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Abstract: We present Local Church-Rosser, Parallelism, and Conutyr&heo-
rems for rules with nested application conditions in thenesvork of weak adhesive
HLR categories including different kinds of graphs. Thegésoof the statements are
based on the corresponding statements for rules withodicappn conditions and
two Shift-Lemmas, saying that nested application cond#tican be shifted over
morphisms and rules.
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1 Introduction

Graph replacement systems have been studied extensivtigpptied to several areas of com-
puter sciencefRoz97 EEKR99 EKMR99 and were generalized to high-level replacement (HLR)
systemsEHKP9] and weak adhesive HLR systentsHP06§ EEPT0§, based on adhesive cat-
egories [S05. Application conditions restrict the applicability of ale. Originally, they were
defined in EH84, specialized to negative application conditions (NAGSH[T96], and gener-
alized to nested application conditions (ACE)HO0S.

The Local Church-Rosser, Parallelism, and Concurrencyiims are well-known theorems
for graph replacement systems on rules without applicat@rditions EK76, Kre773 Kre77h
Ehr79 ER8Q Hab8(Q and are generalized to high-level replacement (HLR) sgstiEEHKP9]]
and rules with negative application conditiohs&PO08l. Nested application conditions (ACS)
were introduced inHP0J and intensively studied inH{P09. They generalize the well-known
negative application conditions (NACs) in the sensetfiT 96, LEPOO08R. Furthermore, nested
application conditions in the category of graphs are exgively equivalent to first order formulas
on graphs. In this paper, we generalize the theorems to witesare HLR systems on rules with
nested application conditions.
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Theorem without ACs with NACs with ACs
Local Church-Rosser [EK76, Ehr79 EHKP91, EEPTO0§ |[HHT96, LEPOO08H | this pape
Parallelism [Kre77g Kre77h EHKP91, EEPTO0§ | [HHT96, LEPOO08H | this pape
Concurrency [ER8Q Hab8Q EHKP91 EEPTO0G§ [LEPOO08H this pape

The proofs of the theorems are based on the correspondingethe for weak adhesive HLR
systems on rules without application conditions HEPTO0g and facts on nested application
conditions in HPOY, saying that application conditions can be shifted overphisms and
rules.

Theorem + Shift-Lemmas for ACs- Theorem for rules with ACS

The paper is organized as follows: In Secticghand 3, we review the definitions of a weak
adhesive HLR category, nested conditions, and rules. Itid®et, we state and prove the Local
Church-Rosser, Parallelism, and Concurrency Theorentsilies with nested application condi-
tions. The concepts are illustrated by examples in the oagegf graphs with the clasg7 of all
injective graph morphisms. A conclusion including furtlsark is given in Sectiorb.

2 Graphs and High-level Structures

We recall the basic notions of directed, labeled gragtis 19 CMR*97] and generalize them to

high-level structuresgHKP91]. The idea behind the consideration of high-level strugsus to

avoid similar investigations for similar structures sustPetri-nets and hypergraphs.
Directed, labeled graphs and graph morphisms are definadlass.

Definition 1 (Graphs and Graph Morphisms) LetC(Cy, Cg) be a fixed, finite label alphabet.
A graphover C is a systent = (Vg, Eg, Se, tc,lg,Mg) consisting of two finite sets & and
Ec of nodes(or vertice3 and edges sourceand target functionssg,ts: Ec — Vg, and two
labeling functiondg: Vg — Cy and nx: Eg — Cg. A graph with an empty set of nodesaspty
and denoted by. A graph morphism g G — H consists of two functiongy : Vg — Vy and
Oe: Eg — Ey that preserve sources, targets, and labels, that és3s= gy oS, th oge = gv oG,

Iy ogv =g, and my oge = M. A morphismg is injective(surjectivg if gy andgg are injective
(surjective), and amsomorphismf it is both injective and surjective. Theomposition kg of

g with a morphismh: H — M consists of the composed functiohg o gy andhgoge. The
category having graphs as objects and graph morphismsaagsag called Graphs.

Our considerations are based on weak adhesive HLR categose categories based on
objects of many kinds of structures which are of interestamputer science and mathematics,
e.g. Petri-nets, (hyper)graphs, and algebraic specditstitogether with their corresponding
morphisms and with specific properties. Readers interéstde category-theoretic background
of these concepts may consult e. gE[PTO4G.

Definition 2 (Weak Adhesive HLR Category) A category with a morphism class/# is a
weak adhesive HLR categoiythe following properties hold:
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1. # is a class of monomorphisms closed under isomorphisms, esitigqn, and decom-
position, i.e., for morphismg andg, f € .#, g isomorphism (or vice versa) implies
gofe#; f,ge # impliesgof € #;andgof € #,gc .# impliesf € 4.

2. ¥ has pushouts and pullbacks alamg-morphisms, i.e. pushouts and pullbacks, where at
least one of the given morphisms is.r, and.#-morphisms are closed under pushouts
and pullbacks, i.e. given a pushout (1) as in the figure betow,.# impliesn € .# and,
given a pullback (1)n € . impliesme .Z.

3. Pushouts ir¢” along.#-morphisms are weak VK-squares, i.e. for any commutativeecu
in ¥ where we have the pushout withe .# and (f € .# orb,c,d € .#) in the bottom and
the back faces are pullbacks, it holds: the top is pushothéffront faces are pullbacks.

