Electronic Communications of the EASST
Volume 26 (2010)

Manipulation of Graphs, Algebras and Pictures

Essays Dedicated to Hangrd Kreowski
on the Occasion of His 60th Birthday

Conditional Adaptive Star Grammars
Berthold Hoffmann

19 pages

Guest Editors: Frank Drewes, Annegret Habel, Berthold Hoffmann, Detlef Plump

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Conditional Adaptive Star Grammars

Berthold Hoffmann

Fachbereich Mathematik und Informatik, Universitat Besm
and
Forschungsbereich Sichere Kognitive Systeme, DFKI Bremen
Enrigue-Schmidt-StralRe 5, 28359 Bremen, Germany
hof@informatik.uni-bremen.de

Abstract: The precise specification of software models is a major aonicethe
model-driven design of object-oriented software. Modets @mmonly given as
graph-like diagrams so that graph grammars are a naturdidage for specifying
them. However, context-free graph grammars are not poWweniough to specify
all static properties of a model. Even the recently propastaptive star grammars
cannot capture all properties of object-oriented modetsw8 extend adaptive star
rules by positive and negative application conditions teroeme these deficiencies
without sacrificing parsing algorithms. It turns out thandiional adaptive star
grammars are powerful enough to generate program grapb$inwaase model with
rather complicated contextual properties.

Keywords: graph grammars; model definition; adaptive star grammanticgtion
condition

1 Introduction

Model-driven design of object-oriented software aims atdbing static structure, dynamic be-
havior, and gradual evolution of systems in a comprehensase Typically, a software model

is a collection of graph-like diagrams, which is commonleafied by a meta-model. For in-
stance, the static structure of a system is often defineddss adiagrams of the ML. Since
graph grammars are another candidate for specifying diklstructures, we investigate how
they can be used to define software models. Several kindsaphggrammars have been pro-
posed in the literature. Here we need a formalism thpogerfulso that all properties of models
can be captured, argimplein order to be practically useful, in particular fparsingmodels in
order to check whether a model is valid, or not. However,heeistar grammars (equivalent
to the well-known hyperedge replacement grammaisbP2 DHK97]), nor node replacement
grammars ER97 are powerful enough for our purpose. Even the recently ggeg adaptive
star grammarsjHJ"06, DHIMOY fail for certain some properties of program graphs. So we
defineconditional adaptive star grammain this paper. In these grammars, adaptive star rules
are extended by positive and negative application comditifinformally, application conditions
for adaptive star rules have already been considereHeatD[;, DHMO08].) As a case study, we
consider a simple variant of program graphs, a languagepigident model of object-oriented
programs that has been devised for specifying refactorpegations on program$/[EDJOT.
Conditional adaptive star grammars capture all strucpn@perties of these graphs.

1/19 Volume 26 (2010)

mailto:hof@informatik.uni-bremen.de

Conditional Adaptive Star Grammars @

The paper is structured as follows. $ection 2 we show how object-oriented programs can
abstractly be represented m®gram graphs Then we recall star grammars $ection 3 show
how they defingorogram treesa sub-structure of program graphs, and discuss why theyotan
define program graphs themselves Skection 4 we therefore recall thadaptive star grammars
devised in PHJ"06, DHIM0Y. Close inspection reveals that even this formalism failsapture
some properties of program graphs. So we extend adaptiveyistenmars further, by rules
with positive and negative application conditions Saction 5 Theseconditional adaptive star
grammars finally, allow program graphs to be defined completely. Weobade with some
remarks on related and future work@®ction 6

2 Graphs Representing Object-Oriented Software

In model-driven software development, software is represkby diagrams, e.g., of theMd.
Formally, such diagrams can be defined as many-sorted graphs

Definition 1 (Graph) Letz = (i, f> be a pair of disjoint finite sets @rts

A many-sorted directed graph ov&r(graph for short) is a tuples = (G G,st,0) whereG
is a finite set ohodesG is a finite set obdgesthe functionss;t: G — G define thesourceand
targetnodes of edges, and the pair= (g, o) of functionsc : G—>ando: G— = labelnodes
and edges with sorts. _

Given graphss andH, a pairm= (r, m) of functionsm: G — H andm: G — H is amorphism
if it preserves sources, targets and sorts. A morphsisisurjectiveor injectiveif both mandm
have the respective property. If the morphismG — H is both injective and surjective, it is an
isomorphismandG andH are calledsomorphic written G = H.

In figures of graphs, different sorts of edges are repreddmfedrawing arrows in different
styles, whereas nodes are distinguished by their shapehwiy be a box or a circle, and by a
label inscribed to that shape.

Program graphs have been devised as a language-indepemgeesentation of object-
oriented code that can be used for studying refactoringadipeis MEDJOY. They capture
concepts that are common to many object-oriented langubkgesingle inheritance and method
overriding, whereas properties particular to a few langsaglike multiple inheritance—are left
out. Here we use a variant that is simplified wEe[07 in several ways:

1. In method bodies we just represent tleea flow use and update of variables, and method
calls. The structure of statements and expressions isaahitt

2. We simplify thevisibility rulesfor features: all methods are assumed to have global visi-
bility (publicin Java); variables are assumed to be visible in the deglatass and in its
subclassespfotectedin Java); parameters of a method are visible in its body.

