
Electronic Communications of the EASST
Volume 26 (2010)

Manipulation of Graphs, Algebras and Pictures

Essays Dedicated to Hans-Jörg Kreowski
on the Occasion of His 60th Birthday

Lifting Parallel Graph Transformation Concepts to Model
Transformation based on the Eclipse Modeling Framework

Enrico Biermann, Claudia Ermel and Gabriele Taentzer

19 pages

Guest Editors: Frank Drewes, Annegret Habel, Berthold Hoffmann, Detlef Plump
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Lifting Parallel Graph Transformation Concepts to Model
Transformation based on the Eclipse Modeling Framework

Enrico Biermann1, Claudia Ermel1 and Gabriele Taentzer2

1 Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

enrico@cs.tu-berlin.de, claudia.ermel@tu-berlin.de

2 Fachbereich Mathematik und Informatik
Philipps-Universität Marburg, Germany
taentzer@mathematik.uni-marburg.de

Abstract: Model transformation is one of the key concepts in model-driven soft-
ware development. An increasingly popular technology to define modeling lan-
guages is provided by the Eclipse Modeling Framework (EMF). Several EMF model
transformation approaches have been developed, focusing on different transforma-
tion aspects. This paper proposes parallel graph transformation introduced by Ehrig
and Kreowski as a suitable framework for modeling EMF model transformations
with multi-object structures. Multi-object structures at transformation rule level pro-
vide a convenient way to describe the transformation of structures with a variable
number of recurring structures, dependent on concrete model instances. Parallel
graph transformation means the simultaneous application of a set of transformation
rules synchronized at the application of a kernel rule. We apply our extended EMF
model transformation technique to model the simulation of statecharts with AND-
states.

Keywords: graph transformation, model transformation, Eclipse, EMF

1 Introduction

Model-driven software development is considered as a promising paradigm in software engi-
neering. Models are ideal means for abstraction and enable developers to master the increasing
complexity of software systems. Model transformation, e.g. for behavior simulation or for per-
forming model refactoring [1] is a key concept for model-driven software development.

The Eclipse Modelling Framework (EMF) [2] has evolved to one of the standard technologies
to define modeling languages. EMF provides a modelling and code generation framework for
Eclipse applications based on structured data models. The modelling approach is similar to
that of MOF, actually EMF supports Essential MOF (EMOF) as part of the OMG MOF 2.0
specification [3].

EMF models can be manipulated by several approaches to rule-based model transformations.
A transformation framework for EMF models which follows the concepts of algebraic graph
transformation [4] as far as possible, is presented in [5, 6]. Although graph transformation is an
expressive, graphical and formal means to describe computations on graphs, it has limitations.

1 / 19 Volume 26 (2010)

mailto:enrico@cs.tu-berlin.de, claudia.ermel@tu-berlin.de
mailto:taentzer@mathematik.uni-marburg.de

Lifting Parallel Graph Transformation Concepts to EMF Model Transformation

For example, when describing the operational semantics of behavioral models, one often has the
problem of modeling a variable number of parallel actions at different places in the same model.
A simple example are transformations of some object structures occurring multiple times with
the same properties (e.g. being contained in the same container, or referencing the same objects).
We call such an object structure multi-object structure in this paper. One way to transform multi-
object structures is the sequential application of rules such that we have to explicitly encode an
iteration over all the actions to be performed. Usually, this is not the most natural nor efficient
way to express the semantics. Thus, it is necessary to have a more powerful means to express
parallel actions.

As main contribution of this paper, we propose the use of amalgamated graph transformation
concepts, based on parallel graph transformation, originally proposed by Ehrig and Kreowski in
[7] and extended to synchronized, overlapping rules in [8], to define EMF model transformations
with multi-object structures. The essence of amalgamated graph transformation is that (possibly
infinite) sets of rules which have a certain regularity, so-called rule schemes, can be described
by a finite set of multi-rules modeling the elementary actions. For the description of such rule
schemes the concept of amalgamating rules [9] is used in this paper to describe the application of
multi-rules in an unknown context. The synchronization of rule applications is done along kernel
rule applications which leads to a transformation step being maximally parallel in the following
sense: an amalgamated rule, induced by a scheme, is constructed by a number of multi-rules
being synchronized at the kernel rule. The number of multi-rules is determined by the number
of different matches found such that they overlap in the match of the kernel rule. Hence, the
transformation of multi-object structures can be described in a general way though the number
of actually occurring objects in the instance model is variable.

Since EMF models are graphs with an additional containment hierarchy on object nodes, we
lift the concept of amalgamated graph transformation to amalgamated EMF model transforma-
tions. In our previous paper [5] we showed that a restricted form of EMF model transformations
can be well described by algebraic graph transformations being based on consistent transforma-
tion rules. This opens up the possibility to verify EMF model transformations using analysis
techniques for graph transformation. In this paper, we prove that this consistency result can be
lifted to amalgamated EMF model transformation.

We show the usefulness of amalgamated EMF model transformation by simulating the behav-
ior of statecharts with AND-states which may have an arbitrary number of orthogonal compo-
nents (called regions in UML state machines). For example, when the system enters an AND-
state, it actually goes to the initial simple state in each region in parallel.

The paper is organized as follows. In Section 2, we introduce EMF models as typed, attributed
graphs and present our running example, an EMF model for a simplified variant of statecharts
with AND-states. Section 3 reviews the concepts of parallel graph transformation and lifts them
to EMF transformations with multi-object structures. This section contains our main result on
consistency of amalgamated EMF model transformations. Using EMF transformations with
multi-object structures, we model a general simulator for statecharts with AND-states. Section 4
presents related research, and Section 5 ends with the conclusions and future work.

