
Electronic Communications of the EASST
Volume 26 (2010)

Manipulation of Graphs, Algebras and Pictures

Essays Dedicated to Hans-Jörg Kreowski
on the Occasion of His 60th Birthday

Assemblies as Graph Processes

Dirk Janssens

18 pages

Guest Editors: Frank Drewes, Annegret Habel, Berthold Hoffmann, Detlef Plump
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Assemblies as Graph Processes

Dirk Janssens

Department of Mathematics and Computer Science
University of Antwerp, Belgium

Abstract: This paper explores the potential of graph rewriting and graph processes
as a tool for understanding natural computing, and in particular self-assembly. The
basic point of view is that aggregation steps in self-assembly can be adequately
described by graph rewriting steps in a graph transformation system: the building
blocks of an assembly correspond to occurrences of rewriting rules, and hence as-
semblies correspond to graph processes. However, meaningful algorithms do not
consist only of aggregation steps, but also of global steps in which assemblies are
modified or partially destroyed. Thus a number of further operations acting on pro-
cesses are proposed and it is shown that both kinds of operations (assembly and
partial destruction) can be combined to yield meaningful algorithms.

Keywords: natural computing, self-assembly, processes, graph rewriting

1 Introduction

The study of self-assembly has been an interesting and promising part of the fascinating area of
natural computing for several years [WLWS98, KR08, Cas06]. The phenomenon is an important
aspect of biological systems [ETP+04] and has potential applications in nanotechnology, chem-
istry and material sciences [WMS91]. The basic idea is that components such as molecules or
proteins aggregate to form assemblies that have interesting emerging properties which are not
present in the original components. It is obviously important to control this aggregation pro-
cess, i.e. we want to be able to design the building blocks in such a way that certain a priori
known structures emerge as a result of spontaneous aggregation. These structures may in their
turn interact in a meaningful way with other components. Components will be called assemblies
whenever we want to stress that they are built by self-assembly.

The basic step in an assembly process is sketched in Figure 1: two components (left) aggregate
to form an assembly (right). It is assumed that this happens because there is a particular rela-
tionship between their surface structures: these contain active parts (bold segments) that sponta-
neously stick together; one may think of atoms or molecules that form bonds between them, like
in the case of Watson-Crick complementarity. However it is worth noting that “sticking together”
is only a metaphor: often the components are subject to both attracting and repulsive forces, and
only if certain complementary structures are present on their surfaces the attracting forces are
sufficiently strong to overcome the repulsive ones. Thus if only a part of the active structures is
present, then there may be no sticking at all, not even over that part.

The use of graph rewriting [EKMR97, EEPT97] as a tool for studying natural computing and
self-assembly has been explored before [HLP08, KGL04]. However there are a lot of possible
directions to follow because of the variety of processes that need to be described as well as the

1 / 18 Volume 26 (2010)



Assemblies as Graph Processes

Figure 1: Aggregation

variety of graph rewriting mechanisms. The aim of this paper is to explore, in a preliminary
and perhaps somewhat naive way, how the work on graph rewriting with embedding and the
corresponding theory of graph processes from, e.g., [VJ02] can be used in this context. It turns
out that components, surface structure and assemblies correspond to rules, graphs and graph
processes, respectively.

The fact that both the surface structure and the assemblies are described within the same formal
framework enables one to switch between the graph/surface structure and the process/assembly
view: the former allows one to describe the aggregation steps (combination of various assemblies
based on their surface structure) whereas the latter allows one to describe operations that act in
a uniform way on the assemblies as a whole (e.g. with the purpose of removing certain parts of
them). The first kind of step occurs when a large amount of simple building blocks (molecules) is
put into a solution and allowed to form assemblies; the latter kind happens in response to external
manipulations such as heating a solution, or selectively extracting assemblies that have a certain
property. It is to be expected that the implementation of meaningful algorithms will often require
a combination of both kinds of steps: although the self-assembly of cleverly designed building
blocks is a powerful tool, its use leads inevitably to ever larger assemblies, and one may expect
that at some point a model based on self-assembly alone becomes unrealistic.