3. We ignore theyping of variables, parameters and return values of methods.

Even in this simplified form, program graphs are a good exerfgsla software model. Their
admissible shape is given by precise syntactic and corgentiles of object-oriented program-

Festschrift H.-J. Kreowski 2/19

@ ECEASST

class Cell is
var cts: Any;

method get() Any is
return cts;

method set(var n: Any) is
cts:=n
subclass ReCell of Cell is
var backup: Any;

method restore() is
cts := backup;

override set(var n: Any) is
backup := cts;
super.set(n)

(a) A simple OO program (b) The graph representing the progranirigure 1a

Figure 1: A program graph

ming languages. This makes it easy to check whether a defirdfiprogram graphs captures all
properties of program graphs.

Examplel (A Program Graph) Figure 1ashows a simple object-oriented program frohCpg],
for which the program graph is depictedfigure 1b The nodes of a program graph, drawn as
circles, represent syntactic entities of a program: ckagsg variablesY), method signatures
(M), method bodiesR(), and expressionE]. Edges establish relations between entities: a solid
arrow ‘1" is pronounced tontains , and a dashed arrow ™is pronounced fefers td.

Nodes of sorC are called “class nodes” or just “classes”, and so for theragbrts of nodes.
The variables contained in a method signature are call@a@igmetersand we say that a clas's
is asuper-clas®f a clas< if either ¢ equalsc, of if some class contained @ is a super-class
of c. In a similar way, we define aub-expressiowf a body or expression. If a method bdoly
refers to a method signature, we say that l§ implementsm”. In expressions, only data flow
is represented: a reference to a method represetall; & reference to a variable represents an
accesghat eitherusesits value, orassignghe value of an expression to it.

Definition 2 (Program Graph) A grap@ is aprogram graphif it has the following properties:

P.. Its nodesG are labeled with the sortC,V,M,B,E}, and its edgeéare labeled with the
sorts{i,:}.

P,. There is a morphism that may to the incidence graph . shown inFigure 2 In
addition, the following conditions hold:

(&) A body contains at least one expression, and it implesnexactly one method sig-
nature.

(b) An expressiore refers to exactly one node, and that node is either a methad or

3/19 Volume 26 (2010)

Conditional Adaptive Star Grammars @

Figure 2: The incidence graph of program graphs

variable. Iferefers to a variable, it contains at most one expression (the value of
which shall be assigned t9.

P3. The subgraplﬁginduced byi-edges ofG is a spanning tree d&; the root ofG is a class.
P4. If an expression refers to a methogm must be contained in some class of the graph.

Ps. If an expressiore accesses a variablecontained in a class e must be a sub-expression
of a bodyb that is contained in a sub-class®f

Ps. If an expressiore accesses a paramefenof a methodm, e must be a sub-expression of a
body that implementm.

P;. If a method bodyb implements a method signatume b must be contained in a sub-class
of the classc containingm.

Ps. For every method signature, every class contains at most one body implementing

Py. If an expressior calls a methoan, the number ofn's parameters must match the number
of expressions contained @

The class of program graphs is denoted®By

The incidence graph iRigure 2plays the role that type graphs play in algebraic graph trans
formation EEPTO0§, and that graph schemata play iR®GRES[SWZ99. PropertyP, defines
the visibility of all methods apublic, and PropertyPs defines the visibility of all variables as
protected in the terminology of AvA .

The graph-theoretic structure of program graphs is asvisllo

Definition 3 A rooted, connected, acyclic graph is calledallapsed tree
Lemmal Program graphs are collapsed trees.

Proof Sketch.The only (minimal) cycles in the incidence graf in Figure 2are the two
loops on the nodes label€andE, respectively. As there is a morphism fr@hto that incidence
graph, this means that all cycles@consist of containment edges. Hence, by Propeéstyhere
cannot be any cycles, because these cycles would oc@irRmopertyP; implies connectedness;
The root class of the spanning tree is the root of the programigas well, because the incidence
graphGinc forbids references to classes. O

Festschrift H.-J. Kreowski 4/19

@ ECEASST

Program graphs can be specified by models, e.g., by UML clagsains with logical OCL
constraints. The incidence grapigure 2corresponds to a simple UML class diagram without
subtyping. Propertie®, (a) and (b) can be expressed as cardinality constrainth&rcdass
diagram. Property; can be specified by requiring that “contains”-arcs are caitipns, plus
an additional OCL constraint assuring that the class hibganas a unique root. PropertiesPg
can be specified by structural OCL constraints. For detsdls,HM10].

3 Star Grammars

Star grammars are a special case of double pushout (DPQ) yeagsformation EEPTO0§, and
equivalent to hyperedge replacement grammaliabp2 DHK97], a well-understood context-
free kind of graph grammars. They are recalled just as a basihe extensions defined in
Section 4andSection 5

Definition 4 (Star) From now on we assume that the node sorts com@merminal sorts
>, C = that define théerminal node sortas; = ¥\ 2.

Consider a star-like grapK, with one center nodeyx of sortx € ¥, and with some border
nodes (of terminal sorts fror;) so that every border node is adjacentcig and only tocy.
ThenX is called astar named x A star isstraightif every border node is incident with exactly
one edge.

A graph G is agraph with starsif no nodes named with nonterminals are adjacent to each
other! Let 2" denote the class atars ¢(.2") the class of graphs with stars, a#icbe the class

of graphs without stars (with node sorts framp).

Definition 5 (Star Replacement) Atar ruleis writtenL ::= R, where thdeft-hand side le 2~
is a straight star and threplacements a graphR € ¢4 (2") that contains the border nodeslof

A starY in a graphG is a matchfor a star ruleL ::= R if there is a surjective morphism
m: L — Y wheremis bijective. Then astar replacemenyields the graph denoted &Y /mR],
which is constructed by adding the nochsL and edgef disjointly to G, and by replacing, for
every edge irR, every source or target noge L by the nodem(v), and by removing the edges
Y and the center nods .