Festschrift H.-J. Kreowski 2 / 19

ECEASST

2 EMF Models as Typed, Attributed Graphs with Containment

The Eclipse Modeling Framework (EMF) [2] has evolved to one of the standard technologies
to define modeling languages. EMF provides a modeling and code generation framework for
Eclipse applications based on structured data models. The modeling approach is similar to that of
MOF, actually EMF supports Essential MOF (EMOF) as part of the OMG MOF 2.0 specification.
Containment relations, i.e. aggregations, define an ownership relation between objects. Thereby,
they induce a tree structure in model instantiations.

In [5], we consider EMF instance models1 as typed graphs with special containment edges.
Typing is expressed by a type graph. It has some similarities to a meta-model, but does not
contain multiplicities and other constraints. For simplicity, we consider type graphs without
inheritance in this paper. For a complete definition of EMF model transformation based on type
graphs with inheritance, see [5].

Since the containment concept plays a special role in EMF models, we distinguish a special
kind of edge types defining containments in the type graph.

Definition 1 (Graph and graph morphism) A graph G = (GN ,GE ,sG, tG) consists of a set GN

of nodes, a set GE of edges, as well as source and target functions sG, tG : GE → GN .
Given two graphs G and H, a pair of functions (fN , fE) with fN : GN →HN and fE : GE →HE

forms a graph morphism f : G→ H, if it has the following properties:

1. ∀e ∈ GE : fN ◦ sG(e) = sH ◦ fE(e), with sG(e) ∈ GN , and

2. ∀e ∈ GE : fN ◦ tG(e) = tH ◦ fE(e), with tG(e) ∈ GN .

If fN and fE are inclusions, then G is called a subgraph of H, denoted by G⊆ H.

Definition 2 (Type graph TG, containment relation containsTG) A type graph TG = (N,E,s, t)
is a graph together with a set C ⊆ E of containment edges. We define a containment relation2

containsTG = {(n,m) ∈ N×N | ∃c ∈C : s(c) = n∧ t(c) = m} ∪
{(x,y) ∈ N×N | ∃z ∈ N : (x containsT G z∧ z containsTG y)}

Based on containsTG we create a relation containing cyclic containments only: cycleT G = {(x,y)∈
containsTG|(y,x) ∈ containsTG}. Then a subset of containment edges, called cycle-capable con-
tainment edges, is defined whose instances might be part of containment cycles: CCycle = {c ∈
C | (s(c), t(c)) ∈ cycleT G}.

Example 1 (EMF Model for statecharts with AND-States) Fig. 1 shows the EMF model for
statecharts with AND-states, where an arbitrary number of states may be grouped in orthogonal
regions of the same AND-state.

A State may contains Regions, each of them containing States again. We attribute States by
Boolean flags denoting whether they are initial or final states. States are connected by Transitions
which are triggered by Events. For simulation, a Current object is needed which is linked to
the currently active States. The Current object receives an Event, the first element of a queue
1 Note that the EMF community uses the terms “EMF model” for meta-model and “EMF instance model” for a model
conforming to a meta-model.
2 If there is no confusion, we use infix notation for containsTG, e.g. (x containsTG y) instead of (x,y) ∈ containsTG.

3 / 19 Volume 26 (2010)

Lifting Parallel Graph Transformation Concepts to EMF Model Transformation

Figure 1: EMF model for statecharts with AND-states

(Events linked by next links). The type graph with containment corresponding to the EMF
model in Fig. 1 looks like the EMF model but has no multiplicities. We have six containment
edge types (three of them have type Statechart as source, type states starts from type Region
and type reg starts from type State). Types states and reg could lead to cycles in EMF instance
models (corresponding to graphs typed over the type graph), because there could be theoretically
a Region r which contains a State which transitively contains Region r again. Hence, CCycle =
{states, reg} is the set of cycle-capable containment edge types in this example.

In consistent EMF instance graphs, each object node has at most one container and no contain-
ment cycles do occur. Graphs fulfilling these requirements are called graphs with containment.
C-graphs can be related to each other by so-called C-graph morphisms. They are graph mor-
phisms which preserve containment edges. Moreover, they have to be compatible with typing
morphisms.

Although EMF instance models do not need to be rooted in general, this property is important
for storing them, or more general, to define the model’s extent.

Definition 3 (Graph with containment (C-graph)) A graph with containment, short C-graph,
is a graph G = (GN ,GE ,sG, tG) with a distinguished set of containment edges GC ⊆ GE . The
containment edges induce the following binary relation containsG (the transitive closure of GC):

• containsG = {(x,y) ∈ GN×GN | ∃e ∈ GC : (sG(e) = x∧ tG(e) = y) } ∪
{(x,y) ∈ GN×GN | ∃z ∈ GN : (x containsG z∧ z containsG y)}

All containment edges must fulfill the following properties (containment constraints):

• e1,e2 ∈ GC : tG(e1) = tG(e2) ⇒ e1 = e2 (at most one container).

• (x,x) /∈ containsG for all x ∈ GN (no containment cycles).

If G is typed over a type graph T G, there is a graph morphism type : G→ T G, called typing
morphism which is consistent with containment, i.e. ∀e ∈ GC : typeGE (e) ∈ T GC.

Festschrift H.-J. Kreowski 4 / 19

ECEASST

Please note that a type graph T G is not a C-graph in general (see e.g. our type graph for
statecharts in Fig. 1 which has a containment cycle).