/A/%C'
A——C

[ @ [n J
5 b J J

Fact 1 ((EEPTO§) The categoryGraphswith class.# of all injective graph morphisms is
a weak adhesive HLR category. Further examples of weak ahEd R categories are the
categories of hypergraphs with all injective hypergraphrphisms, place-transition nets with
all injective net morphisms, and algebraic specificationt &ll strict injective specification

morphisms.

Remarkl Adhesive categories 504 EEPTO§ are special cases of (weak) adhesive HLR
categories, where, in addition, the clags is the class of all monomorphisms. BEEPTO4,

the categoryPTNets.#) of place/transition nets and the categdBpec.Z«yict) of algebraic
specificatons are weak adhesive HLR, but not adhesive.

Weak adhesive HLR-categories have a number of nice prepedalled HLR properties.

Lemma 1 (Properties of weak adhesive HLR categorieS(4, EEPT0§) For a weak adhesive
HLR-category(%,.# ), the following properties hold:

1. Pushouts alongz-morphisms are pullbacks.

2. ./ pushout-pullback decomposition. If the diagram (1)+(2)tle figure below is a
pushout, (2) a pullback, w .# and (I .# or c € .#), then (1) and (2) are pushouts
and also pullbacks.

3. Cube pushout-pullback decomposition. Given the comntimeitaube (3) in the figure be-
low, where all morphisms in the top and the bottom arezf the top is pullback, and the
front faces are pushouts, then the bottom is a pullback éfltack faces of the cube are
pushouts.

3/23 Volume 26 (2010)



Parallelism and Concurrency Eﬁ

C—A
A Coc T e J\D/ N
@ (1)sj @) jv Lot
B> D—wF \J \J
B3 D——B

4. Uniqueness of pushout complements. Given morphismAs€C in . and s C — D,
then there is, up to isomorphism, at most one B withl—= B and u B — D such that
diagram (1) is a pushout.

In the following, we consider weak adhesive HLR categoriéh an &-.# factorization and
binary coproducts.

Definition 3 (&-.# Factorization) A weak adhesive HLR categafs/,.# ) has ans-.# fac-
torizationfor a given morphism clas$ if, for each morphisnf, there is a decomposition, unique
up to isomorphismf = moewitheec & andme ..

Remark2 (Binary coproducts) In a weak adhesive HLR catego{¥ ,.# ) with binary coprod-
ucts, the binary coproducts are compatible within the sense thdt g€ .# impliesf+ge . # .
In fact, PO (1) in the figure below with € .# implies (f+id) € .# and PO (2) withg € .#
implies(id+g) € ., but now(f+q) = (id+g) o (f+id) € .# by closure under composition.

f g
A— B C—D
o\ / o]

A+C —— B+C - B+D
f+id id+g

The category Graphs with the classe® and & of all injective and surjective graph mor-
phisms, respectively, satisfies the specific properties.

Fact2 ([EEPTOG) (Graphs.#) has anf-.# factorization and binary coproducts.

3 Rules with Application Conditions

We use the framework of weak adhesive HLR categories anddute rules with application
conditions for high-level structures like Petri nets, (Bg)graphs, and algebraic specifications.

Assumption We assume thate , . #') is a weak adhesive HLR category with &n.# factor-
ization (used in Shift-Lemma) and binary coproducts (used in Definiti6h

Application conditions are defined as idP09, Definition 4. Syntactically, application con-
ditions may be seen as a tree of morphisms equipped withreéotiical symbols such as quan-
tifiers and connectives.
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Definition 4 (Nested Application Conditions) Aested application conditigshort application
condition, condition, or AC, gcover an objecP is of the form true o8(a,ac:), wherea: P—C

is a morphism and acis an application condition oveZ. Moreover, Boolean formulas over
conditions overP are conditions oveP: for conditionsc,c; over P with i € | (for all index
setsl), = ¢ and Ai¢iG; are conditions oveP. Ja abbreviatesi(a,true), V(a,ac) abbreviates
—-3(a,—~ag:), and# abbreviates-3.

I P C<aq:
N /q

Every morphismsatisfiestrue. A morphismp: P — G satisfiesa conditiond(a, ac:) if there
exists a morphismy in .# such thatjoa= p andq |= ac:. The satisfaction of conditions over
by morphisms with domaiR is extended to Boolean formulas over conditions in the usaal
We write p = ag to denote that the morphismsatisfies ag. Two conditions ag and a¢ over
P areequivalent denoted by a€= ac,, if for all morphismsp: P — G, p E ag iff p|= ac.

Remark3 The definition of conditions generalizes thosehi{T96, HW95 KMP05, EEHPO04.
In the context of rules, conditions are also calkggplication conditions Negative application
conditions HHT96, LEPO08H correspond to nested application conditions of the f@anEx-
amples of nested application conditions are given below.

I(QQ—=0—+0) There is an edge from the image of 1 to the image of 2.
iﬂ(oo —0O—~Q) There is no edge from the image of 1 to the image of 2.
H(C/D\ 3?(;00:8:8 % There is a directed path of length 2, but not of length 1, from
the image of 1 to the image of 2.
3(;?1(;_»@5'2 70/‘ a)) There is a proper edge outgoing from the image of 1 withput
1072 2 edge in converse direction.
V(CHDI(;’QC;’E 7O—>OQ ) For every proper edge outgoing from the image of 1, the
1072 1072 target has a loop.
Q=09
V(CH%(—(;%;;Q&'E?—'Qa For the image of node 1, there exists an outgoing edge such
12 s that, for all edges outgoing from the target, the target has a
Q_'Q_'OQ))) loop.