Let Z be a finite set of star rules. Then we write=4 H if H = G[Y /xR] for someL ::=
Re %, some stalf in G, and some match, and denote the reflexive-transitive closure of this
relation by=-7,.

Example2 (Star Replacement) Figure 3ashows a star rulke ::= R for an assignment expres-
sion. The center nodes of stars are drawn as boxes enclégimgname. We shall draw such
a star rule as irFigure 3b by “blowing up” the box of the center node on its left-handesi
and placing the new nodes and edges of the right-hand sitlte ittés box. A star rule can be
represented as it is drawn, as a singlee graphwherein one star is distinguished as the rule’s
left-hand side. This way, graph operations can be applietatorules as wellFigure 3cshows

a schematic star replacemésy = ,ss G1 using this rule.

1 Then all these nodes are centers of stars.

5/19 Volume 26 (2010)

Conditional Adaptive Star Grammars @

® b
“ass i ®
©
ass
(a) A star rule (b) Boxed form (c) A schematic star replacement

Figure 3: Star replacement

Definition 6 (Star Grammar) I =(¥(2"), 2", %, Z) is astar grammawith astart star Zc 2".
Thelanguageof I' is obtained by exhaustive star replacement with its rutestisg from the start
star:

2N ={Ge¥%|2=7,G}

Example3 (Star Grammar for Program Trees)-igure 4shows star rules that generate program
trees. The rules define a star grammaraccording to the following convention: The left-hand
side of the first rule indicates the start star, a star namgavith a class as a border node in this
case. The sorts used in the rules define the sorts of the gnamma

In the rules, we use abbreviations for certain common cocigtns. Boxes drawn with dashed
lines and/or a shade around a subgraph of the right-handrgid=te that a varying number of
these subgraphs can be generated: a solid box with a shadatésithat the subgraph may have
n > 1 instances, so ruledy may generate an arbitrary non-empty set of expressionssteda
box with a shade indicates that the subgraph may havé instances, so ruley may generate
an arbitrary, possibly empty, set of sub-classes (rsitesmpl, andcall show further examples);
finally, a dashed box without shade indicates an optionajrsyth that may haveor 0 instances,

PVQCCP Hy CCP C|S© FeaC? Fef Fea Ci
oE _FIEI:] O %‘I %i

121 1 0
start Y cls var sig imp;Iim

S S G ¢

Bdy Exp: Exp \ Exp .7
£ 0 - ©
v

®||®

bdy use ass Y

Figure 4: The rules of the star gramn®R¥F generating program trees

Festschrift H.-J. Kreowski 6/19

@ ECEASST

so rulemeth in Figure 6on pagel0 may derive a method body, or not.

Note that generic subgraphs could be implemented by usiriljaay nonterminals and star
rules. In our examples, we just assume that we mayrulgeinstances' of a ruler whereini
instances of the respective subgraph have been made.

Green nodes designate nodes in the program tree that haedderttified with nodes repre-
senting their declarations in order to get a program grapgbrding toDefinition 2 These are
the method signatures generatedhipl andcall, and the variables accessedige andass. (In
black-and-white printing, these nodes appear to be grey.)

Inspection of the rules iRT reveals the following.
Factl Z(PT)is alanguage of trees.
The language dfT is closely related to program graphs.

Definition 7 (Unraveling) Consider a program gra@e 2 and define, for every method node
me G (with oc(m) = M), its signature tree M(m) as the subgraph @ induced bym and all
variable nodes contained im B
TheunravelingG of G is then obtained by redirecting i@, for every reference edgec G
(with og(e) = ;), its target to a new variable nodedf;(tg(€)) =V, and to a fresh copy of the
signature tredg(tg(e)) if ag(tc(€)) = M, respectively.
Let & = {G| G e 2} denote the unravelings of program graphs.

Lemma2 £ C .Z(PT).

Proof Sketch.(& C Z(PT)). Consider some program graghe 2. Then its unravelings still
has PropertieB;—P; of program graphs: No new labels are added soGhestisfies Propert;;
the redirection of edges does not change incidences so topeiy P; is preserved, and the
underlying spanning tre@ is not changed ii5. Moreover,G is a tree since unraveling redirects
all reference edges to unique new variable nodes and signaees, respectively. Using these
properties, it can be shown by a straight-forward inductiwar derivations wittPT that G €
Z(PT).

(9’7 # Z(PT). Rulesimpl, use, ass, andcall allow to generate implementations and calls
of methods, or accesses to variables even if no declarafienvariable or method has been
generated in the tree by rulesr or sig) Such a tree cannot be the unraveling of a program graph,
which must satisfy Propertig®,—Pg. O

Star grammars are context-free in the sense of B. Courcetled?. This suggests that their
generative power is limited. Indeed, we have the following
Theorem 1 There is no star grammdr with £(I') = 2.

Proof Sketch.(By contradiction.) Consider program grapBg containing only one class, one
method signature, and one body. The method signature osmigiarameter nodepy, .. ., pn,
and the body containsexpression nodes, ..., e, with n— 1 sub-expressions,,...,E; , each.

7119 Volume 26 (2010)

Conditional Adaptive Star Grammars @

Now, consider the following additional requirements:

1. For everye, the sub-expressions,,...,€, , access pairwise distinct parameters in
{v1,...,Vn}, leaving out exactly one.

