(r) are “preserved” by the rewriting step (intuitively, they are accessed in a “read-only”
manner).

A relevant difference with respect to theDPO approach is that here there is nodangling condi-
tion preventing a rule to be applied whenever its application would leave dangling edges. In fact,
as a consequence of the way pushouts are constructed inT-PGraph, when a node is deleted by
the application of a rule also all the edges connected to suchnode are deleted by the rewriting
step, as a kind of side-effect. For instance, ruleq in the top row of Fig.4, which consumes node
B, can be applied to the graphG in the same figure. As a result both nodeB and edgeL are
removed.

B

q

G L

B

Figure 4: Side-effects inSPOrewriting.

Even if the categoryPGraph has all pushouts, still we will consider a condition which corre-
sponds to theidentification conditionof theDPO approach.

Definition 5 (valid match) Letr : L→Rbe a rule. A matchg : L→G of r is calledvalid when
for anyx,y∈ |L|, if g(x) = g(y) thenx,y∈ dom(r).

Conceptually, a match is not valid if it requires a single resource to be consumed twice, or
to be consumed and preserved at the same time. In the paper we consider derivations where all
matches are valid: This is needed to have a resource-conscious interpretation for derivations, i.e.,
where each resource is consumed at most once.

We close this section noting that for eachDPO rule we can easily construct anSPOrule, which
behaves like the original one when the dangling condition issatisfied. Clearly, the converse
construction is possible as well.

Definition 6 (from DPO to SPOrules, and vice versa) Letq= (L
l
←֓ K

r
→֒R) be aT-typedDPO
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rule. Then, the associatedT-typed SPO rule, denoted byS (q), is given by the partial graph
morphismr ◦ l∗ : L ֌ R, wherel∗ : L ֌ K is the partial inverse ofl , defined in the obvious way.

Vice versa, for aT-typedSPOruleq = (L
r

֌ R), the associatedDPO rule is defined asD(q) =

(L ←֓ dom(r)
r
→֒ R).

2.4 Subgraph Transformation Systems

In the typed approaches to graph transformation, the type graph plays a role analogous to the set
of places in Petri nets. In particular, the constraint that aplace can contain at most one token can
be translated into the requirement that the typing morphismis injective. This condition is built-in
in the instance of theSubobject Transformation Systemapproach [CHS08] that we present here.

In the original formulation, the framework where rewritingis defined is the distributive lattice
of subobjects of a fixed object of an adhesive category. Such generality is unnecessary here,
and we instantiate the definitions to the case where the category of concern isGraph, which is
indeed adhesive. As a consequence, in the following we read “STS” asSubgraphTransformation
Systems.

Chosen a type graphT, a(T -typed)STSrule q is a tripleq= 〈L,K,R〉, whereL,K,R∈Sub(T),
K ⊆ L andK ⊆R. The graphsL, K andRare called theleft-hand side, theinterfaceand theright-
hand sideof the rule, respectively.

Definition 7 (STS direct derivation) Given a graphG in Sub(T) and anSTS rule q = 〈L,K,R〉,
there is aSTSdirect derivation from G to H using q, writtenG⇒STS

q H, if H ∈ Sub(T) and there
existsD ∈ Sub(T) such that

(i) L∪D = G; (iii ) D∪R= H;

(ii) L∩D = K; (iv) D∩R= K.

If such a graphD exists, we shall refer to it as thecontextof the direct derivationG⇒STS
q H.

It is instructive to consider the relationship between anSTSdirect derivation and aDPO direct
derivation as introduced above. First observe thatSub(T) can be seen as a category where the
arrows are the inclusions, and a rule〈L,K,R〉 can be seen as a spanq = (L ⊇ K ⊆ R), i.e., a
pair of arrows inSub(T). Next, we shall say that there is acontact situationfor a rule〈L,K,R〉
at a subgraphG ⊇ L ∈ Sub(T) if G∩R 6⊆ L. Intuitively, this means that some items of the
subgraphG are created but not deleted by the rule: If we were allowed to apply the rule at this
match via aDPO direct derivation, the resulting object would contain the common part twice and
consequently the resulting morphism toT would not be injective; i.e., the result would not be a
subgraph ofT. The next result, presented in [CHS08], shows that anSTSdirect derivation is also
a DPO direct derivation if no contact occurs.