Thus in addition to self-assembly we propose three operations acting directly on processes;
two of these are very simple (combine and extract) but the third one (retain) allows one to
partially destroy assemblies, keeping only a part of each of them. We present two language
recognition algorithms in which the various kinds of steps are combined: the first one marks
components that encode a certain language, the second one marks those components in a solution
X that also occur in another solution Y . Here the “marking” of components consists in attaching
a special element to them, making it possible to extract them. In the case of the second algorithm,
one may think of Y as a contamination that has to be removed from X ; the contamination is not
given by specifying its structure explicitly, but by presenting a sample solution.

In Section 2 the basic assumptions underlying this work are given, and the relationship is
discussed between components, surface structure and assemblies on the one hand and rules,
graphs and graph processes on the other hand. Section 3 provides the basic definitions concerning
graph rewriting and processes. In Section 4 the operations dealing with partial destruction and
removal of assemblies are defined and illustrated by examples, and the paper ends by a brief
discussion section.

Festschrift H.-J. Kreowski 2 / 18



ECEASST

2 Graph rewriting and self-assembly

2.1 Basic assumptions

A graph transformation system consists essentially of a set of rules that describe local changes
applied to graphs. Traditionally, a rule has a left-hand side and a right-hand side, which are both
graphs. A rule is applied to a graph g by matching its left-hand side with a subgraph of g. That
subgraph is then removed and replaced by the right-hand side. In the approach used in this paper
the rules are equipped with additional information, called “embedding mechanism”, which is
used to determine the edges of the resulting graph. More details can be found in Subsections 2.2
and 3.1.

The way graph rewriting is related to aggregation is the following. Consider an assembly step,
like the one depicted in the upper part of Figure 2: an existing assembly (top) gets larger by
aggregating with a building block (bottom). The surface structure of the former is represented
by a graph g1 with nodes a,b,c,d,e. The aggregation leads to a larger assembly with a modified
surface structure, represented by a graph g2 with nodes c,d,e, f ,g,h. Thus the effect of adding
the new building block on the surface structures is that g1 is changed into g2, in a way that can
be captured by graph rewriting: the building block is viewed as a graph rewriting rule and the
aggregation step corresponds to its application, removing the nodes a,b and replacing them by
f ,g,h. Evidently one also has to deal with the edges, which represent relationships between
surface elements, we come back to this in Subsection 2.2. The approach entails the following
three assumptions concerning aggregation.

a b
c

d

e

a b̄

f
h

g

c
d

e

f hg

a b
c d

e c
d e

f hg

ˉ

g
2g

1

Figure 2: Aggregation and graph transformation

The first working hypothesis is that the surface structure of components, which governs the
way in which they aggregate, can be adequately described by a labeled graph. The nodes rep-
resent atoms, molecules, ... that are present at specific locations on the surface, the node labels
distinguish between various kinds of such surface elements, and the edges describe relationships
between these elements that are important for determining whether a group of nodes is active in
the sense that it causes aggregation. One may think of spatial relationships or vicinity, but there

3 / 18 Volume 26 (2010)



Assemblies as Graph Processes

may be others. In general, both nodes and edges may be abstractions of physical entities. In this
paper we consider graphs that have labels on their nodes but not on their edges. However the
approach can be generalized to edge-labeled graphs or even hypergraphs if desired. In Figure 2
the symbols a and b are used to indicate the fact that binding or aggregation between physical
components is caused by elements that are “complementary” in some sense (e.g. having oppo-
site polarities, Watson-Crick complements, ...). In our approach this information is implicitly
represented by the fact that building blocks are described by graph rewriting rules which have a
designated left-hand side. This is why we will not explicitly need complementary labels such as
a and a in the next section: it is simply assumed that the label a stands for a if it occurs in the
left-hand side of a rule.