2. For everyy;, there is exactly one; such thaty; is not accessed by any of its sub-
expressions, and for distinef, &, these non-accessed parameters are distinct.

Let 22 = {G, | n < 0} be the class of such program graphs. Cleat#? C &2. A graphG,
hasn® 4+ n+ 3 nodes and’ 4+ n+ 2 edges. So the size of graphsdm® grows quadratically.

By [DHIM10, Theorem 2.8], star grammars are equivalent to hypereqdacement grammars
(HR grammars, for short). Thu# can also be generated by a HR grammar. Moreover, require-
ments () and @) are easily expressible in first-order logic, and thus alsndnadic second order
logic. Then, by Cou9Q Theorem 4.4(1)], a HR grammar generatitigcan be restricted to a HR
grammar generating??. This, however, contradicts the linear growth theorem 8.piab93
which says that the size of graphs in a HR language grows ondgly. O

4 Adaptive Star Grammars

We make the left-hand sides of star rudeaptivewrt. the numbers of border nodes, as proposed
in [DHJ"06]. It has been shown inQHJIMOY that this extends the generative power of star
grammars. Formally, adaptation is defined by cloning.

Definition 8 (Singular and Multiple Nodes) We assume that the sbrts (¥,) are given so
that the terminal node sorE contain a sek; of multiple sorts so that every remainirsingular
sort s€ 5 \ 2. has a unique multiple soste'%;, and vice versa.

From now on, 2", ¥ and¥(2") denote classes of graphs with singular sorts only, whereas

2,9 and¥(2") denote classes aidaptive graphshat may contain multiple sorts as well.
A star ruleL ::= Ris calledadaptiveif L € 2" andRe ¥ (Z").

Definition 9 (Cloning) LetG be a graph iﬁé(%). For a multiple node that is labeled with
¢ € 5, and incident with the edges, ..., e, (N> 0), Gy denotes the graph in whiahis replaced
by k > 0 singular nodess, ...,V that are labeled witld, and every edge is replaced by copies
&1,...,8kSothatsg (e,j) =ss(a), te(8,)) =ts(e), andog (6.,j) = og(e) for L<i<nand
1< j<k Anodeyis galled aclone of V_andG‘—,i is called annstanceof G.

For a graptG € ¥(.2"), a functionu : G — N is amultiplicity if it maps singular nodes to 1.
ThenGH is the instance o wherein every multiple nodehasp(v) clones.

Example4 (Adaptive Star Cloning, and Label SpecializationJhe star ruleass in Figure 5ais
adaptive: its node is multiple, and shall match a setwt: 0 singular nodes in the host graph
that are accessible in the expressionFigure 5b a schematic view of the rule instaneas?2 is
given, forn > 0.

The abstract sorfF of nodesa anda; is a placeholder for the concrete sub-sattandM. (F
stands forfeature) Before applying the rule instaneas2, each of the labels is specialized
either tov or M. As with generic subgraphs, a star rule with abstract seijtsst an abbreviation

Festschrift H.-J. Kreowski 8/19

@ ECEASST

_@

Exp Exp

m@gﬁ
x S
o e

ass
{\
X

(a) An adaptive star rule (b) The star rules obtained by cloning

Figure 5: Cloning of adaptive rules

for a set of star rules wherein these abstract sorts arecezplaith any combination of their
concrete sub-sorts.

Definition 10 (Adaptive Star Grammar) Lt = (4(2°), 2 ,%,Z) be a star grammar over
adaptive stars and graphs. THers calledadaptiveif Z € 2" (i.e., has no multiple nodes).

Let#Z denote the set of all possible instances of @ef adaptive star rules. Théhgenerates
the language

2 ={Ge¥|Z2=;G)

The set of star rules? generated from a set of adaptive star rules is infinite if asi®ne of
the adaptive star rules contains a multiple node. It has bbeewn in DHIMO09 that this gives
adaptive star grammars greater generative power than gaesrirased on hyperedgédhb97 or
node replacemen&]R97, but but they still admit a parsing algorithHJI" 06].

Example5 (Adaptive Star Grammar for Program Graphs)he adaptive star rules migure 6
define an adaptive star gramnias that systematically extends the program tree granamaof
Figure 4

As for star rules, we allow generic subgraphs in rules in otdebbreviate repetitions. The
adaptive star rulay has instancesy' with i instances of thely-star, and each of them is source
of an instance of a multip/®-node. The instandey' is then subject to cloning. Again, generic
subgraphs could be implemented by auxiliary nonterminatsaaixiliary adaptive star rules.

With two exceptions, the rules &G just extend those dfT. In PG, rule meth defines a
method declaration, which combines a signatsipewith an (optional) implementatioimpl,
whereasvrd defines the overriding of a method in the subclass of theraignethod definition.

In Figure 7we show the general form of stars WG and of the program subgraphs they
generate. (In derivations, the multiple nodtss, ando of X are cloned.) The sorts of edges
indicate the following roles of the border nodes. Node the root of the program subgraph
Gx derived fromX; it is labeled by theoot sortR, of X. (Rexp = E, Rsay = B, andRy = C for
x € {Prg,Hy,Cls,Fea}.) Clones ofl are the featuredeclaredn Gx. Clones of are the features
that arevisible in Gx. Clones ofo are the methods that aowerridablein Gx. Features may

9/19 Volume 26 (2010)

Conditional Adaptive Star Grammars @

Prg?g

start

Yo mend]
MF) ME M F)

SO RN SR

Bdy Exp Exp

cls

ovrd ; J bdy Usev: J‘ ass: % call: ——
(& @tD(F)) éif) (5) éﬂ))

Figure 6: Rules of the adaptive star gramrpardefining program graphs

have several roles 4 andGyx: every feature declared by is also visible inX, and overridable
methods are visible as well so that some clahesidv, and some clones ®fando in X may be
identified. On the left-hand side of rules, the clones,of ando in a starX have to be distinct
(asX is required to be straight) so that they must be identified byching. The grapksx is
directed and acyclic. Some of its visible border nodes maigdlated. The rest is a collapsed
tree with rootr.