Definition 4 (Rooted graph) A C-graph G is called rooted, if there is a node r ∈GN , called root
node, such that ∀x ∈ GN with x 6= r : r containsG x.

Example 2 (Consistent EMF instance graph) Fig. 2 shows a statechart with an AND-state. We
model an ATM (automated teller machine) where the user can insert a bank card and, after the
input of the correct pin, can draw a specified amount of cash from her or his bank account. The
display region of the AND-state shows what is being displayed on screen, and, simultaneously,
the card-slot component models whether the card slot is holding a bank card or not. The enter
event triggers the transition before the AND-state to enter the AND-state. The card-sensed event
happens if the sensor has sensed a user’s bank card being put into the card slot. This event
triggers two transitions in parallel. The next events (pin-input, pin-ok and amount-input) are
local to the display region. The end event again triggers two transitions if the current state is any
but the welcome state for the display region and holding for the card-slot region. Then, the final
states are reached and the AND-state can be left if the leave event happens.

Figure 2: EMF instance graph: a statechart modelling an ATM

Fig. 3 shows the abstract syntax of the EMF instance graph corresponding to the ATM stat-
echart in Fig. 2. This instance graph is typed over the type graph in Fig. 1. The initial state
where we want to start the simulation is the start state before the AND-state ATM is entered.
The Current object points to the start state and is linked to an initial event queue consisting so far
of the single event enter (the event needed to enter the AND-state) followed by the special event
denoting the queue end. During the simulation, events may be added to the event queue such that
the queue holds the events that should be processed during the simulation. For better readability,
we write names which are not empty in quotation marks and put the name of a boolean attribute
type (Initial or Final) if its value is true. Furthermore, we omitted the containment edges in Fig. 3
from the Statechart object named ATM-SC to all Current and Event objects, and from the Re-

5 / 19 Volume 26 (2010)

Lifting Parallel Graph Transformation Concepts to EMF Model Transformation

gion objects to the corresponding Transition objects for better readability. Links being instances
of containments are represented as containments for distinction from usual links.

Figure 3: Abstract Syntax of the ATM statechart in Fig. 2 with Current pointer

The EMF instance graph in Fig. 3 is a C-graph since each object is contained in at most one
container and there are no containment cycles. The C-graph is rooted, as the root node is the
Statechart object named ATM-SC which contains all objects transitively.

Festschrift H.-J. Kreowski 6 / 19

ECEASST

3 EMF Model Transformations with Multi-Object Structures

EMF models can be manipulated by several approaches to rule-based model transformations.
A transformation framework for EMF models which follows the concepts of algebraic graph
transformation [4] as far as possible, is presented in [6]. But EMF model transformations do not
always behave like algebraic graph transformation. The main reason is the difficulty to always
satisfy the containment constraints of EMF. Hence, in our previous paper [5], we identify a kind
of model transformation rules which lead to consistent EMF model graphs (i.e. fulfilling the con-
tainment constraints), if applied as normal graph transformation rules to consistent EMF model
graphs. Thus, we identify a kind of EMF model transformations which behave like algebraic
graph transformations. The advantage of this approach is that we provide a basis to apply the
rich theory of algebraic graph transformation [4, 11, 12, 13] to EMF model transformations.

In Section 3.1, we shortly review the basic notions from [5]. Then in Section 3.2, we introduce
amalgamated transformation, i.e. EMF model transformation with multi-object structures based
on parallel graph transformation concepts and expand the capability of consistent EMF transfor-
mations by showing that the application of an amalgamated transformation rule to a consistent
EMF model graph results in a consistent transformed EMF model graph again.

3.1 Consistent EMF Model Transformation Based on Graph Transformation

In the following, we define consistent transformation rules which restrict transformation rules
such that their application to a consistent C-graph yields a C-graph again. If the C-graph is
rooted in addition, the transformation result is also rooted.

Definition 5 (Transformation rule) A transformation rule, shortly rule, typed over a type graph
T G is given by r = (L⊇ K ⊆ R, type, NAC), where L,K and R are C-graphs, type is a triple of
typing morphisms type = (typeL : L→ T G, typeK : K → T G, typeR : R→ T G), and NAC is a
set of pairs NACi = (Ni, typeNi), i∈ I with L⊆Ni (and I being an index set), and typeNi : Ni→ T G
a typing morphism, such that typeNi ⊇ typeL ⊇ typeK ⊆ typeR for all i ∈ I.

As a drawing convention, we omit K. All objects with equal numbers in L and R are also in K
and are preserved when the rule is applied. A rule r can contain one or more negative application
conditions (NACs) denoting situations which must not exist for the rule to be applicable. A NAC
may be denoted partially not containing the whole left-hand side of its rule. It can be uniquely
completed.

Definition 6 (Matching and application of transformation rules) Let r =(L⊇K⊆R, type, NAC)
be a transformation rule typed over T G, (G, typeG) a typed C-graph with typeG : G→ T G being
a typing morphism, and m : L→ G a graph morphism. Then m is a match with respect to r and
(G, typeG), if

1. m fulfills the so-called dangling condition, i.e. ∀n ∈ LN −KN : 6 ∃e ∈ GE −mG(LE) with
sG(e) = mN(n)∨ tG(e) = mN(n)

2. m fulfills the identification condition for nodes, i.e. ∀x1,x2 ∈ LN with mN(x1) = mN(x2) :
x1,x2 ∈ KN (analogously for edges)

7 / 19 Volume 26 (2010)

Lifting Parallel Graph Transformation Concepts to EMF Model Transformation

3. m satisfies NAC, i.e. for each naci = (Ni, typeNi) ∈ NAC, i ∈ I there does not exist a graph
morphism oi : Ni→ G such that oi|L = m.