The second hypothesis is that the relevant relationships between the elements of the new sur-
face (i.e., the new edges) can be determined from (1) the surface of the existing component and
(2) the new component. Thus the components, such as the ones depicted in the left part of Fig-
ure 1 will not be treated equally: one of them (the upper one in the figures) may be thought of
as a large assembly that grows by aggregating with the other one, which is small and simple.
The more symmetric case where two arbitrarily large components aggregate is not considered in
this paper: there is a “large” assembly that “grows” by adding a new building block. As a result
of this, the building blocks of an assembly are partially ordered, making them similar to graph
processes. The surface of the assembly after the aggregation step consists of most of the “old”
surface combined with a small, new part that belongs to the building block. It is assumed that
in determining the new surface structure, one does not need the internal structure of the large
assembly. The upper half of Figure 2 depicts an aggregation step where the surface structures are
graphs. Technically the letters a,b, . . . are node labels, but throughout this section we need not to
distinguish between nodes and their label. The lower half of Figure 2 depicts the transformation
of the surface structure, which is now a graph transformation.

A last assumption is that the effect of an aggregation step is local: a surface element that
is irrelevant for a location does not suddenly become relevant when an aggregation takes place
involving that location: e.g. in Figure 2, e is not relevant to the locations a and b involved in
the aggregation – and thus e is not connected to either of them. In terms of graph rewriting, the
assumption means that the newly introduced nodes can only be connected to those nodes that
were neighbors of the nodes removed by the rewriting. Thus the neighbors of the new nodes
f ,g,h are either also new or chosen among the “old” neighbors c,d of a and b.

2.2 The embedding mechanism

The lower half of Figure 2 depicts the change in surface structure that corresponds to the aggre-
gation step in the upper half of the figure. This change will be described by the application of a
graph rewriting rule to the graph g1 on the left: the rule removes nodes a,b and creates f ,g,h.
The edges of the new surface are either edges of the old surface, such as (d,e), or edges of the
surface of the newly added building block, such as ( f ,g), or edges that connect the new nodes
with the old ones, such as (c, f ) or (h,d). The mechanism for establishing the latter kind of
edges is known as an embedding mechanism. The embedding mechanism used in this paper is
very simple: each of the new nodes may take over the incoming and/or outgoing edges of one or

Festschrift H.-J. Kreowski 4 / 18



ECEASST

more of the nodes that have been removed. In Figure 2, f takes over the incoming edges from
a and h takes over the outgoing edges of b. The rule applied is depicted in Figure 3: it consists
of two graphs (the left-hand side and the right-hand side) and two binary relations in and out
that express the way edges are established. In Figure 3 both relations contain only one pair; in
general in,out ⊆ Lnd×Rnd where Lnd and Rnd are the sets of nodes of the left-hand side and
the right-hand side, respectively.

b

f hg

in out

a
left-hand side

right-hand side

Figure 3: A rule

3 Graph rewriting and processes

The purpose of this section is to provide the basic notions and notation concerning graph rewrit-
ing and graph processes. In the first subsection we consider graphs, rules and the way they are
applied to rewrite graphs. The graphs are finite, directed, simple, node labeled graphs; the in-
troduction of edge labels should not lead to major difficulties and is left out for simplicity. As
pointed out before, the graph rewriting considered uses a very simple embedding mechanism,
needed to specify the edges of the graph that results from a rewriting step. In the second subsec-
tion graph processes are defined and it is briefly discussed how the process approach is related
to the more traditional view of graph rewriting where the emphasis is on sequences of derivation
steps.

3.1 Graphs, rules and rewriting

For the remainder of the paper, let Lab be a finite set; its elements are called node labels.

Definition 1 (graph) A graph is a 3-tuple g = (Nd,Ed, lab) where Nd is a finite set, E ⊆
Nd×Nd and lab : Nd→ Lab is a function. Nd is the set of nodes of g, Ed is the set of edges of
g and lab is the node labeling function of g.

For a graph g, its components are denoted by Nd(g), Ed(g) and labg. A graph g is a subgraph
of a graph g′ if Nd(g) ⊆ Nd(g′), Ed(g) ⊆ Ed(g′) and labg is the restriction of labg′ to Nd(g),
hence the notion of subgraph coincides with pointwise inclusion. For a graph g and a subset X
of Nd(g), the induced subgraph of g on X is the graph (X ,Ed(g)∩ (X×X), labX) where labX is
the restriction of labg to X .