The rules inFigure 6extend the rules dfigure 4by adding border nodes to stars according to
the roles explained above. The rules Fer declare a variable or a method (or just override an
existing method). The rulds declares its member variables and methods. A hierarchyaiec!
all methods of its top class and of its sub-hierarchies, ke variables of the top class visible
in the class itself and in the sub-hierarchies, and makes#tbods of the top class overridable
in the classes of its sub-hierarchies. The riéet makes all methods declared by the program
hierarchy visible in it. All rules pass visible features doww the leaves of the program graph.

Figure 7: Stars and derivations G

Festschrift H.-J. Kreowski 10/19

@ ECEASST

Fea||Fea||Fea

Figure 8: Deriving the program graph Bfgure 1bwith PG

The rules forExp then select visible variables for being used or assignedrid, methods for
being called; rulevrd selects an overridable method signature for overridingttt & new bodly.
Figure 8shows parts of a derivation of the program graph showRigure 1bwith PG. We
simplify the drawing of edges as follows: A pair of counterg@lel edges<<—" is drawn as
a single line =——", and a pair of parallel edges of the forr’s" is drawn as a single arrow

1 ”
—_—

The class hierarchy is derived in the first row. ClassgsandRecell will introduce three and
two features, resp.; the methods are visible in both clagsgshe variables introduced are only
visible in the defining class and in its subclasses so thatatiablebackup in ReCell will not be
visible inCell. The methods defined itell are overridable irReCell.

The featuregpet, backup, andrestore of the classCell are introduced in the second row, and
the features of the clageCell are derived in the third row: the variabidackup and the method

11/19 Volume 26 (2010)

Conditional Adaptive Star Grammars @

restore are introduced, and the methset of Cell is overridden. The last row shows a derivation
of the body overriding the metha@t of classCell in ReCell.

The derivations in rows one to three can be combined to oneldrigation by embedding.
However, the start graph of the last raannotbe embedded into the final graph of the derivation
in the third row. This is because the rwerd does not make the parametefdrawn in green,
or grey, resp.) of the signature sdt visible in the overriding body. The parameter is needed to
derive the body, and it should be visible in it. This reveaie of two problems in the grammatr,
which cannot be overcome with adaptive star grammars.

Theorem 2 Every graph G is inZ(PG) satisfies Propertie®1—Ps, andPy.

Proof Sketch.Inspection of the rules (as donelixample 5andFigure 7above) shows that the
border nodes of stars do indeed play the roles given to thesimglhese invariants, it can be
shown by induction over the structure of rules that evéry ¥ (PG) satisfies Propertie3;—Ps,
andP;. O

A graphG € .Z(PG) need not satisfy the remaining properties of program graglt$ass in
G may contain several bodies that override the same methothadicting Propertys, and a
method may be called with any number of actual parametergramticting PropertyPy. The
reverse of this theorem does not hold either. In particagsrogram graplG € 42 cannot be
derived byPG if it contains an overridden methadthat accesses its parametersGlrall bodies
of mmay access the parametersnofby PropertyPs), whereas in a grap@ € .Z(PG), this is
not true for an overridden body af. For this reason, the last sub-derivatiorFigure § which
overrides the methodet, cannot be embedded into a big derivation of the programhgiiap
Figure 1b

Why is it so difficult to specify Properfs with an adaptive star grammarth rule ovrd, the
parameters of the methadbeing overridden cannot be made visible in its body, as theynat
among the clones of the-node in the rule.

We could pass around all parameters of all methods (not imdlee"visible”, but in a new
role as “parameters”). Then, we had to select the parametersbecause only these should
be visible its body. We thus have to distinguish the pararaatem from those of other visible
methods. However, the number of visible methods is unbadjndbereas our supply of edge
sorts is finite. So this is not possible. Alternatively, wellcbgenerate copies of the parameters
for every overridden body. But then we must know how many patarsm has. Again, this
information cannot be made available.

These considerations lead to the following

Conjecture 1 There is no adaptive star grammaBrwith £(I') = 2.

5 Conditional Adaptive Star Grammars

To overcome the deficiencies of adaptive star grammars, vea@adaptive star rules appli-
cation conditions This has already been discussed informallyDii[M08].

Festschrift H.-J. Kreowski 12/19

@ ECEASST

Definition 11 (Conditional Adaptive Star Replacement) Llret L ::= R be an adaptive star
rule.

A simple application condition Aor L can be constructed over a graphe ?(5&7) if Cis
disjoint toL up to some border nodes bf and if all multiple nodes o€ appear irL, with the
same sort. TheA may take one of the following forms: (i) & = C, it is apositive condition
(i) if A=-C, itis anegative conditionor, (iii) if A=Vy, x,—C (n> 0)wherexy,...,X, are
multiple nodes irC, it is anegative instance condition

If A1,...,A,are simple application conditions farc=A; A--- AA, | L ::= Ris aconditional
adaptive star rule (Forn = 0, the ruler is written without the symbol[}”, like an unconditional
rule.)