In the presence of am -initial objectl [HP0Y, conditions3(a,c) over the initial object can be
used to defineonstraintsfor objectsG, namelyG satisfies3(a,c) if the unique.# -morphism
| — G satisfies(a,c).

Remark4 In general, one could choose a satisfiability notion, i.elaascof morphisms#’,
and require that the morphisgyin Definition4 is in.#'. Examples are? - and.# -satisfiability
[HPOg wheres/ and.# are the classes of all morphisms and all monomorphismsectsgply.
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Application conditions can be shifted over morphisms irdaresponding application condi-
tions over the codomain of the morphism.

Lemma 2 (Shift of Application Conditions over Morphisms)Let (¢’,.#') be a weak adhesive
HLR category withs’-.# -factorization. There is a transformatioBhift such that, for all ap-
plication conditionsacg over P and all morphisms:bP — P/, n: P — H, nobEFapx < nE
Shift(b,acp). app p_ P o Shifttb,ae)

nobN 1
H

The Shift-construction is based on jointly epimorphic paf morphisms. A morphism pair
(e1,e2) with : Ay — B (i = 1,2) is jointly epimorphicif, for all morphismsg,h: B — C with
gog =hoeg fori=1,2, we haveg = h. In the case of graphs, “jointly epimorphic” means
“jointly surjective™: a morphism paife;, ) is jointly surjective if for eachb € B there is a
preimagea; € A; with e;(a;) = b or ap € A, with ex(ap) = b. For previous versions of the
Shift-construction sed_ EPO08H HPO9.

Construction The transformation Shift is inductively defined as follows:
p_P . p Shift(b, true) = true.

al (1) l , Shlﬁl(b,ﬂ(a, aC‘C)) = v(aﬁb’)eyH(a/,Shift(b/,a(‘C)) with
¥ Z ={(@,p) | (@,b) jointly epimorphic,b’ € .#, (1) commute}
CwC Shift(b, 3(a, ac)) = false if.7 is empty.

ach ¥
For Boolean formulas over application conditions, Shifextended in the usual way: For ap-
plication conditions a@g with i € | (for all index setsl), Shift(b, -ac) = —Shift(b,ac) and
Shift(b, Aicjag) = Ajei Shift(b,aq).

Examplel Given the morphisn: P — P’ below, the application conditiona is shifted into

the application conditio®hift(b,3a) = 3a' v 3@’ v Jidp whered' is the morphism depicted in

the figure below and’ obtained frome by identifying the nodes with labekdernrin C'; it can

be simplified tarue becausélidp is equivalent tdrue. The application conditiodia is shifted

into Shift(b, Ja) = —Shift(b,3a) = ~true= false

P P
-

e

orders | (orderg—=(ordernp—=(title)
A

]

Q

3

D q
op

a o
(orderg—(orderny) - (orderh(ordernbg
(orderny  (name)

C c
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Proof of Lemm&. The statement is proved by structural inductiddasis. For the condition
true, the equivalence holds triviallynductive step. For a condition of the fornd(a,ac:), we
have to showob |= 3(a,ac) < n = Shift(b,3(a,ac)).

Only if. Letnob | 3(a,ac). By definition of satisfiability, there is somge .# with
goa=nobandq | ag. Let(ab) be the pushout in (1) in the left diagram below. By the
universal property of pushouts, there is an induced mompljisC — H such thaig = gob and
n=qoa. By &-.# factorization ofg, § = moewith ec & andme .#. Define nowa’ = eoa
andb’ = eob. Then the diagranPP'CC’ commutes. Since# is closed under decomposition,
gq=mob' € .#, mec . impliest/ € .#. Since(a,b) is jointly epimorphic ance € &, (&,1)
is jointly epimorphic. Thus(d,b’) € .#. By inductive hypothesisg = mob/ Fac < mE
Shift(b/,ac:). Nown = 3(&, Shift(b/,ac:)) and, by definition of Shiftn = 3(b, Shift(a,ac)).

p-2.cqdc

o] [w

PIL’C/

N
nl //‘m

If. Letn = Shift(b,3(a,acc)). Then there is somé,b') € % with b’ € .# such than |=
3(d, Shift(b’,ac)) and somenm € .# such thamoa = n andm = Shift(b/,ac:). By inductive
hypothesism |= Shift(b’,ac:) < mob’ =ag. Nowmob' € .#Z, mob/ oa=nob (see the right
diagram above), ando b’ |= ag, i.e.,nob = 3(a,ac). O

Rules EEHP06 HPOJ are specified by a span of -morphismsL < K — R) with a left and
a right application condition. We consider the classicahaetics based on the double-pushout
construction Ehr79 CMR"97].

Definition 5 (Rules) Arule p = (p,aq ,ac) consists of a plain rulg = (L — K — R) with
K — L andK — Rin .# and two application conditions gand ag overL andR, respectively.
L andR are called the left- and the right-hand sidepodindK the interface; acand ag are the
left andright application condition op.

A | —— K—R=aR
W e |
G——D——H

A direct derivationconsists of two pushouts (1) and (2) such et aqg andm* = ag. We

write G = mm- H and say tham: L — G is the match op in Gandm*: R— H is the comatch
of pin H. We also writeG =, m H or G =, H to express that there is anf or there aranand

m*, respectively, such th& =, nm H.