Proposition 1 (STS derivations are contact-free double pushouts)Let G and H be graphs in
Sub(T) and q= 〈L,K,R〉 be anSTS rule. Then G⇒STS

q H if and only if L⊆ G, G∩R⊆ L,
and G⇒DPO

q H, i.e., if there is a graph D∈ T-Graph such that the diagram below forms two
pushouts in T-Graph.
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L
⊆

��

(1)

K
⊇

oo
⊆

//

��

(2)

R

��

G Doo // H

In the last result we used the fact that anSTS rule can be considered as aT-typedDPO rule,

considering the inclusions as arrows inGraph. Conversely, aT-typedDPO rule q = (L
l
←֓ K

r
→֒

R) induces anSTS rule I (q) obtained by considering the images of|L|, |K| and|R| in the type
graph, i.e.,I (q) = 〈tL(|L|), tK(|K|), tR(|R|)〉.

2.5 Other kinds of STSs

We introduce here three variations of the definition ofSTSdirect derivation, obtained by slightly
changing the properties satisfied by the context graphD.

The first definition is reminiscent of thesesqui-pushoutapproach [CHHK06], and it leads to
an SPO-like approach forSTS, where rules can be applied regardless of the dangling condition,
removing, as a side-effect, those edges which would remain dangling.

Definition 8 (STS⊆ direct derivation) Given a graphG in Sub(T) and anSTSruleq= 〈L,K,R〉,
there is anSTS⊆ direct derivation from G to H using q, written G⇒STS⊆

q H, if H ∈ Sub(T) and
there existsD ∈ Sub(T) such that

(i)′ L∪D⊆G;
(ii)′ D is the largest subgraph ofG such thatL∩D = K;
(iii ) D∪R= H;
(iv) D∩R= K.

Weakening the first condition of Definition7 and imposing the “largest subgraph” requirement
in (ii)′ implies that some items ofG\L may not occur inD, like when deleting a node forces the
deletion of incident edges in theSPOapproach. The superscript inSTS⊆ reminds the weakening
of the first condition.

The next variants drop the requirementD∩R= K. This allows for some overlap between the
items preserved in the contextD and those newly introduced byR: The injectivity of the typing
forces these items to be coalesced, similarly to what happens in CPR nets. This is done forSTSs
in bothDPO andSPOstyle.

Definition 9 (STSm andSTS⊆m direct derivations) Given a graphG in Sub(T) and anSTS rule
q = 〈L,K,R〉, there is anSTSm direct derivation from G to H using q, written G⇒STSm

q H, if
H ∈ Sub(T) and there existsD ∈ Sub(T) such that

(i) L∪D = G; (ii) L∩D = K; (iii ) D∪R= H.

Analogously, there is anSTS⊆m direct derivation from G to H using q, written G⇒STS⊆m
q H, if

H ∈ Sub(T) and there existsD ∈ Sub(T)

(i)′ L∪D⊆G;

Festschrift H.-J. Kreowski 8 / 18
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(ii)′ D is the largest subgraph ofG such thatL∩D = K;
(iii ) D∪R= H.

The figure to the right shows the differences among the
various kinds ofSTS direct derivations introduced in Def-
initions 7, 8 and 9. The type graphT on the top con-
tains two nodes,◦ and •, and one edge connected to
◦. The lattice of subgraphs ofT is depicted underT,
with dashed lines representing inclusions. The arrows
show all the possible direct derivations among elements
of Sub(T) using theSTS rule q = 〈{◦}, /0,{•}〉 and the
following approaches introduced in Definitions7, 8 and
9: 1 = STS,2 = STS⊆,3 = STSm,4 = STS⊆m.