Definition 2 (rule) A rule is a 4-tuple r = (lhs,rhs, in,out) where lhs and rhs are graphs such
that Nd(lhs)∩Nd(rhs) = /0 and in,out ⊆ Nd(lhs)×Nd(rhs). The graphs lhs and rhs are called

5 / 18 Volume 26 (2010)



Assemblies as Graph Processes

the left-hand side and the right-hand side of r.

For a rule r, its components are denoted by lhs(r), rhs(r), in(r) and out(r). The notion of a
rule will be extended in Subsection 3.2 to allow edges connecting the left-hand side to the right-
hand side. Obviously, rules can be used to rewrite graphs: in order to apply a rule r to a graph g,
one carries out the following steps.

1. Match the left-hand side of r with a subgraph lhs′ of g. This means that one chooses
an occurrence (an isomorphic copy) lhs′ of lhs(r) that is a subgraph of g. If no such
occurrence can be found, then the rule r cannot be applied to g.

2. Remove lhs′ from g. This includes the removal of edges between nodes of lhs′ and the
remaining part of g.

3. Replace lhs′ by an isomorphic copy rhs′ of rhs(r). The set of nodes of rhs′ should be
disjoint from the set of nodes of g.

4. Establish edges between nodes of rhs′ and the remaining part of g according to the embed-
ding mechanism: for each (x,y) ∈ Ed(g) and each x′,y′ ∈ (Nd(g)\Nd(lhs′))∪Nd(rhs′),
add the edge (x′,y′) to the set of edges of the result graph if both of the following condi-
tions hold: (1) either x = x′ or (x,x′) corresponds to an element of out(r), and (2) either
y = y′ or (y,y′) corresponds to an element of in(r).

in out

r g

x'

lhs'

rhs'

y

y'

x

isomorphism

Figure 4: Application of a rule

The situation is illustrated in Figure 4, and it is clear that the graph on the right lower corner
of Figure 2 is obtained in this way from the graph in the left lower corner, applying the rule of
Figure 3. The embedding mechanism transforms the dashed edges in Figure 2 into the dotted
ones. Note also that an edge (x,y) of lhs′ such that (x,x′) corresponds to an element of out(r) and
(y,y′) corresponds to an element of in(r) gives rise to an edge (x′,y′). In the example algorithms
of Section 4, however, this situation does not occur.

In the rather informal description of a rewriting step given above, matching the left-hand side
of the rule r with a subgraph lhs′ of the graph g amounts to choosing an isomorphism from
lhs(r) to lhs′. Such isomorphism is often called matching morphism; in many approaches to
graph rewriting one allows more general matching morphisms than is the case in this paper. In
the formal definition of a derivation step however, matching will be handled in a slightly different

Festschrift H.-J. Kreowski 6 / 18



ECEASST

way: it is assumed that an isomorphic copy of the rule r is available such that its left-hand side
is equal, and not just isomorphic, to lhs′. Whenever a system is specified by a set of rules P, we
assume that all isomorphic copies of the rules of P are available for the construction of derivation
steps. In this way the only matching morphisms needed are identical mappings, and they can be
left implicit. Throughout the paper the term rule occurrence is used to emphasize the fact that
a certain rule is an isomorphic copy of a rule in a system P. The notion of a derivation step is
defined as follows. For a set X , let IdX denote the identity relation on X .

Definition 3 (derivation step) A derivation step is a 3-tuple (g,r,g′) where g,g′ are graphs, r is
a rule and the following holds.

1. lhs(r) is a subgraph of g and Nd(rhs(r))∩Nd(g) = /0.

2. Nd(g′) = (Nd(g)\Nd(lhs(r)))∪Nd(rhs(r)).

3. Let in = in(r)∪ IdNd(g′) and out = out(r)∪ IdNd(g′). Then

Ed(g′) = {(x′,y′) ∈ Nd(g′)×Nd(g′) | there exists (x,y) ∈ Ed(g)∪Ed(rhs(r))
such that (x,x′) ∈ out and (y,y′) ∈ in}.

4. For each x ∈ Nd(g′),

labg′(x) =
{

labg(x) if x ∈ Nd(g)
labrhs(r)(x) if x ∈ Nd(rhs(r)).