The concept of rules is completely symmetric.
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Fact 3 (Inverse rule) For every rulep = (p,aq_,a) with p= (L + K — R), the rulep™! =
(p~t,ag,aq ) with p~t = (R« K — L) is theinverse ruleof p. For every direct derivation
G =pmm H, there is a direct derivatiod =, -1 , m» G via the inverse rule.

Notation In the case of graphs, a rule (schenih)— K — R) with discrete interfac& is
shortly depicted by. = R, where the nodes df are indexed in the left-and the right-hand side
of the rule (schema). A negative application condition efftrm#(L — L') is integrated in the
left-hand side of a rule (schema) by crossing the pariL out. E.g. the rule (schemdp,aq )

with
(D — @ — @ -0 ) g
aq 39( < ») is depicted by

(8 — (o)~
1 1

Moreover, the grey edge with labels — in the rule (schema) RegisterBo@atnr,orderny in
the figure below represents the conjunction of the negafydication conditions “There does
not exist a+-labelled edge” and “There does not exist dabelled edge”.

Example2 In the figure on the next page, rules (rule schemata) witlafgdtication conditions
are given, corresponding more or less to the operationseosmmall library system originally
investigated in [EK80].

Right application conditions of rules can be shifted intaresponding left application condi-
tions and vice versa.

Lemma 3 (Shift of Application Conditions over Rule$iP09) There are transformationk
and R such that, for every right application conditicatr and every left application condition
aq_of a rule p and every direct derivation G>p mm H, m= L(p,ak) & m* |= ag and mj=
aq & m' = R(p,aq).
HPERET LK R R
oo |

m*
G——D<—H

Construction The transformation L is inductively defined as follows:

Ll ok TR L(p,true) = true _
L(p,3(a,acx)) = (b, L(p*,acx)) if (r,a) has a pushout
bJ @ l @) la complement (1) ang* = (Y «+ Z — X) is the derived rule
Y <|—*’ZT X by constructing the pushout (2).
L(p*,a0) A Aacc | (p J(aac)) = false, otherwise.

For Boolean formulas over application conditions, L is exied in the usual way: For applica-
tion conditions agag with i € I, L(b,-ac) = —L(b,ac) and L(b,AicjaG) = AiciL(b,aG). The
transformatiorRis given by Rp,aq ) = L(p~1,aq ).

Festschrift H.-J. Kreowski 8/23
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RegisterBook(ordernr,catnr): 3

(orderg—=(ordernp—(namg
2

RN

5 4

LendBook(catnr,readernr):

(catalog-"»(catn) (readern) —
1 2 3

_v
—  (orderg—(ordernp)—(title ’
1 -

-

ECEASST
AddAuthor(name):
(namg —  (authorg—(nam
1 1
AddPublisher(hame’):
publisherg~(namg — (publisherg
G
AddReader(readernr):
(readerg~(readern) —  (readerg>(readern)
1 1
OrderBook(ordernr,name,title,name’):
2

3

name

2
1 -

o e
H(catnba(nameﬁ
4 4

- —
catalo ( catnr)f( readernh3

Example3 Given the rule (schemg) = OrderBooKorderntnametitle,namé) in the upper
row of the figure below, the right application conditidfR — X) is shifted oveip into the left

application conditiorb(L — Y).

L

R

(name))

/'
(orderg—(ordernn—=(iitle)
A
(name))

rams
v
(orderg~(orderny) || (orderg-~(orderny) (| (orderg—»(ordern)—=(Gitle)
T~ ~a
(hame) (name) (ordern)  (name)
Y V4

X
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In the following, we define the equivalence of rules and th&vedence of application condi-
tions with respect to a rule. The equivalence with respeet tole is more restrictive than the
unrestricted one in DefinitioA.

Definition 6 (Equivalence) Two ruleg andp’ areequivalent denoted byp = p, if the re-
lations=-, and=-,/ are equal. For a rulp, two left (right) application conditions ac and’ac
are p-equivalent denoted by aes, ac, if the rules obtained fronp by adding the application
condition ac and dcrespectively, are equivalent.

There is a close relationship between the transformaticasd R: For every rul@, Shift of a
condition over the rule to the left and then over the rule ®rtght isp-equivalent to the original
condition.

Lemmad4(L and R) Forevery rulep and every application conditioacover R, the right-hand
side of the plain rule op, the application condition®(p,L(p,ac)) and ac are p-equivalent:

R(p,L(p.ag) =p ac

Proof. By the Shift-LemmaB, for every direct derivatiol =, mm H, m* = R(p,L(p,ac)
mkE=L(p,ac) & m" =ac, i.e., Rp,L(p,ac)) and ac arg-equivalent. O

Remarks In general, the application conditioR§p,L (p,ac)) andacare not equivalent in the
sense of Definitior. E.qg., for the rulgp = (p,true,ac) with p= (0 < 0 — O) andac=3(Q —
O—0), L(p,—ag) = -L(p,ac) = ~false= trueandR(p, L (p, -ac)) = R(p, true) = true# —ac

There is a nice interchange result of Shift and L saying toag rulep, the shift of a right ap-
plication condition over a rule and a matctpisequivalent to the shift of the application condition
over the comatch and the rule induced by the match.

Lemma 5(Shiftand L) For every direct derivation L=, - R* via a rule p and every appli-
cation conditiorag, Shift(k,L(p,ac)) =,- L(p*, Shift(k*,ac)), wherep* denotes the rule derived
from p and k. A corresponding statement holds &bift and R.