Given a match m, rule r can be applied to G which means to replace the matched part m(L)
by the corresponding right-hand side R of the rule. By G

r,m
=⇒ H, we denote the direct graph

transformation where rule r is applied to G at match m leading to the result graph H. The formal
construction of a direct transformation is a double-pushout (DPO)
which is shown in the diagram to the right with pushouts (PO1) and
(PO2) in the category of (typed) graphs. Graph D is the intermedi-
ated graph after removing m(L), and H is constructed as gluing of
D and R along K (see [4]).

L K R

G D H

l r

m (PO1) (PO2)

Example 3 (Transformation rule) Rule addEvent(e), shown in Fig. 4, allows to add a new event
of name e into the event queue. In this way, the events that should be processed during a simu-
lation run, can be defined in the beginning of the simulation. Moreover, events can be inserted
also while a simulation is running.

Figure 4: Rule addEvent(e) to insert Event e into the Event Queue

The application of rule r to C-graph G yields graph H which is not necessarily a C-graph. In
the following we present sufficient conditions for rules such that their application to C-graphs
result in C-graphs again. For that purpose, the form of allowed transformation rules has to be
restricted such that nodes without container (except the root node) and containment cycles do
not occur. Consistent transformation rules allow the following kinds of actions which change
containments:

1. (node creation) Create a new object node and connect it immediately to its container, if
there is one.

2. (containment edge deletion) Delete a containment edge together with its target object node
or change the container of a preserved object node.

3. (containment edge creation) Create a containment edge with the target object node or
change the container of an existing object node.

4. (creation of cycle-capable containment edges) For an object node contained via a cycle-
capable containment edge, change its container only, if the old and the new container of
the object node were already transitively related by containment. This pretty restrictively
looking condition guarantees that containment cycles are not constructed.

Festschrift H.-J. Kreowski 8 / 19

ECEASST

Please note that an object node is always deleted with its containment relation, due to the
dangling condition. Thus, we do not need an additional restriction for node deletion. In the fol-
lowing definition, we formalize all actions that preserve consistent containment relations which
have been described above.

Definition 7 (Consistent transformation rule) Let L′C := LC−KC, R′C := RC−KC, L′N := LN −
KN and R′N := RN −KN . A transformation rule p = (L ⊇ K ⊆ R, type, NAC) typed over T G is
consistent wrt. containment if for each rule all the following constraints are satisfied:

1. (node creation) ∀n∈R′N with typeR(n)= tT G(c) for some c∈ T GC: ∃e∈R′C with tR(e)= n,

2. (containment edge deletion) ∀e ∈ L′C with tL(e) = n:

n ∈ L′N ∨ (n ∈ KN ∧∃e′ ∈ R′C with tR(e′) = n)

3. (containment edge creation) ∀e ∈ R′C with tR(e) = n:

n ∈ R′N ∨ (n ∈ KN ∧∃e′ ∈ L′C with tL(e′) = n)

4. (creation of cycle-capable containment edges)
∀e ∈ R′C which are cycle-capable and n,m ∈ KN with sR(e) = n∧ tR(e) = m :
∃e′ ∈ L′C with sL(e′) = o∧ tL(e′) = m :

((o,n) ∈ containsL∧ (m,n) /∈ containsL) ∨ (n,o) ∈ containsL

Please note that all conditions in Def. 7 have to be fulfilled to call transformation rules consis-
tent. While conditions (1) - (3) have to be fulfilled for any kind of containment edges, condition
(4) has to hold especially for cycle-capable containment edges. Note further that for condition
(4), it is sufficient to inspect the containment in the rule’s left-hand side. There cannot be a con-
tainment edge from the matched node m to n in C-graph G, because n would have two containers
m and o then, and hence G would not be a C-graph.

Example 4 (Inconsistent transformation rule) Consider the rule in the upper half of Fig. 5.
Here, a state shall be moved from one region to another region. All rule graphs are C-graphs.
The containment types are cycle-capable.

Figure 5: Application of an inconsistent rule leading to a containment cycle

The rule is not consistent because it violates condition (4): Its application can lead to a cycle
as it is shown in the bottom of Fig. 5. When applied to G (which is a C-graph), the result is

9 / 19 Volume 26 (2010)

Lifting Parallel Graph Transformation Concepts to EMF Model Transformation

graph H which is not a C-graph since it has a containment cycle. The reason for condition (4) is
to prevent the introduction of cycles in the graph. However, a state still can be moved to another
region (not being one of its own regions) using consistent rules without violating condition (4)
by defining two rules: a first rule to move the state up the containment hierarchy, and a second
rule to move it downwards into the destination superstate (see Fig. 6).

Figure 6: Consistent rules for moving states between regions

Example 5 (Consistent transformation rules) Rule addEvent(e) presented in Example 3 is con-
sistent, since for each created object its containment edge is created as well. Two further rules
are depicted in Fig. 7 processing sequential transitions outside of AND-states.

Figure 7: Rules sequentialTransition and skipEvent

Rule sequentialTransition processes a transition in the current state which is triggered by the
current event. This rule is consistent since the removed event node is deleted together with
its containment edge. Rule skipEvent models the situation that no transition is triggered by

Festschrift H.-J. Kreowski 10 / 19

ECEASST

the current event. In this case, the event is removed from the event queue, together with its
containment edge.

In our main theorems in [5], we show that the application of a consistent transformation rule
to a consistent (rooted) EMF instance graph always results again in a consistent (rooted) EMF
instance graph.