1,2,3,4

4

2,4

T

3,4

2.6 Graph grammars

In the previous sections we presented six different definitions of direct derivation, each of which
determines a different algebraic approach to graph transformation. For each one of those ap-
proaches, a graph grammar contains a type graph, a start graph, a set of rule names, and a
mapping from rule names to corresponding rules. Clearly, the precise definition of start graph
and of rule depends on the chosen approach.

Definition 10 (graph grammar) AKIND graph grammar, whereKIND ∈ {DPO,SPO,STS,STS⊆,

STSm,STS⊆m}, is a tupleG = 〈T,Gs,P,π〉, whereT ∈ Graph is thetype graph, P is a set ofrule
names, π is a function which associates aKIND rule1 to each rule name inP, andGs is the
start graph, which has to be consistent withKIND . That is, Gs is a T-typed graph ifKIND

∈ {DPO,SPO}, andGs∈ Sub(T) in all other cases.

A derivationover aKIND grammarG is a sequence ofKIND direct derivations using rules in
P, starting from the start graph, namelyρ = {Gi−1⇒

KIND
pi−1

Gi}i∈{1,...,n}, with G0 = Gs.

3 Enriched Petri nets

In this section we introduce some basic extensions of Petri nets, namely, nets with read, inhibitor
and reset arcs. A study of the expressiveness of these kinds of arcs, along with a comparison with
other extensions proposed in the literature, like priorities, exclusive-or transitions and switches,
is carried out in [Pet81, LC94].

To give the formal definition of these generalised nets we need some notation for sets and
multisets. Given a setX we write 2X for the powerset ofX andX⊕ for the free commutative
monoid overX, with monoidal operation⊕, whose elements will be referred to asmultisets

1 To be precise, forKIND ∈ {STS⊆,STSm,STS⊆m}, a KIND rule is anSTSrule.
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over X. Given a multisetM ∈ X⊕, with M =
⊕

x∈X Mx · x, for x ∈ X we will write M(x) to
denote the coefficientMx. Moreover, we denote by[[M]] the underlying subset ofX, defined as
[[M]] = {x∈ X |M(x) > 0}. With little abuse of notation, we will writex∈M instead ofx∈ [[M]].

GivenM,M′ ∈X⊕ we writeM ≤M′ whenM(x)≤M′(x) for all x∈X. In this case themultiset
difference M′⊖M is the multisetM′′ such thatM⊕M′′ = M′. ForY⊆ X andM ∈X⊕, we denote
by M[Y] the restriction ofM to Y, i.e., M[Y](x) = M(x) if x ∈ Y, andM[Y](x) = 0 otherwise.
Finally, the symbol /0 denotes the empty multiset.

3.1 Place/Transition nets

We are now ready to define the enriched P/T nets considered in the paper. Besides ordinary flow
arcs and read arcs, the nets are endowed with so-called “distinguished arcs” (represented by the
�(.) function below), which will be interpreted either as inhibitor or reset arcs in the token game.

Definition 11 (enriched P/T nets) Anenriched (marked) Place/Transition (P/T) Petri netis a
tupleN = 〈S,Tr, •(.),(.)•,(.), �(.),m〉, where

• S is a set ofplaces;

• Tr is a set oftransitions;

• •(.),(.)• : Tr→ S⊕ are functions mapping each transition to its pre-set and post-set, re-
spectively;

• (.) : Tr→ 2S is a function mapping each transition to itscontext;

• �(.) : Tr→ 2S is a function mapping each transition to itsdistinguished setof places, such
that for all t ∈ Tr, ( •t⊕ t⊕ t•)[�t] = /0 (i.e., no token in�t can be either read, consumed
or produced byt);

• m∈ S⊕ is a multiset called theinitial marking.

We assume, as usual, thatS∩Tr = /0. We shall denote with•(.),(.)•,(.) and �(.) also the
functions fromS to 2Tr defined as, fors∈ S, •s = {t ∈ Tr | s∈ t•}, s• = {t ∈ Tr | s∈ •t},
s= {t ∈ Tr | s∈ t}, and �s= {t ∈ Tr | s∈ �t}.