L—K——R<
K ay | @ |k

Proof. Let G =« - H be a direct derivationn = | ok andm* = |* ok*. By Shift-Lemmas?
and3, we havd = Shift(k,L(p,ac)) & mkE L(p,ac) & m* = ag < |* | Shift(k*,ac) < | =
L(p*, Shift(k*,ac)).
L——K~——R<
K @ | e |k
m L*«—K*—R" |m"
|l (12) l 22) ll*

G—D<H

Festschrift H.-J. Kreowski 10/ 23



@ ECEASST

O

As a consequence of Shift-Lemn3aevery rule can be transformed into an equivalent one
with true right application condition. A rule of the forfip,aq_,true) is said to be a rule with left
application condition and is abbreviated gy aq ).

Corollary 1 (Rules with Left Application Condition) There is a transformatioheft from rules
into rules with left application condition such that, foregy rule p, the rulesp andLeft(p) are
equivalent.

Proof. For a rulep = (p,aq ,a), Left(p) = (p,aq. AL(p,ax)). By Definition 5, Shift-
Lemma3, and the definition of Left, the rulgs and Lef{p) are equivalentG =, mm H iff
G=pmm HAMEag AM EFagiff G=pmm HAMEaqg AmEL(p,a®) iff G=pmm
HAmEaa AL(p,aq) iff G=Lef(p)mm H- O

4 Local Church-Rosser, Parallelism, and Concurrency

In this section, we present Local Church-Rosser, Parsitgliand Concurrency Theorems for
rules with application conditions generalizing the wellskvn theorems for rules without appli-
cation conditions EEPT0§ and with negative application conditionsgEO0§. The proofs of
the statements are based on the corresponding statememnigewithout application condi-
tions [EEPT0§ and Shift-Lemmas2 and 3, saying that application conditions can be shifted
over morphisms and rules. The structure of the proofs isl&msws: We switch from derivations
with application conditions to the corresponding dermas without application conditions, use
the results for derivations without application condigpand lift the results without application
conditions to application conditions.

derivations with ACs = result with ACs

! T

derivations without ACs = result without ACs

Fact 4 (Every derivation with ACs induces a derivation without$)C For every direct deriva-
tion G =, m H, there is a direct derivatioB =, m H via the plain rulep, called theunderlying
direct derivation without ACs

In the following, we study parallel and sequential indeprat of direct derivations for rules
with application conditions. By Corollar§, we may assume that the rules are rules with left
application condition.

Assumption Let p1 = (p1,aa,) andp, = (p2,aq,) be rules withp, = (Li < K; — R;) for
i=12

Two direct derivations are parallel (sequentially) indegent if the underlying direct deriva-
tions without application conditions are parallel (sedigly) independent and the induced

11/23 Volume 26 (2010)
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matches satisfy the corresponding application conditidhgr rules with negative application
conditions, the definition corresponds to the oneliBQ0qg.

Definition 7 (Parallel and Sequential Independence) Two direct désiveH; <p, m, G=p, m,
H, areparallel independenif there are morphismd,: L1 — D, andd;: L, — D1 such that the
trianglesL1D,G andL,D1G commutem; = c;ody = aq,, andm, = cyod; = aq,.

aq ag,
R1<—)K1‘—>L1_<>_1‘ V_I‘>L2<—)K2‘—>R2
R AT
Hy C1 Dy y = G = Ty D, Co H,

Two direct derivationsG =5, m, H1 =p, m, M are sequentially independerit there are mor-
phismsd,: Ry — D, andd;: L, — Dj such that the triangleR;D>H; andL,D1H; commute,

mi=cyod; = R(p1,aq,) andmy = c;od; = aq,.

ag, ag.,

I>L1<—)K1<—>R1_b_‘ v_I‘>L2<—)K2<—>R2
WENZEN
G C1 )Dlé,-" = Hy = Y%Dz( C2 M

Two direct derivations that are not parallel (sequentjaihdependent, are callgohrallel (se-
quentially) dependent

Exampled The two direct derivationsl, <, G =, H, via py = AddAuthor(namg andp, =
AddPublishefnamé) are parallel independent.

(hamg«—(authory —— (author§ — (authory  (publishery— (publishery— (publishery~(name)

| N/

(Pam-—(authon ‘ : .
(publishery ~ (publisher3 (publisher3 (publishery  (publishery~(name)
Hj D; G D2 Ha

Fact 5 (Independence with ACs implies independence without ACRarallel (sequential) in-
dependence of direct derivations implies parallel (setigirindependence of the underlying
direct derivations without ACs.

By definition, parallel and sequential independence arsetyaelated.

Fact 6 (Parallel and sequential independencé@vo direct derivationsiy <=p, m, G =p, m, H2
are parallel independent iff the two direct derivatidtis=- prtm: G =p, m, H2 are sequentially
independent, whens is the comatch opy in Hi.
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Now we present a Local Church-Rosser Theorem for rules vpipfiGation conditions.

Theorem 1(Local Church-Rosser Theorem)Given two parallel independent direct derivations
Hi <p,m G =p,m, Ha, there are an object M and direct derivationg I:bpzmz M “pm, H,
such that G=p, m, H1 =5, m, M and G=-p, m, H2 =, my M are sequentially independent. Given
two sequentially independent direct derivations=G, m, H1 =5, m, M, there are an object pi
and direct derivations G=p,m, H2 =p, m, M such that H <p, m G =p, m, Hz are parallel
independent.