Theorem 1 (Consistent graph transformation step) Let r = (L⊇K⊆R, type,NAC) be a consis-
tent transformation rule and m : L→G be a match to a C-graph G which is typed by typeG : G→
T G. Then, the result graph (H, typeH) of direct transformation (G, typeG)

r,m
=⇒ (H, typeH) is a

C-graph.

Proof. See [5].

Theorem 2 (Rooted graph transformation step) A consistent graph transformation step (G,

typeG)
r,m
=⇒ (H, typeH) leads to a rooted result graph H if graph G is rooted.

Proof. See [5].

3.2 Consistent EMF Model Transformations with Multi-Object Structures

In this section, we lift the essential concepts of parallel graph transformation [8] to EMF model
transformation and also lift the consistency result for EMF model transformations from Sec-
tion 3.1 to transformations with multi-object structures which we also call amalgamated EMF
transformations.

Using parallel graph transformation, a system state modeled by a graph can be changed by
several actions executed in parallel. Since graph transformation is rule-based without restrictive
execution prescription, parallel graph transformation offers the possibility for massively parallel
execution. The synchronization of parallel rule applications is described by common subrules,
called kernel rules.

The simplest type of parallel actions is that of independent actions. If they operate on different
objects they can clearly be executed in parallel. If they overlap just in reading actions on common
objects, the situation does not change essentially. In graph transformation, this is reflected by a
parallel rule which is a disjoint union of rules. The overlapping part, i.e. the objects which occur
in the match of more than one rule, is handled implicitly by the match of the parallel rule. As the
application of a parallel rule can model the parallel execution of independent actions only, it is
equivalent to the application of the original rules in either order [7].

If actions are not independent of each other, they can still be applied in parallel if they can
be synchronized by subactions. If two actions contain the deletion or the creation of the same
node, this operation can be encapsulated in a separate action which is a common subaction of
the original ones. A common subaction is modelled by the application of a kernel rule of all
additional actions (modelled by multi-rules). The application of rules synchronized by kernel
rules is then performed by gluing multi-rule instances at their kernel rules which leads to the cor-
responding amalgamated rule. The application of an amalgamated rule is called amalgamated
graph transformation.

11 / 19 Volume 26 (2010)

Lifting Parallel Graph Transformation Concepts to EMF Model Transformation

Formally, the synchronization possibilities of actions (multi-rule applications) are defined by
an interaction scheme. For consistent amalgamated EMF model transformations (also called
EMF model transformations with multi-object structures), we need consistent interaction schemes
where all rules are consistent.

Definition 8 (Interaction Scheme) An interaction scheme IS = (rk,M) consists of rule rk called
kernel rule and a set M = {ri|1≤ i≤ n} of rules called multi-rules with rk ⊆ ri for all 1≤ i≤ n.3

All rules are typed over the same type graph. IS is consistent, if all rules are consistent.

In addition to the specification of multi-rules as well as their synchronization at a kernel rule,
we must specify where and how often a set of multi-rules should be applied. The basic way to
synchronize complex parallel operations is to specify a match of the kernel rule and to require
that all multi-rules should be applied at all possible matches they have while overlapping with
the kernel match (expressing massively parallel execution synchronized at one place). Please
note that multi-rule matches may overlap in more than the kernel match. For further covering
constructions see [8].

Definition 9 (Amalgamated transformation rule and its application)
Given an interaction scheme IS = (rk,{ri|i ∈ I}) and match mk for the kernel rule rK to C-graph
G, IS is applied at mK by constructing another interaction scheme IS′ = (rk,{r j|1 ≤ j ≤ n})
called interaction scheme instance of IS, with each r j being a copy (a rule instance, i.e. a new
rule with Li∩L j = Lk,Ki∩K j = Kk, and Ri∩R j = Rk) of some ri for i ∈ I. Each copy r j of rule
ri is constructed by a different match mi j : Li→ G, i.e. for each two rule instances r j,rl for all
1≤ j < l ≤ n which are copies of the same ri, we have that m j(L j) 6= ml(Ll).

There are maximal many rule instances r j in the sense that each multi-rule match mi(Li), i ∈ I
corresponds to the match of one of its rule instances r j:
∀mi : Li→ G ∃m j : L j→ G s.t. mi(Li) = m j(L j).

An amalgamated transformation rule rA = (LA ⊇ KA ⊆ RA, type,NAC), shortly amalgamated
rule, is a rule where the left-hand sides of all multi-rule instances in IS′ are glued over the kernel
left-hand side LK yielding LA. Similarly, KA and RA are constructed. NAC is the union of all
NAC j and NACk. type is glued from the typing morphisms of all rule instances. Morphism mA,
called amalgamated match of rA to G, is constructed by gluing all m j which overlap at mk.

Example 6 (Interaction scheme and amalgamated rule) In Fig. 8, a sample interaction scheme
IS = {rk,{r1}} is shown in the upper left corner. The common sub-action (adding a loop to a
object 1) is modeled by kernel rule rk. We have only one multi-rule r1 modeling that at each
possible match object 2 shall be deleted together with its containment edge, and a new object
shall be inserted such that it is contained in object 1. Both the kernel rule and the multi-rule are
consistent and the kernel rule is part of the multi-rule. Given graph G, we have obviously three
different matches from the multi-rule r1 to G which overlap in the match of the kernel rule to G
only. Hence, we have three multi-rule instances, each of them with a different match to G, and
there are no more matches from r1 to G. Gluing the multi-rule instances at their common kernel
rule, we get the amalgamated rule rA with respect to G, together with match mA : LA→ G.