A state of a P/T net is defined as amarking, that is, a set of tokens distributed over the places.
Formally, a markingM is a multiset of places, i.e.,M ∈ S⊕. The token gamedetermines when
a transitiont is enabledat a given marking, and, if enabled, what marking is reached after
firing the transition. For a transitiont to be enabled at a markingM, it is necessary forM to
contain the pre-set oft and an additional set of tokens which covers the context oft. Additional
conditions for enabledness, as well as the result of firing, depend on the interpretation given to
the distinguished arcs: As anticipated, we interpret them either asinhibitor arcsor asreset arcs,
obtaining the classes of nets below.

Definition 12 (inhibitor and reset P/T nets) Aninhibitor Place/Transition netis an enriched
P/T net〈S,Tr, •(.),(.)•,(.), �(.),m〉where the distinguished arcs are interpreted as inhibitor arcs.

Festschrift H.-J. Kreowski 10 / 18
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Given a markingM ∈ S⊕ and a transitiont ∈ Tr, t is i-enabledif •t⊕ t ≤M andM[�t] = /0 (i.e.,
M contains no token in any place of�t). The inhibitor transition relationbetween markings is
defined as

M [t〉i M′ if t is i-enabled atM andM′ = (M⊖ •t)⊕ t•.

A reset P/T netis an enriched P/T net where the distinguished arcs are interpreted as reset arcs.
GivenM ∈ S⊕ andt ∈ Tr, t is r-enabledif •t⊕ t ≤M. Thereset transition relationis defined as

M [t〉r M′ if t is r-enabled atM andM′ = ((M⊖ •t)⊕ t•)⊖M[�t]

(i.e., the firing oft deletes all the tokens from places in�t: Such places are certainly empty after
the firing, because they cannot belong to the post-set oft).

For a transitiont, if the distinguished set�t is empty the two alternative enabling conditions
coincide, as well as the induced transition relations on markings. In the following, we call
contextual Petri netsthe class of nets such that all its transitions have the distinguished set empty.

Firing sequences and reachable markings are defined in the usual way.

Example1 An example of an enriched P/T netN can be found in the left part of Fig.5. Graph-
ically, transitions are connected to context places by undirected arcs and to distinguished places
by dotted undirected arcs.

Starting from the initial markings0⊕s1⊕s2⊕s4, a possible firing sequence for all interpreta-
tions ist1; t2 leading to the markings2⊕s3⊕2s4⊕s.

If we first fire t2, the net reaches the markings0⊕s2⊕s4⊕s. Now, if N is seen as an inhibitor
P/T net, the presence of a token ins inhibits t1 which cannot fire. If, instead,N is seen as a reset
P/T net, transitiont1 can fire and, as a consequence, places is emptied, producing the marking
s2⊕s3⊕2s4.

3.2 Elementary nets

Let us callelementarya net where the states are defined as(sub)setsof places, rather thanmulti-
setsof places as for P/T nets. Thus elementary nets comprise several net models proposed in the
literature, including C/E nets [BC92], Elementary Net Systems [RE96], Consume-Produce-Read
nets [BBCG08] and others.

An enriched elementary (marked) net〈S,Tr, •(.),(.)•,(.), �(.),m〉 is defined as an enriched

P/T net in Definition11, requiring •(.),(.)• : Tr→ 2S andm∈ 2S (i.e., •t andt• for all t ∈ Tr, as
well as the initial markingm, are sets rather than multisets). Furthermore, besides thedisjointness
condition on the distinguished places, that is formulated as ( •t ∪ t ∪ t•)∩ �t = /0, it is required
that no token int is consumed or produced, i.e.,( •t ∪ t•)∩ t = /0 for all t ∈ Tr.

Both inhibitor and reset elementary nets are easily defined,interpreting the distinguished arcs
as expected. However, since the states are subsets of places, the enabling condition and the
transition relation must ensure that the marking reached byfiring a transition is a set. This is
obtained in a different way by the two models of nets that we introduce:ENSs require a stronger
enabling condition with respect to P/T nets, whileCPR nets, intuitively, change the transition
relation by allowing to merge tokens of the marking with those produced by the transition.
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Definition 13 (inhibitor and reset Elementary Net Systems) Aninhibitor ENS is an enriched
elementary net〈S,Tr, •(.),(.)•,(.), �(.),m〉 where the distinguished arcs are interpreted as in-
hibitor arcs. Given a markingM ⊆ S and a transitiont ∈ Tr, t is ie-enabledif •t ∪ t ⊆ M,
M∩ �t = /0, and(M \ •t)∩ t• = /0. Theie-transition relationbetween markings is defined as

M [t〉ieM′ if t is ie-enabled atM andM′ = (M \ •t)∪ t•.