3.2 Processes

In [CMR96, VJ02] graph processes are proposed as a way to describe “runs” of a graph rewriting
system. Informally, a graph process is a structure obtained by gluing together the rule occur-
rences of a run, where the gluing is consistent with the way the rules are applied. For each rule
occurrence, its left-hand side is glued over the set of nodes that is removed by that occurrence.
Thus a graph process is essentially a directed acyclic graph where the nodes are those that occur
in the run and where the edges represent the direct causal dependency relation: whenever a rule
occurrence removes a node a and introduces a new node b, then b is directly causally dependent
on a. This DAG is further decorated with extra information: the initial graph of the run is given
as well as the rule occurrences. However there is no information on the order in which the rules
are applied other than the causality relation. Figure 5 depicts a process: the initial graph is the
linear structure at the top and there are three occurrences of the rule depicted at the left. There is
no information about the relative order of rule occurrences 1 and 2, and so the process describes
in fact three possible runs: the three rule occurrences may happen either in the order 1,2,3, or
2,1,3, or 1 and 2 may happen simultaneously, followed by 3. The dotted edges are established
according to the embedding mechanism.

When reasoning about processes it is often useful to consider a rule as a graph, rather than
a pair of graphs equipped with embedding information. In this way a rule can be viewed as a
very simple process, describing a run consisting of just one rule application. However this also
enables one to extend the notion of a rule by allowing edges connecting its left-hand side and its

7 / 18 Volume 26 (2010)



Assemblies as Graph Processes

1 2

3

in out

Figure 5: A process

right-hand side. While such edges have no obvious interpretation in the traditional view of graph
rewriting, they fit well into the process view developed here and, more importantly, they turn out
to be quite useful in the operations and algorithms of Section 4.

Definition 4 (rule,extended) A rule is a 5-tuple r = (gr,Lnd,Rnd, in,out) where gr is a graph,
(Lnd,Rnd) is a partition of Nd(gr) and in,out⊆ Lnd×Rnd. The induced subgraphs of gr on Lnd
and Rnd are called the left-hand side an the right-hand side of r, respectively. The set Nd(gr) is
the set of nodes of r. The set of edges created by r is the set Ed(gr)\ (Lnd(r)×Lnd(r)).

For a rule r, its components are denoted by gr(r), Lnd(r), Rnd(r), in(r) and out(r) respec-
tively. Its set of nodes, its set of edges created, its left-hand side and its right-hand side are
denoted by Nd(r), Ed(r), lhs(r) and rhs(r). Slightly abusing notation, labr denotes labgr(r).
Note that an extended rule r such that Ed(gr(r)) ⊆ (Lnd(r)×Lnd(r))∪ (Rnd(r)×Rnd(r)) can
be described as a rule according to Definition 2, replacing it by (lhs(r),rhs(r), in(r),out(r)).

Formally, the notion of a process is defined as follows.

Definition 5 (process) A process is a pair p = (Init,Occ) where Init is a graph and Occ is a set
of rule occurrences such that the following holds.

1. Let <1=
⋃

oc∈Occ(Lnd(oc)× Rnd(oc)) and let Nd = Nd(Init)∪
⋃

oc∈Occ Nd(oc). Then
(Nd,<1) is a directed acyclic graph. The relation <1 is called the direct causality relation
of p. Its transitive and reflexive closure is called the causality relation of p.

2. Nd(Init) is the set of minimal nodes of (Nd,<1).

3. There exists a function lab : Nd → Lab such that, for each g ∈ {Init} ∪Occ, labg is a
restriction of lab. The function lab is called the labeling function of p.

4. For each oc,oc′ ∈ Occ such that oc 6= oc′, the sets Lnd(oc) and Lnd(oc′) are disjoint, and
the sets Rnd(oc) and Rnd(oc′) are disjoint.

For a process p, its components are denoted by Init(p) and Occ(p), respectively. Its set of
nodes, direct causality relation, causality relation and labeling function are denoted by Nd(p),

Festschrift H.-J. Kreowski 8 / 18



ECEASST

<1
p , ≤p and labp. The relations in(p) and out(p) are defined by

in(p) = IdNd(p)∪
⋃

oc∈Occ

in(oc) and out(p) = IdNd(p)∪
⋃

oc∈Occ

out(oc).