3 rk ⊆ ri is valid if Lk ⊆ Li, Kk ⊆ Ki, and Rk ⊆ Ri.

Festschrift H.-J. Kreowski 12 / 19

ECEASST

Figure 8: Construction of an amalgamated rule

We call a transformation amalgamated (or, alternatively, transformation with multi-object
structures) if an amalgamated rule is applied. As with simple rules, an amalgamated rule can
only be applied, if the amalgamated match satisfies the gluing condition. Note that a special
interaction scheme consists of only one rule, i.e. a kernel rule, such that the interaction scheme
is applied like a usual sequential rule.

Theorem 3 The construction in Def. 9 yields a unique amalgamated rule up to isomorphism.

Proof. Let IS = (rk,{ri|i ∈ I}) be an interaction scheme and mk a match for the kernel rule
rK to C-graph G. First, we have to show that there is a unique interaction scheme instance
IS′ = (rk,{r j|1 ≤ j ≤ n}) of IS, with r j being a copy of some ri with i ∈ I such that rk ⊆ r j for
all 1≤ j ≤ n. Since IS′ is as large as we find matches of multi-rules, we know that the maximal
interaction scheme instance comprises at least all rules of IS′ since there is a match m j : L j→ G
with m j|Lk = mk for each rule r j with 1≤ j ≤ n, according to Def. 9. IS′ does not contain further
rules, since there is not a further match m′ of some rule ri with i ∈ I which is different from all
matches m j of its copies. Hence, IS′ is the unique interaction scheme instance for IS and mk.

The second part of the amalgamated rule construction is the gluing of all multi-rule instances
along rk. This gluing construction is unique and does not depend on copy constructions, since
multi-rule instances overlap in kernel rules only, i.e. L j∩Ll = Lk, K j∩Kl = Kk, and R j∩Rl = Rk
for all 1≤ j < l ≤ n.

In order to show that EMF instance graphs resulting from amalgamated transformation are
consistent (Theorem 4), we construct the amalgamated rule from a given consistent interaction
scheme and show that this amalgamated rule is a consistent transformation rule. Afterwards, we
can apply Theorem 1.

13 / 19 Volume 26 (2010)

Lifting Parallel Graph Transformation Concepts to EMF Model Transformation

Theorem 4 Let IS = (rk,{r j|1≤ j ≤ n}) be a consistent interaction scheme instance and mk :
Lk→G a match from rk to a C-graph G. Then, the amalgamated transformation rule rA resulting
from the construction acc. to Def. 9 is consistent.

Proof.
Case n = 0: There is no match of any multi-rule. The amalgamated rule rA is equal to the kernel
rule rk, which is consistent by assumption, since IS is consistent.

Case n = 1: There is one multi-rule instance of a multi-rule ri. The amalgamated rule rA is equal
to ri, thus it is consistent by assumption.

Case n > 1: We have to show that the amalgamated rule rA satisfies all four consistency con-
straints for transformation rules according to Def. 7:

1. (node creation) To show: ∀n ∈ R′AN
with typeR(n) = tT G(c) for some c ∈ T GC: ∃e ∈ R′AC

with tRA(e) = n.
W.l.o.g. n ∈ R′jN : Then, there is a unique e ∈ R′jC with tR′jC

(e) = n, since r j is consistent.
There cannot be another e∈R′AC

with tRA(e)= n, since the construction of the amalgamated
rule instances results in an overlap of multi-rules in the kernel rule only. (Note that the
amalgamated match may glue multi-rule matches outside of kernel match.)

2. (containment edge deletion) To show: ∀e ∈ L′AC
with tLA(e) = n:

n ∈ L′AN
∨ (n ∈ KAN ∧∃e′ ∈ R′AC

with tRA(e
′) = n).

W.l.o.g. e ∈ L′jC with tL j(e) = n. Then, n ∈ L′jN ∨ (n ∈ K jN ∧∃e′ ∈ R′jC with tR j(e
′) = n),

since r j is consistent.

3. (containment edge creation) To show: ∀e ∈ R′AC
with tRA(e) = n:

n ∈ R′AN
∨ (n ∈ KAN ∧∃e′ ∈ L′AC

with tLA(e
′) = n)

W.l.o.g. ∀e ∈ R′jC with tR j(e) = n. Then, n ∈ R′jN ∨ (n ∈ K jN ∧∃e′ ∈ L′jC with tL j(e
′) = n),

since r j is consistent.

4. (creation of cycle-capable containment edges)
To show: ∀e ∈ R′ACCycle

with sRA(e) = n∧ tRA(e) = m : ∃e′ ∈ L′AC
with sLA(e

′) = o∧ tLA(e
′) =

m : ((o,n) ∈ containsLA ∧ (m,n) /∈ containsLA) ∨ (n,o) ∈ containsLA .
W.l.o.g. e ∈ R′jCCycle

with sR j(e) = n∧ tR j(e) = m.

Then, there is e′ ∈ L′jC with sL j(e
′) = o∧ tL j(e

′) = m :
((o,n) ∈ containsL j ∧ (m,n) /∈ containsL j) ∨ (n,o) ∈ containsL j .

In addition, we have to show that there is no (m,n) ∈ containsL j for some l 6= j. Since
r j and rl overlap in rK only, m,n ∈ L′KN

⊆ L′jN and (m,n) /∈ containsL j =⇒ (m,n) /∈
containsLl .

Festschrift H.-J. Kreowski 14 / 19

ECEASST

Corollary 1 Given a consistent interaction scheme IS = (rk,{ri|1 ≤ i ≤ n}) and matches mk
and mi to G for all 1 ≤ i ≤ n. Then, if G is a C-graph, the result graph H after applying
interaction scheme IS to G is a C-graph as well.