A resetENS is an enriched elementary net where the distinguished arcs are interpreted as reset
arcs. GivenM⊆Sandt ∈Tr, t is re-enabledif •t∪t ⊆M and(M\ •t)∩t•= /0. There-transition
relation is defined as

M [t〉reM′ if t is re-enabled atM andM′ = ((M \ •t)∪ t•)\ �t.

The condition(M \ •t)∩ t• = /0 ensures that there is “no contact”, i.e.,t can produce a token
only if it is not in M, or if it is deleted byt itself. As a consequence the∪ operator in the definition
of M′ is actually a disjoint union. This is the main difference with respect toCPR nets, where
the “no contact” condition is omitted, and the arguments of∪ in the definition of the successor
marking might not be disjoint.

Definition 14 (inhibitor and resetCPRnets) Aninhibitor CPRnet is an enriched elementary net
where for a markingM ⊆ Sand a transitiont ∈ Tr, t is ic-enabledif •t ∪ t ⊆M andM∩ �t = /0;
the ic-transition relationis defined as

M [t〉ic M′ if t is ic-enabled atM andM′ = (M \ •t)∪ t•.

A resetCPR net is an enriched elementary net where forM ⊆ S and t ∈ Tr, t is rc-enabledif
•t ∪ t ⊆M; therc-transition relationis defined as

M [t〉rc M′ if t is rc-enabled atM andM′ = ((M \ •t)∪ t•)\ �t.

Example2 Observe that the netN in Fig.5 can be seen as anENS. In this case, starting from the
initial marking{s0,s1,s2,s4} the transitiont1 cannot fire due to a contact situation ins4, hence
the only possible firing sequence ist2.

If we interpretN as aCPRnet, thent1 can fire and the reached marking is{s1,s2,s3,s4}, where,
intuitively, the token generated ins4 is “merged” with the pre-existing one. In this state,t2 can
fire producing the marking{s2,s3, s4,s}. If we start by firingt2, as in the P/T case,t1 is blocked
or can fire (emptying places), depending on whether we interpretN as an inhibitor or a reset
CPRnet.

4 From enriched nets to graph transformation systems

This section shows how enriched Petri nets can be encoded as graph grammars. Interestingly,
the encoding is essentially the same for all kinds of nets: The different token game flavours are
obtained by changing the approach to rewriting.
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4.1 Encoding Petri nets as graph grammars

It is part of the folklore (see e.g. the discussion in [Cor96] and the references therein) that (or-
dinary) Petri nets can be seen as a special kind of graph grammars. The simplest idea is that
the marking of a net is represented as a graph with no edges, typed over the places: A token in
places is a node typed overs. Then transitions are seen as rules which consume and produce
nodes, as prescribed by their pre- and post-set. In this way,Petri nets exactly correspond to graph
grammars acting over graphs containing only nodes, where rules preserve no item.

To make the encoding parametric with respect to the chosen class of Petri nets, here we
consider a slightly different encoding, where edges, rather than nodes, play the role of tokens.
Roughly, the idea of the encoding is the following:

• a place is represented as a node;

• tokens in a place are represented as unary edges connected tothe corresponding node;

• a transition becomes a rule, which deletes the tokens in its pre-set, produces the post-set
and preserves the tokens in its context; for any place in the distinguished set oft, the
corresponding node is deleted and created again.

Note the chosen encoding for the distinguished set oft: In theDPO approach this will prevent
the application of the rule if there is at least one token (edge) in the place, thus causing an
inhibitor effect. In theSPOapproach, the application of the rule will delete as a side-effect any
edge possibly attached to the node, thus giving raise to a reset effect.