LN
1 2
N
G M
Pz\i /,01
Ho

Proof. Let Hy <=p, m, G =p, m, H2 be parallel independent. Then the underlying direct deriva
tions without ACs are parallel independent. By the Local i€htRosser Theorem without
ACs [EEPTO0§, there are an objed#l and direct derivationsl; = ppm, M <=p; m H2 such that
G=p,m H1=p,m, M andG =-p, m, Ho =, iy, M are sequentially independent. By assumption,
mi,m |=aq, for i = 1,2. Thus, there are direct derivatioRlg = py.m, M “p.m, H, with ACs.
Let Ry — D, andL, — D1 be the morphisms in the figure below. ThRp— D — Hy =mj
andL, — D; — Hy = my,. By Shift-Lemma3, Ry — D, — M =mj = R(p1,aq,) andLy, —

D1 — G=m = aq,. Thus, the derivatios =p, m, H1 = ppm, M is sequentially independent.
Analogously, the second derivation is sequentially indeleat.

Vice versa, leG =, m, H1 =, m, M be sequentially independent. Then the underlying direct
derivations without ACs are sequentially independent. I8y ltocal Church-Rosser Theorem
without ACs [EEPTO4, there are an obje¢t, and direct derivation® =-p, m, H2 =, y M such
thatH; <p, m, G =, m, H2 are parallel independent. By assumption, we know thatr), =
aq,, mp = aq, (by Shift-Lemma3s, m; = R(p1,aq,) impliesm; = aq,). Thus,G =p, m,

Ho, = pm, M is a derivation with ACs. Let, — D1 andL; — D, in the figure below be the
morphisms withy — D, = G=L; —GandL, - D; - G=L—G. ThenL; = Dy — Hy=m]
andL; — Dy — Hy =, = aq,. Thus, the direct derivatiorid; <p, m, G =, m, H2 become
parallel independent. The statement also can be provedthéthelp of the first statement and
Fact6. O

For clarifying the notations, a sketch of a part of the prdofacal Church-Rosser Theorem
for rules without ACs is given oriented at the one ii|P0O1].

Proof Sketch.Let Hy <p, m, G =p,.m, H2 be parallel independent. Then there are morphisms
L1 — D, andL, — D1 such that the triangles; D,G and_,D1G in the figure below commute.

Rl‘—)Kl(—’Ll-,___ _Y-A'LZ(—)KZ(—>R2
k 2) k W \ / . ® | (4) |
Hi > Dy £ G —3D,¢ H,
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The morphisms are used for the decomposition of the puskgutso pushouts (i1),(i2) for

i=1....4

Ry

D2

Hy

Ky Ko R,

(1) | (@11 (31) | (41)
Do M M Dl Do D;

(22) | (12 (32) | (42
D¢ Dy Ha

The pushouts can be rearranged as in the figures below. Fudles the diagrams (22) and (42)
are constructed as pushouts. Since the composition of ptssyields pushouts, we obtain direct
derivationsHy =p, y, M <=, y Hz such that the direct derivatiol® =-p, m, H1 =, y, M and

G = p,m, H2 =p, m, M are sequentially independent.

Ly K¢ R Lo
(11) (21) h
M §, DD, "/ B,
12) | (22
> D¢ 1
Ly Ko Ry L K Ry
31) | (41) h h 11) | (@)
™ Dy Dge——D; \'"* " Dpe——Do——D;
(12) (42) (42) (5)
G >Dye H> Dy M

O

Next, we present the construction of a parallel rule of ruls application conditions. As
in [EEPTOG, we have to assume thé&#’,.#) has binary coproducts. The application condition
of the parallel rulep; + po guarantees that, whenever the parallel rule is applicabéerules
p1 andp, are applicable and, after the applicationgaf the rulep, is applicable and, after the

application ofp,, the rulep; is applicable.

Definition 8 (Parallel Rule and Derivation) Thaarallel rule of p; andp; is the rulep;+p, =
(p,aq ,aqr) wherep=p1+p; is the parallel rule op; andp,, ag =Shift(k,aq ;) A Shift(kz,aq., ),

and ag = Shift(k;,R(p1,aq,)) A

Shlﬂ:(k;» R(p2> aq_z))'

Festschrift H.-J. Kreowski

14723



@ ECEASST

> L4 > K ¢ Ry

k|, >>L2 ( > Kz kﬁk* Ry
v |~ k%

> L+l —— K +Ky —— Ri+Ro <

A direct derivation via a parallel rule is call@drallel direct derivation or parallel derivation, for
short.

Example5 The parallel rule (schema) éfddAuthoriname andAddPublishefname) is the
rule (schema) with the plain rule (schema)

(authorg—~(nams
. < B - (publisher§-~(name) >

and the application conditions

aq. = #( (publisher} (author3—~(namg ) % ( (authory (publishery~(name) )

(authory—~(namg

5 i ¥ (publishery-~(name)
N

publisher

requiring that “There does not exist an author node withllaben€, “There does not exist a
publisher node with labalamé”, “Afterwards, there do not exist two an author node with two
namenodes”, and “Afterwards, there do not exist a publisher neoitle two namé nodes”. Here
an author node is a node which is connected with the node ab#lduthorsby a directed edge.
Shifting the application conditioag over the rule (schema) yields the application condition
aq. Thus, the parallel rule (schema) is equivalent to the orth left application condition
depicted below.

agR

AddAuthorPublisheinamenamé):

s e -
(publishery - (name) — (publishery ~(name)

The connection between sequentially independent direations and parallel direct deriva-
tions is expressed by the Parallelism Theorem for rules apttiication conditions.