Proof. Due to Theorem 4, the amalgamated rule constructed from IS is consistent. By Theo-
rem 1, consistent rules preserve C-graphs. Hence, the result graph H is again a C-graph.

Corollary 2 Given a consistent interaction scheme IS like in Corollary 1. Then, if G is a rooted
C-graph, the result graph H after applying the interaction scheme IS to G is a rooted C-graph
as well.

Proof. Due to Theorem 4, the amalgamated rule constructed from IS is consistent. By Theo-
rems 1 and 2, we know that consistent rules preserve C-graphs and the rootedness of C-graphs.
Hence, the result graph H is a rooted C-graph.

Example 7 (Simulator for statecharts with AND-States) In our statecharts variant, every region
belonging to an AND-state has exactly one initial state and at least one final state. The intended
semantics for our statecharts requires that if an AND-state is reached, the active states become
the initial ones of each region. A transition is processed if its pre-state is active and its triggering
event is the same as the event which is received by the Current object (the first event in the queue).
Afterwards, the state(s) following the transition become(s) active, the event of the processed
transition is removed from the queue, and the previously active state(s) (the pre-state(s) of the
transition) is/are not active anymore. More than one transition are processed simultaneously if
they belong to different regions of the same AND-state, if their pre-states are all active and if
they are all triggered by the same event which is received by the Current object. All regions
belonging to the same AND-state must have reached a final state before the AND-state can be
left and the transition from the AND-state to the next state can be processed. For our simulator
we use the Current object not only as object which receives the next event (and is linked to the
event queue) but also as pointer to the current active states. Thus, our simulation rules model the
relinking of the Current object to the next active states and the updating of the event queue.

Note that in the following screenshots of interaction schemes we use an integrated notation,
where we define the kernel rule and one multi-rule within one rule picture. This is possible since
each of our interaction schemes consists of a kernel rule and one multi-rule only. We distinguish
objects belonging to the multi-rule by drawing them as multi-objects (with indicated multiple
boxes instead of simple rectangles). The kernel rule consists of all simple objects which are not
drawn as multiple boxes. All arcs adjacent to multi-objects belong to the multi-rule only, but not
to the kernel rule. All multi-objects together with their adjacent arcs in one multi-rule form a
multi-object structure.

The upper part of Fig. 9 shows the interaction scheme enterRegion which moves the Current
pointer along a transition that connects a state to an AND-state. In this case, the Current pointer
has not only to point to the AND-state afterwards but also to all initial states of all regions of the
AND-state. Hence, the amalgamated rule consists of as many copies of the multi-rule as there
are regions in the AND-state (provided that each component has exactly one initial state which
has to be ensured by a suitable syntax grammar).

15 / 19 Volume 26 (2010)

Lifting Parallel Graph Transformation Concepts to EMF Model Transformation

Figure 9: Interaction Schemes enterRegion and leaveRegion

Vice versa, when an AND-state is left, the Current pointer has to be removed from all of its
regions. This step is realized by the interaction scheme leaveRegion at the bottom of Fig. 9. The
fact that the active states of all regions have to be Final is modelled by the NAC. The multi-rule
models how all inner links from the Current pointer to the regions’ final states are removed.

A simultaneous transition is modelled by interaction scheme simultanTrans in Fig. 10. Here,
an arbitrary number of transitions in different regions of an AND-state are processed if triggered
by the same event. In our ATM example this happens at different points of the simulation: When
the AND-state is entered and the event card-sensed is happening, then the two first transitions of
the two regions are processed simultaneously. Similarly, at any state of the display the user can
abort the transaction: the end event triggers the return of the display region to state welcome and
the return of the card-slot region to state empty.

Figure 10: Interaction Scheme simultanTrans

The simultanTrans interaction scheme is a good example for a concise way to model simulta-
neous transitions which are triggered by a single event. This would be quite difficult to model

Festschrift H.-J. Kreowski 16 / 19

ECEASST

using simple rules. Note that this scheme is applicable also for sequential transition processing
within an AND-state. Then there is only one copy of the multi-rule, similar to rule sequential-
Trans. In the case that no transition leaving an active state is triggered by the current event, we
have the situation that there is no copy of the multi-rule of simultanTrans, but the kernel rule
can be applied anyway. This means that an event which does not trigger any transition inside of
an AND-state simply is removed from the event queue. Again, this is similar to applying rule
skipEvent with the difference that regions are used here.

4 Related Work

There are two tool-based approaches known to us which also realize parallel graph transforma-
tion: AToM3 and GROOVE, where AToM3 supports the explicit definition of interaction schemes
in different rule editors [14] and GROOVE implements rule amalgamation based on nested graph
predicates [15]. A related conceptual approach aiming at transforming collections of similar sub-
graphs is presented in [16]. The main conceptual difference is that we amalgamate rule instances
whereas the authors of [16] replace all collection operators (multi-object structures) in a rule by
the mapped number of collection match copies. Similarly, a cloning operator is defined in [17]
where cloned nodes correspond to multi-objects, but complete multi-object structures cannot be
described. Moreover, the graph transformation tools PROGRES [18] and FuJaBA [19] feature
so-called set nodes which are duplicated as often as necessary, but are not based on amalga-
mated graph transformation. None of the related approaches support the transformation of EMF
models.