As a first step, we show how the set of places underlying an enriched net (either P/T or ele-
mentary) gives raise to a type graph. In all cases there will be a nodes in the type graph for each
places in the net, and the number of edges incident on the node typed over s will represent the
number of tokens in that place. Also the way in which markingsare encoded as graphs does not
depend on the specific kind of nets we are considering.

Definition 15 (type graph, markings) LetSbe a set of places. Then, the associated type graph
TS is (S,S,c), wherec(s) = s for all s∈ S.

Given a subset of placesS′ ⊆ S and a markingM ∈ S′⊕, we define the graphGS(S′,M) as
(S′,E(M),c), typed in the obvious way overTS, such thatE(M) = {〈s, i〉 | s∈ [[M]]∧ 0 < i ≤
M(s)} andc(〈s, i〉) = s for all 〈s, i〉 ∈ E(M). We write simplyGS(M) for GS(S,M).

So, each place contributes a nodeand an edge in the type graphTS, and a marking can be
regarded as a multiset of edges of the type graph.

Next we introduce the encoding of net transitions into grammar rules. As mentioned above,
the encoding is essentially independent of the kind of nets we are considering: The different
firing behaviour will be obtained by changing the consideredrewriting approach. Indeed, next
we define the encoding of a transition as aDPO rule, but changing the rewriting approach (toSPO

or STS) will just require a syntactical change in the presentationof the rule.

Definition 16 (net transitions asDPO rules) Lett be a transition of an enriched P/T net with
place setS. Thent is encoded as aTS-typedDPO transition
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Inhibitor Reset

P/T nets
DPO SPO

GS(t) S (GS(t))

ENS
STS STS⊆

I (GS(t)) I (GS(t))

CPR nets
STSm STS⊆m

I (GS(t)) I (GS(t))

Table 2: Encoding Petri nets as graph grammars.

GS(t) = GS(X∪ �t, t⊕ •t)←GS(X, t)→GS(X∪ �t, t⊕ t•)

whereX = [[ •t⊕ t⊕ t•]] and the left and right morphisms are inclusions.

The DPO rule GS(t) corresponding to a transitiont deletes the edges in its pre-set, preserves
the edges in its context and produces the edges in its post-set. The nodes attached to edges in the
pre-set, context and post-set (i.e., the setX) are preserved. Finally, the nodes corresponding to
the placess∈ �t in the distinguished set oft are deleted and produced again.

It is now immediate to provide the encoding for the differentkinds of Petri nets into graph
grammars of the appropriate approach.

Definition 17 An enriched Petri netN = 〈S,Tr,F,C,D,m〉 of one of the six types of nets pre-
sented in Definitions12, 13 and14 is encoded as aKIND graph grammarG (N) = 〈T,Gs,P,π〉
where

• T = TS

• P = Tr

• Gs = GS(m)

MoreoverKIND and theKIND rule π(t) associated tot ∈ P are defined, according to the type of
the net, as shown in Table2.

Obviously, the encoding also works for contextual nets (seethe first column of Table1 in the
Introduction).

It can be shown that the encoding preserves the firing relation and reachability, in the sense
specified by the next theorem.

Theorem 1 Let N be an enriched Petri net of one of the types introduced inSection3, let
KIND be the type of grammar corresponding to the type of N according to Table2, and let M
be a marking of N. If M[t〉M′ in N thenGS(M)⇒KIND

t GS(M′) in the KIND graph grammar
G (N); vice versa, ifGS(M)⇒KIND

t G′ in theKIND graph grammarG (N) then M[t〉M′′ in N with
GS(M′′) = G′.
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Figure 5: An enriched Petri netN and the correspondingDPO grammar.

4.2 Examples

In order to provide some more intuition, we briefly discuss the encoding for the various classes
of Petri nets.

4.2.1 P/T Petri nets.

As shown in Table2, the behaviour of P/T Petri nets is faithfully captured by standardDPO or
SPOgraph grammars.