Theorem 2(Parallelism) Given sequentially independent direct derivations:(g m, Hi = ppm,
M, there is a parallel derivation G, 1p,m M. Given a parallel derivation G=p, 1 p,m M,
there are two sequentially independent direct derivatiGns-p, m, H1 =p, m, M and G=-p, m,
H2 :>Pl7"‘ﬁ M.
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Pl/tHl\Pz
ENCET A
pZ\H /Pl
2

Proof. By Definition 8 and Shift-Lemmag and3, we have

ml=aq andm* = ag iff m,m = aq, fori=1,2. @

This may be seen as follows.

mEaq < mpE Shift(kg,aq,) A Shift(k,aq.,)
& myf=aq, andnp =aq,
m’* ): aR < nm ): Shlﬂ:(kj){v R(pl,aq_l)) A Shlﬁ:(k;, R(pzaaq_z))
& m1ER(p,aq,) andn; = R(p2,aq,)
& m [=aq, andm, = aq,
Y%
|>L14’L1+L2<7L2<] I>R1—>R1—|—R2<—R2<]

N2 SNy

If G=p. m Hi =pm, M is sequentially independent, then the underlying deovatvithout
ACs is sequentially independent and, by the Parallelisnofidra without ACs EEPTO0§, there

is a parallel derivatiotG =p,  p, m M. By assumptionm;,n{ = aq for i = 1,2 and, by State-
ment (), m=aq andm* = ag, i.e., G =p,p,m M satisfies ACs. IfG =(,p,mM is a
parallel derivation, then there is an underlying parallivhtion without ACs, and, by the Par-
allelism Theorem without ACSHEPTO04, there are sequentially independent direct derivations
G=p.m H1 = pom, M andG =p, m, H2 = pum, M. By assumptionm = aq. andm* = ag and,

by StatementX), m,m{ = aq, fori = 1,2, i.e., the sequentially independent direct derivations
satisfy ACs. O

Shift operations over parallel rules can be sequentializieda sequence of shifts over induced
rules.

Lemma 6 (Shift over Parallel Rules) For every parallel rulep = p1+p, every right applica-
tion conditionacfor p, and i j € {1,2} with i # j, we havel (p,ac) =, L(p", L (pj,ac)) where
pi" is induced by and k and p;' is induced byp; and l§

Festschrift H.-J. Kreowski 16 /23
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L; > K Lj<—)Kj<—>Rj

c R
ki| (PO) (PO) \ Ij/ (PO) (PO) |k

Li+Lj — Ki+Lj —— Ri+L; — R+Kj < R+R;

m| (PO) (PO)bKiJrKjim“ (PO) (PO) |mv

G )Elj_ H; .‘_,.3E2( M

~

Proof. By the Parallelism Theorem, for every direct derivatlBn=p, mm: M there are direct
derivationsG =, m Hi =p, m M. By analysis arguments as in the proof of the Parallelism
Theorem EEPTO4, there are direct derivations =y m Hi =p: v M depicted below. By the
Shift-Lemmas3, m= L(p,ac) & m* = ace m' = L(pf,ac) & mE= L(of,L(p],ac), i.e, the
application conditions [p,ac) and L(p{",L (pj,ac)) arep-equivalent. O

Finally, we present the construction of a concurrent rutedées with application conditions.

Definition 9 (E-concurrent Rule) Lef” be a class of morphism pairs with the same codomain.
Given two rulesp; and p,, an objectE with morphismse;: Ry — E andey: L, — E is anE-
dependency relatiofor p; andp, if (e1,€) € &’ and the pushout complements (1) and (2) over
K1 — Ry — E andK; — L, — E in the figure below exist. Given such &xdependency relation
for p1 andps, theE-concurrent ruleof p; andps is the rulep; xg p2 = (p,aq ) wherep = p1 g p2

is E-concurrent rule op; and p, with pushouts (3), (4) and pullback (9; = (L <= D1 — E)

is the rule derived by, andk;, and a¢ = Shift(k;,aq ,) A L(ps, Shift(kz,aq.,).

>L——Ki——R; >L—Ky—— Ry
kll 3) | 1) \ k;/ ) k (4) {
> L > Dy < E > Dy < R
5)
K

Examples TheE-concurrent rule (schema) pf = OrderBooKordernt nametitle,namé) and
p2 = RegisterBookordernt catnr according to the dependency relatienbeing the right-hand
sideE of py and the left-hand side @k, is the rule (schema)

o«
oo 0D @ - D @ - e @ )

with the left application condition
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(orde@*(ordern)
(catalog» Gain) (me)

requiring that “There does not exist a catalog node withllabenr” and “There does not exist
an order node with labe&rdernr. The E-concurrent rule (schema) may be depicted as follows.

Order; RegisterBoafordernt catnr, nametitle,nameé):

2

(orderg-~(orderny . (orders /

G -» @y~ pame)
4 3

The non-existence of a node with lalwaltnr guarantees that, whenever tGeconcurrent rule
(schema) op, andp, is applicable, theip, with ordernris applicable and, afterwardg, with
catnris applicable.

For rules without ACs, the parallel rule is a special casd&efdoncurrent ruleEPTO0§. For
rules with ACs, in general, this is not the case: While thdiapfion conditions for the parallel
rule must guarantee the applicability of the rules in eacleprthe application condition for the
concurrent rule only must guarantee the applicability efriiles in the given order. Nevertheless,
the parallel rule of two rules can be constructed from twoccorent rules of the rules, one for
each order.