Let L* be an instance of the sthran adaptive star rule= L ::= R (for some multiplicity
). A matchm: L¥ — G satisfiesan application conditiom\, written m &= A, under one of the
conditions below:

e mk Cif mcan be extended to a morphidrth UCH — G;2
e mE —C if mcannot be extended td' UCH — G;2

e MEVYy, x,—Cif, for every tuple(ys,...,yn) of instances of the multiple nodes, . .. , Xm,
m cannot be extended to* UC[x1/y1]...[Xn/Yn] — G, whereC|x/y] is the copy ofC
wherein the node (of sortd, say) is replaced by a singular nogléof sorto).

If mE A for 1 <i < n, the star replacemeht = G[m(L*) /,R!] is aconditional star replacement
and we writeG ==¢ H.

Application conditions for general graph transformatioites have been devised iBH35.
Our application conditions are not nested as those corsldefHP09. Furthermore they are in
conjunctive normal form, and just allow to require the extigte or non-existence of subgraphs.
This is sufficient for our purpose.

When drawing conditional rules, as ligure 9 we indicate shared nodes of application con-
ditions and left-hand sides of conditional rules by attaghthe same letters to them.

Definition 12 (Conditional Adaptive Star Grammar) L&t be a finite set of conditional adap-
tive star rules. Thef = (4(2"), 2°,¢,Z) is aconditional adaptive star grammaver adaptive
stars and graphs) ¥ € 2".

Let ¢ denote the set of all possible instances of a%&aif conditional adaptive star rules.

Thenl generates the language

PN ={Ge¥|2=2,G)

Examples (Conditional Adaptive Star Grammar for Program GraphBjgure 9shows the rules
of the conditional adaptive star gramnts., which refines the adaptive star gramm& of

2 \We assume that the instances of multiple noddsandC are the same.
3 The reader may wonder why we consider only negative, alhtified instance conditions. It is easy to see that

AAAAAAAAAA

clones for the multiple nodes, ..., x, to L, and requiring—]C just on these clones.

13/19 Volume 26 (2010)

Conditional Adaptive Star Grammars ﬁ

e

start

¢
Fea _f | [Bdy STRE ST
AIERIE
DOD DD é DD DD OOD m&%é@ 5o
@) |
i : @D
N Vor = L AV @{@ C?
A = [-
h @ ovrd 0 //: : % caII; t ¥
h o é DODOD . E-w| DD

Figure 9: Rules of the conditional adaptive star gramRG¢ defining program graphs

Example 5as follows. All stars irPG. are attached to the border nodes useeiGin and may be
attached to two additional sets of nodes, Begire 10 Outgoing dashed edges~ represent the
parametergontainedin stars namedfly, Cls, andrFea, and ingoing dashed edges represent the
parameter&nown in a star. The rules make that all parameters contained ifetiares, classes
and hierarchies of the program are known to every star.

In rulecall, the positive condition on nodesandp requires that the clones pfare parameters
of m, and the negative instance condition on noderbids every other parameter known in the

Figure 10: Stars and derivationsPG.

Festschrift H.-J. Kreowski 14 /19

@ ECEASST

program to be a parameter wf Thus the clones ap are all parameters oh. The remaining
three conditions forbiah to be a declared node of any star narrigdCls, or Fea. This makes
sure that all parameters of have already been generated (in the rules-éa) before rulecall

can be applied. Ruleall generates a new nontermirfatt to which the parameters of are
connected by an edge—. In the rules forAct, these edges are used to “count” the number of
parameters while generating the corresponding actuahagts (byExp). Thus PropertyPy is
respected.

In rule ovrd, the first five application conditions (which equal thatalf) make sure that the
clones ofp are all parameters of. These parameters are not only become known (as parameters)
to the overriding body o, but also made visible to it so that they may be accessed ables
in use andass. Thus PropertyP; is respected. The sixth application condition makes siat th
no other method body contained in the current clags®es override the same methul this
guarantees Properf.

In Figure 11 we show some steps of a derivation Witd; that could eventually derive the
program graph irigure 1b The grey region contains nodes representing the dedasatifyet,

n, backup, andrestore. A pair of counter-parallel edges=“>" is drawn as a single line-“--".

Note that ruleneth, which generates the definition sdt in classCell makes the parameter
visible, as a parameter, to the entire program.

When the rulevrd is applied to the methogkt, n is made visible as a variable inside its body.
The other part of the applicability condition holds as wéllassReCell does not contain another
body overridingset, and no star has as a declared border node (but just as a visible border node
of Bdy and an overridable border noderafa). Note that in clasReCell, the methodet cannot

i *
f— f—
start
0000

get set N restore

cts N backup restore cts N backup restore

Figure 11: Deriving the program graph Bigure 1bwith PG,

15/19 Volume 26 (2010)

Conditional Adaptive Star Grammars @

be overridden by another body since this would violate th@iegtion condition obvrd. Now
the derivation in the last row dfigure 8can be inserted for the body st in ReCell becausea is
present. In that derivation, in the step using rka, the application condition t#G. guarantees
that exactly one expression will be generated as an actuaingder (by the rules @ct) since
methodset has one parameter.

Definition 13 (Complete Node) Consider a graghe ¥(.2°) and a conditional adaptive star
gramman . An edge igerminal in Gif it is not part of a star.

A nodev € G is calledcomplete wrt. terminal edgé&for every derivationG :C>*g H, vis
incident to the same terminal edges (up to isomorphisri) as it was inG.