Inhibitor nets. When N is a P/T inhibitor net,G (N) is a DPO graph grammar, where the
effects of the dangling condition are used to encode inhibitor arcs. As an example, the net in
Fig. 5, seen as an inhibitor P/T net, is encoded by the grammar in thesame figure, interpreted as
a DPO grammar. Observe that since places∈ �t1, i.e.,s inhibits transitiont1, the rule associated
with t1 deletes and produces again the node corresponding tos. In this way the presence of
tokens in places, represented by edges connected to such node, will inhibit the rule because of
the dangling condition.

Reset nets. In the case of a P/T reset netN, the encodingG (N) is anSPO grammar and the
side-effects related to node deletion turn out to capture precisely the behaviour of reset arcs. As
an example the net in Fig.5, seen as a reset P/T net, is encoded by the grammar in the same
figure, seen as anSPOgrammar (by transforming the rule using the functionS (.)). The fact that
rule t1 deletes and produces again the nodes determines, as side effect, the deletion of all edges
connected to such node, representing tokens in places.

Contextual nets. For contextual P/T nets, i.e., P/T nets where�t = /0 for all t, the rules of
the corresponding grammar never delete nodes. Hence, theSPO and theDPO approaches are
interchangeable. In particular, ordinary P/T net transitionst, such thatt = �t = /0, are represented
by rules with an interface containing only nodes (see the rule corresponding tot2 in Fig. 5).

15 / 18 Volume 26 (2010)



From Petri Nets to Graph Transformation Systems

ss4s0 s3s2

s4 ss2s1 s3s0

s0 s4s3s2

s0 ss4s1 s2 s3

s0 s2 ss4s3

s0 s1 s3 s4s2

t1

Figure 6: AnSTSm derivation which is not a legalSTSderivation.

4.2.2 Elementary nets.

As shown in Table2, ENSs are encoded asSTSs. As an example, let us consider again the netN
in Fig. 5, which can be interpreted as anENS interpreting, correspondingly, the grammar on the
right as anSTS.

Observe that, even though there is a match of the rulet1 in the start graphGs, i.e., the left-
hand side of the rule is a subgraph ofGs, the rule cannot be applied, because there is a contact
situation. More precisely, referring to Fig.6, condition(iv) of Definition 7 (namely,D∩R= K)
is not satisfied, as the intersection between the right-handside of t1 and the context graphD
contains the edge connected tos4 which is not inK.

If we interpretN as aCPRnet and correspondingly the grammar as anSTSm, then the diagram
in Fig. 6 is a legal derivation: in fact conditions(i − iii ) of Definition 8 are satisfied, while
condition(iv) is not required anymore.

5 Concluding remarks and future work

In this paper we discussed the encoding of different Petri net models into Graph Transformation
Systems. Our aim was of a methodological nature, and its accomplishments are summarized
by the taxonomy proposed in Tables1 and2. Intuitively, the results can be synthesized by the
slogan “encode the net once”, that is, a Petri net is always encoded essentially in the same way,
while different net models correspond to alternative approaches to graph transformation.

A relevant issue, which has been neglected in the present paper, concerns the study of concur-
rency in Petri nets and in their graph grammar counterparts.Admittedly, there is a shortcoming
as far as inhibitor nets are considered (already noted in [BCM05]): If two transitions are inhib-
ited by the same places, their encodings asDPO rules cannot be executed in parallel, since both
rules delete and produce again the node corresponding tos.

76540123•s1

��

76540123• s2

��

t1
��

76540123

s

t2
��

76540123s′1 76540123 s′2

For instance, in the inhibitor netNI above the two transitionst1 andt2 can fire concurrently.
However, in the correspondingDPO grammarG (NI) the rules associated tot1 andt2 delete and
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generate again the same nodes and thus they are forced to be executed sequentially. The devel-
opment of a theory encompassing the concurrent behaviour ofthe involved models represents a
stimulating direction of future investigation. We believethat, as it happened in the past, this can
lead to a fruitful technology transfer between the Petri netand GTS worlds.

Acknowledgements: We acknowledge the anonymous referees for the detailed and construc-
tive comments which allowed us to improve the presentation.
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