Lemma 7 (Parallel & Concurent Rules) The parallel rulep1+p2 = (p1+p2,a0.,ad) and the
rule (p1+pz,aa,, Aag,,) obtained from the Rr-L,-concurrent rule(p;+p2,aq ,,) of p1 and
p2 and the R+L1-concurrent rule(p,+p1,aa.,,) of p2 and p; are equivalent.

|>L1<—)K1(—>R1 |>|—2 |>L2 7K2( |>L1
kl‘ ‘ \ k// ¢ \ P/
> Li+Ly < Ki+lo —— Ri+Lo > Lo+l — Ko+l — Ro+Ly

Proof. For plain rulesp; and py, the parallel rulep;+p, and the concurrent rulgs; *r, 1, P2
andpy #gr,+1, p1 are equivalentf EPTO§. By Lemmab5, Shift-Lemmas? and3, and Lemmat,

m* = Shift(kj, R(pj,aq,;)) & m" = R(p;, Shift(kj,aq ;) < mf= L(p],R(p;, Shift(kj,aq,)) <
m = Shift(k;,aq,)), i.e

m* = Shift(kj,R(pj,aq;)) < mE= Shift(kj,aq)). (2)

By Definition 8, StatementZ), and Definition9 we have
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m |[=aq andm' = aR
< m [ Shift(ky,aq,) A Shift(kz,aq.,) and
m" ): Shlﬁ:(kLR(pl»aq_l)) /\Shift(k§>R(p27aq_2))
< m = Shift(ky,aq,) AL(p7, Shift(ky,aq,)) and
m = Shift(ko,aq,) AL(p;, Shift(k,aq,))
< m ): aq,Naqg,,
i.e., the parallel rule and the rule constructed from thecaaent rules are equivalent. O

We considerE-concurrent derivations vi&-concurrent rules ané-related derivations via
pairs of rules.

Definition 10 (E-concurrent and-related Derivation) A direct derivation via &concurrent
rule is calledE-concurrentdirect derivation ofE-concurrent derivation, for short. A derivation
G =, H =, M is E-relatedif there are morphismg — H, D; — E;, andD, — E; as shown
below such that the trianglég EH, LoEH, K1D1E;, andKoD2E; in the figure below commute
and the diagrams (6) and (7) are pushouts.

Li——Ki——R; Ly——Ky— Ry
NN S S
=D E D2 -
e So

G > E1L( H )JEz c M

Now we present a Concurrency Theorem for rules with applinatonditions.

Theorem 3(Concurrency) Let E be a dependency relation for and p,. For every E-related
derivation G=p, m, H =p, m, M, there is an E-concurrent derivationS .. o, mM. Vice versa,
for every E-concurrent derivation & ,..p,m M, there is an E-related derivation & p, m,

H=p,m M.
H
N
G P1*E P2 M

Proof. By Definition 9 and Shift-Lemmag and3, we have
m =aq, andmp = aq, iff m=aq.. 3)
This may be seen as follows.

my =aq, andmp =aq,

m = Shift(ky,aq ,) andm’ = Shift(kz,aq.,)

m = Shift(ky,aq ,) andm = L(pj, Shift(k;, aq,))
m = Shift(k;,aq, ) A L(pj, Shift(kz,aq,)) = aq.

t o
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If G=p,m H="p,m, M is E-related, then the underlying derivation without AC<iselated
and, by the Concurrency Theorem without AGEPTO§, there is anE-concurrent derivation

G = pisp,,m M. By assumptionm, = aq, for i = 1,2 and, by Statemert, m|= aq,, i.e., E-
concurrent derivatiols =, m M satisfies ACs. I =, m M is anE-concurrent derivation, then
the underlying direct derivation without ACsksconcurrent, and, by the Concurrency Theorem
without ACs [EEPTO04, there is arE-related derivatiorG =p, m, H =, m, M. By assumption,
m|=aq, and by Statemen8), m |=aq, fori=1,2, i.e., theE-related derivation satisfies ACs.

>L—— K — R >L——K,— R

ki (3) (1) \\ /é / ) (4)
m| > L 5Dy © E My > Dy © R
m| (3) (1’)\1(] / 2) (4)

G )Elc H )Ez( M ]

5 Conclusion

In this paper we present the well-known Local Church-RosBarallelism, and Concurrency
Theorems, known already for rules with negative applicattonditions LEPOO08H, for rules
with nested application conditions. The proofs are basdti®@oorresponding theorems for rules
without application conditiondEEPT0§ and two Shift-LemmasHP09, saying that application
conditions can be shifted over morphisms and rules and asthat(¢’,.#) is a weak adhesive
HLR category with an§-.# -factorization and binary coproducts.

statement requirements

Local Church-Rosser| Shift2& 3

Parallelism Shift 2 & 3, binary coproducts
Concurrency Shift2& 3

Shift 2 epi- -factorization

Shift 3 -

Further topics might be the following:

e Amalgamation Theorem for rules with ACs. It would be impattep generalize the Amal-
gamation TheoremgFH87, CMR"97] to weak adhesive HLR systems and rules with
nested application conditions.

e Embedding and Local Confluence Theorems for rules with AGsould be important to
generalize the Embedding and Local Confluence Theor&ms’[, Ehr79 Plu93 Plu05
EEPTO6 LEPOO084to rules with nested application conditions.

e Theory to rules with merging. It would be important to gefieeathe theory to the case
of merging as indicated ir{MP01, EHP03.
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