Lemma 3 In graphs derived witlPG¢, M-nodes are complete wrt. terminal edges if they are
not declared border nodes of any stars nanigdCls, or Fea.

Proof Sketch.By inspection of the right-hand sides of the rules for theaessnPGe, it is clear
that structural edges are added only to declared nodess# thkes’ left-hand sides. O

According to this fact, application conditions over sturel edges can safely be checked as
soon as the relevant nodes are only visible or overridabiddomodes of stars. This is the case
for the conditions concerning the parameters of methods.

Thus PG generates the program graphhigure 1 and will not generate calls with mis-
matching parameters, nor with methods that are overridd@e tin a class.

Theorem 3 Z(PG¢) = Z.

Proof Sketch.The idea is similar to that dfFheorem 2

“C": Inspection of the rules (as doneliixample GandFigure 10above) shows that the border
nodes of stars do indeed play the roles given to them. Usiggtmvariants, it can be shown by
induction over the structure of rules that ev&y £ (PG) satisfies all Propertied?(—Py) of a
program graph.

“D" Given a program grapls € &2, we can construct a derivation according to the underlying
structure (with edges of typig first, before we determine the clones for border nodes daougpr
to the equations on the multiplicity variables. At last,andbe verified that the conditional rules
ovrd andcall satisfy their application conditions. O

Given a matching of a rule, its application condition is detile so that there is a chance
to combine application conditions with the existing pagsaigorithm for adaptive star gram-
mars PHJM10, Section 6]. In contrast to simple adaptive star rules, theches of conditional
adaptive star rules in a graph may have critical overlap® dpplication condition of one rule
may contradict the application condition of another rulen€ider, e.g., the nodeeCell in the
rightmost graph in the top row dfigure 11 The ruleovrd matches everfea node inRecCell.
However, if the match includes the same methget 6r set), then the application of the rule to
one feature would disable the other application, due toiktle application condition concerning
unique implementation. The critical pair analysis for dragansformation rules applies to con-
ditional graph transformation rules; it might be used tolyr®conflicts in conditional adaptive

Festschrift H.-J. Kreowski 16/19

@ ECEASST

star rules if we can extend the analysis procedure to meltipbes.

6 Conclusions

With this paper, we continue our search for a powerful, gk and readable kind of graph
grammars for object-oriented software models. We succkgdéefining the well-known class
of program graphsMIEDJOJ by conditional adaptive star grammars. This cannot be done
with star grammars (byrheorem }, and seems to be impossible with adaptive star gram-
mars PHJ"06, DHIMOY.

A richer class of program graphs, featuring more generability rules, contextual rules
for abstract methods and classes, control flow in methodelspdind static typing of variables
and methods has earlier been specifiedBrtp7. Most of these properties can be specified
easily with conditional adaptive star grammars. The typihdeatures, represented by edges
from variables and methods to the class defining their typsy be more difficult. For, type
compatibility of method calls, for instance, requires teck whether the type of the actual
parameter is a subtype of the type of the actual parametés.ré@tuires to check whether there
is a path of arbitrary length betwen these types. It is narolehether this can be specified by
application conditions as they are.

Readers may ask themselves: Are there other represestatiabject-oriented programs as
graphs that would be easier to generate, by simpler kindsavhignars? Now, program graphs
are a rather straight-forward representation of progratms:hierarchical structure of the pro-
gram is represented by a spanning tree; different occussententities like methods and vari-
ables are identified so that they are represented once. d$esnbles standard representations
of programs as abstract syntax trees and attributed traear known from compiler construc-
tion [ALSUOQ7], and make it easy to access and modify all information aatext with an entity.

There are too many kinds of graph grammars to relate conditedaptive star grammars to all
of them. So we restrict our discussion to approaches thaagersimilar application. Context-
embedding rulesNJin02] extend hyperedge-replacement grammars by rules that aittyke
edge to an arbitrary graph pattern. They are used to definpamsd diagram languages and are
not powerful enough to define models like program graphspferaduction grammar8PR09
have been proposed to define and check the shape of dataistsuatith pointers. The form of
their rules is not restricted, but reductions with the iseerules are required to be terminating
and confluent, providing a backtracking-free parsing aflgor. It is an open guestion whether
graph reduction grammars suffice to define program graphs.

A lot of work has to be done until we get a graph grammar mesharthat is useful for
defining software models. Yet another problem is to convisafware engineers that it is a
practical benefit for their daily work! This will only be pdbte if graph grammars have practical
advantages wrt. the conventional software models, like \diagrams. For instance, can such a
model be derived from a grammar? Can at least parts of a medatbtained “automatically”?
There is some indication that a class diagram specifyingpéti@sP;—P3; of program graphs
can be inferred from the rules of a (conditional) adaptivar grammar. A real advantage of
grammars, which are a constructive mechanism, is that tegod only allow to check the
validity of a model (by parsing), but also allow to generample instances of a model, e.g., for

17/19 Volume 26 (2010)

Conditional Adaptive Star Grammars @

testing EKTO9].

Even if conditional adaptive star grammars are powerfulighotheir rules tend to be rather
complicated, both to write and to read. So a more generdlerigd would be to come up with yet
another graph grammar formalism that is easier to use, foyemany of the formal properties
of (adaptive) star rules. It may turn out that contextual gt@mmars HM10] are easier to
understand.