5 Conclusions and Future Work

This paper presented amalgamated EMF transformation as a valuable means for modelling and
simulation. They extend the capabilities of EMF transformation based on simple graph trans-
formation [5] by allowing parallel execution of synchronized EMF transformation rules. This is
useful for e.g. specifying simulators for formalisms in which parallel actions can be performed.
A concrete example of such a formalism are statecharts with AND states. It has been shown in
the paper that an amalgamated transformation always leads to a consistent EMF instance model
which satisfy the containment constraints of EMF.

In the future, we plan to apply the approach to other kinds of EMF model transformations,
such as model refactorings where multi-object structures can be found frequently.

Amalgamated transformations of EMF models are currently implemented in the tool EMF
Henshin (formerly called EMF Tiger [6]), a recently developed Eclipse plug-in supporting the
specification and interpretation of EMF model transformations, based on graph transformation
concepts. The goal of EMF Henshin is to provide the means to graphically define rule-based
transformations on EMF models. Rule applications change EMF model instances in-place, i.e.
an EMF instance model is modified directly, without being copied before. Moreover, control
of rule applications by transformation units [20] is supported, as well as pre-definition of (parts
of) the match. EMF Henshin currently consists of a graphical editor for visually defining EMF
model transformation rules and an interpreter which executes EMF model transformation. In the

17 / 19 Volume 26 (2010)

Lifting Parallel Graph Transformation Concepts to EMF Model Transformation

near future, the translation of EMF transformation rules to AGG shall be supported to open up
the possibility for verification of transformations.

Bibliography

[1] Mens, T., Tourwé, T.: A survey of software refactoring. Transactions on Software Engi-
neering 30(2) (February 2004) 126–139

[2] Eclipse Consortium: Eclipse Modeling Framework (EMF) – Version 2.4. (2008) http:
//www.eclipse.org/emf.

[3] Object Management Group: Meta Object Facility (MOF) Core Specification Version 2.0.
http://www.omg.org/technology/documents/modeling spec catalog.htm#MOF (2008)

[4] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. EATCS Monographs in Theor. Comp. Science. Springer (2006)

[5] Biermann, E., Ermel, C., Taentzer, G.: Precise Semantics of EMF Model Transformations
by Graph Transformation. In Proc. Conf. on Model Driven Engineering Languages and
Systems (MoDELS’08). Vol. 5301 of LNCS., Springer (2008) 53–67

[6] Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical Defi-
nition of In-Place Transformations in the Eclipse Modeling Framework. In Proc. Conf. on
Model Driven Engineering Languages and Systems (MoDELS’06). Vol. 4199 of LNCS.
Springer (2006) 425–439

[7] Ehrig, H., Kreowski, H.J.: Parallel graph grammars. In Lindenmayer, A., Rozenberg, G.,
eds.: Automata, Languages, Development. North Holland (1976) 425–447

[8] Taentzer, G.: Parallel and Distributed Graph Transformation: Formal Description and
Application to Communication-Based Systems. PhD thesis, TU Berlin (1996)

[9] Böhm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations: a synchroniza-
tion mechanism. Journal of Computer and System Science 34 (1987) 377–408

[10] Tiger Project Team, Technische Universität Berlin: EMF Tiger (2009) http://tfs.cs.
tu-berlin.de/emftrans.

[11] Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G., eds.: Handbook of Graph Gram-
mars and Computing by Graph Transformation. Vol 3: Concurrency, Parallelism and Dis-
tribution. World Scientific (1999)

[12] Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook of Graph Gram-
mars and Computing by Graph Transformation, Vol. 2: Applications, Languages and Tools.
World Scientific (1999)

[13] Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformations,
Vol. 1: Foundations. World Scientific (1997)

Festschrift H.-J. Kreowski 18 / 19

http://www.eclipse.org/emf
http://www.eclipse.org/emf
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#MOF
http://tfs.cs.tu-berlin.de/emftrans
http://tfs.cs.tu-berlin.de/emftrans

ECEASST

[14] de Lara, J., Ermel, C., Taentzer, G., Ehrig, K.: Parallel Graph Transformation for Model
Simulation applied to Timed Transition Petri Nets. In: Proc. Graph Transformation and
Visual Modelling Techniques (GTVMT) 2004. (2004)

[15] Rensink, A., Kuperus, J.H.: Repotting the geraniums: On nested graph transformation
rules. In: Int. Workshop of Graph Transformation and Visual Modelling Techniques (GT-
VMT’09). (2009)

[16] Grønmo, R., Krogdahl, S., Møller-Pedersen, B.: A collection operator for graph transfor-
mation. In: Int. Conf. on Model Transformation (ICMT’09). (2009)

[17] Hoffmann, B., Janssens, D., van Eetvelde, N.: Cloning and expanding graph transformation
rules for refactoring. In: Int. Workshop on Graph and Model Transformation (GraMoT’05).
Vol. 152 of ENTCS, Elsevier (2006) 53–67

[18] Schürr, A., Winter, A., Zündorf, A.: The PROGRES-approach: Language and environment.
In [12].

[19] Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A new graph rewrite
language based on the UML. In Proc. Workshop on Theory and Application of Graph
Transformation. Vol. 1764 of LNCS, Springer (2000) 296–309

[20] Kreowski, H.-J. and Kuske, S.: Graph Transformation Units with Interleaving Semantics.
Formal Aspects of Computing. Vol. 11, No. 6 (1999) 690–723

19 / 19 Volume 26 (2010)

	Introduction
	EMF Models as Typed, Attributed Graphs with Containment
	EMF Model Transformations with Multi-Object Structures
	Consistent EMF Model Transformation Based on Graph Transformation
	Consistent EMF Model Transformations with Multi-Object Structures

	Related Work
	Conclusions and Future Work