The proof of Conjecturd. poses the theoretical challenge to disprove membershigiasa
of graph languages. Whereas some results for star langfages the pumping lemma for
the equivalent hyperedge replacement languages92 DHK97]) helped to provelheorem 1
nothing is known for (conditional) adaptive star languages

Acknowledgments. | thank my favorite co-authors for their constructive revseof this paper.

Special Thanks. Danke, Hans-JorgMWithout Your long-lasting support in form of scientific
(and other) discussions, opportunities to visit confeesn@nd rich supply of co-authors from
Your group, much of my reasearch had never happened!

Bibliography

[AC96] M. Abadi, L. Cardelli. A Theory of ObjectsMonographs in Computer Science.
Springer, New York, 1996.

[ALSUQ7] A. V. Aho, M. S. Lam, R. Sethi, J. D. UllmarCompilers: Principles, Techniques
and Tools Pearson/Addison-Wesley, Boston, Massachusetts, 2tidred2007.

[BPR0O9] A. Bakewell, D. Plump, C. Runciman. Specifying ReinStructures by Graph Re-
duction.Mathematical Structures in Computer Scien2@09. Accepted for publica-
tion.

[Cou87] B. Courcelle. An Axiomatic Definition of Contextefe Rewriting and its Application
to NLC rewriting. Theoretical Computer Scien&5:141-181, 1987.

[Cou90] B. Courcelle. Graph Rewriting: An Algebraic and lica] Approach. In Leeuwen
(ed.),Handbook of Theoretical Computer Sciendelume B, pp. 193—-242. Elsevier,
Amsterdam, 1990.

[DHJT06] F. Drewes, B. Hoffmann, D. Janssens, M. Minas, N. V. HdeeAdaptive Star
Grammars. In Corradini et al. (eds3yd Int'l Conference on Graph Transformation
(ICGT’06). Lecture Notes in Computer Science 4178, pp. 77-91. Spriages.

[DHIMO09] F. Drewes, B. Hoffmann, D. Janssens, M. Minas. AdeiStar Grammars and Their
LanguagesTheoretical Computer Scienge. 41, 2009. Accepted for publication.

[DHIM10] F. Drewes, B. Hoffmann, D. Janssens, M. Minas. AdeStar Grammars and Their
LanguagesTheoretical Computer Scienc2010. Accepted for publication.

Festschrift H.-J. Kreowski 18/19

E

ECEASST

[DHK97]

[DHMO8]

[EEPTO6]

[Eet07]

[EH85]

[EKTO9]

[ER97]

[Hab92]

[HM10]

[HPOY]

[MEDJO5]

[Min02]

[R0z97]

[SWZ99]

F. Drewes, A. Habel, H.-J. Kreowski. Hyperedge Rmgiment Graph Grammars.
Chapter 2, pp. 95-162 ifiRjpz97.

F. Drewes, B. Hoffmann, M. Minas. Adaptive Star Gnawars for Graph Mod-
els. In Ehrig et al. (eds.}$th International Conference on Graph Transformation
(ICGT'08). Lecture Notes in Computer Science 5214, pp. 201-216. §mik008.

H. Ehrig, K. Ehrig, U. Prange, G. TaentZaundamentals of Algebraic Graph Trans-
formation EATCS Monographs on Theoretical Computer Science. SerirZ06.

N. V. EetveldeA Graph Transformation Approach to Refactoririgoctoral thesis,
Universiteit Antwerpen, May 2007.

H. Ehrig, A. Habel. Graph Grammars with Applicatiomi@litions. In Rozenberg
and Salomaa (eds.Jhe Book of LPp. 87—100. Springer, Berlin, 1985.

K. Ehrig, J. M. Kuster, G. Taentzer. Generatingtémce Models from Meta Models.
Software and System ModeliB{1):479-500, 2009.

J. Engelfriet, G. Rozenberg. Node Replacement G&aimmars. Chapter 1, pp. 1—
94 in [R0z97.

A. Habel.Hyperedge Replacement: Grammars and Languabesture Notes in
Computer Science 643. Springer, 1992.

B. Hoffmann, M. Minas. Defining Models — Meta Modelsrges Graph Grammars.
In Proc. 6th Workshop on Graph Transformation and Visual MimdeTechniques
(GT-VMT’10), Paphos, Cyprug010. To appear in Electr. Comm. of the EASST.

A. Habel, K.-H. Pennemann. Correctness of highlsamsformation systems rela-
tive to nested conditiondathematical Structures in Computer Scied&£2):245—
296, 2009.

T. Mens, N. V. Eetvelde, S. Demeyer, D. Janssenanglizing refactorings with
graph transformationslournal on Software Maintenance and Evolution: Research
and Practicel7(4):247-276, 2005.

M. Minas. Concepts and Realization of a Diagram BdiEenerator Based on Hy-
pergraph Transformatioiscience of Computer Programmidg(2):157-180, 2002.

G. Rozenberg (edhlandbook of Graph Grammars and Computing by Graph Trans-
formation, Vol. I: FoundationsWorld Scientific, Singapore, 1997.

A. Schurr, A. Winter, A. Zundorf. TheROGRESApproach: Language and Envi-
ronment. In Engels et al. (edshlandbook of Graph Grammars and Computing
by Graph Transformation. Vol. 1I: Applications, Languagesd Tools Chapter 13,
pp. 487-550. World Scientific, Singapore, 1999.

19/19

Volume 26 (2010)

	Introduction
	Graphs Representing Object-Oriented Software
	Star Grammars
	Adaptive Star Grammars
	Conditional Adaptive Star Grammars
	Conclusions