The set of edges created in p, denoted by Ed(p) is defined by

Ed(Init(p))∪
⋃

oc∈Occ

Ed(oc).

Note that a graph g can be identified with a process(g, /0), and that a process imposes a partial
order on its rule occurrences: oc directly precedes oc′ if Rnd(oc)∩Lnd(oc′) 6= /0.

Given a set of rules P, one has to associate with P a set of processes that is “valid” in the sense
that they describe a possible run or rewriting process of P. Informally, there are two obvious
conditions to be satisfied by such a process:

1. the process should be built from an initial graph and occurrences of rules from P, and

2. for each rule occurrence oc of the process, its left-hand side should be a subgraph of the
graph obtained by applying the occurrences that precede oc, starting from the initial graph.

In order to formalize the second condition one needs to associate a set of graphs with a process:
the graphs that occur as intermediate configurations in the course of the rewriting process. it is
well known in the theory of processes that these configurations correspond to slices, i.e. maximal
sets of causally unrelated nodes. Thus what remains to be done is to equip each slice with a
suitable set of edges (the node labels are determined by the node labeling functions of the initial
graph and the rule occurrences). This leads to the following definitions.

Definition 6 (slice) Let p be a process. A slice of p is a maximal subset S of Nd(p) such that,
for each x,y ∈ S, x≤p y implies that x = y.

Definition 7 (configuration) Let p be a process and let S be a subset of Nd(p). The configura-
tion of p on S, denoted Conf (p,S), is the graph (S,E, labS) where

E = {(x′,y′)∈ S×S | there exists (x,y)∈ Ed(p) such that (x,x′)∈ out(p) and (y,y′)∈ in(p)}

and labS is the restriction of lab(p) to S.

Intuitively, this means that the graph Conf (p,S) contains all the edges that can be derived
by the embedding mechanism from the edges of the initial graph and the edges created in the
rule occurrences. The graph Conf (p,S) is defined for arbitrary subsets S of Nd(g), not only for
slices. Since the nodes of Init(p) are minimal w.r.t. the causality relation, one easily verifies
that Conf (Nd(Init(p)), p) = Init(p). The second condition mentioned above (a rule can only be
applied if there is a match for its left-hand side) is captured by the notion of validity, defined as
follows.

Definition 8 (validity) Let p be a process.

9 / 18 Volume 26 (2010)



Assemblies as Graph Processes

1. p is valid if, for each oc ∈ Occ(p) and each slice S of p such that Lnd(oc)⊆ S, the graph
lhs(oc) is a subgraph of Conf (p,S).

2. Let P be a set of rules. Then p is valid for P if p is valid and each oc ∈ Occ(p) is a rule
occurrence of P.

If p is a valid process and S is a slice, then Conf (p,S) is an intermediate configuration of
the rewriting process represented by p; i.e. it is the graph obtained by applying the rule oc-
currences that precede S, in the way specified by p, to the graph Init(p). In the case where
one uses only restricted rules, i.e. rules according to Definition 2, then this view is consis-
tent with the way derivation steps are defined in Definition 3. This follows from the fact that
Conf (Nd(Init(p)), p) = Init(p) and the following lemma.

Lemma 1 Let p be a valid process, let S,S′ be slices of p, let oc ∈ Occ(p) be such that
Ed(gr(oc))⊆ (Lnd(oc)×Lnd(oc))∪(Rnd(oc)×Rnd(oc)), Lnd(oc)⊆ S and S′=(S\Lnd(oc))∪
Rnd(oc). Let roc be the rule (according to Definition 2) (lhs(oc),rhs(oc), in(oc),out(oc)). Then
(Conf (p,S),roc,Conf (p,S′)) is a derivation step.

Thus the process view extends the traditional way of looking at graph rewriting: if p is a valid
process such that all rule occurrences can be viewed as rules according to Definition 2, S is a slice
of p and oc is a rule occurrence such that the nodes of lhs(oc) belong to S, then oc transforms the
graph Conf (p,S) in the way described by Definition 3. It is also worth noting that this implies
that the graph rewriting considered in this paper is confluent: in general the causality relation
does not impose a total order on the rule occurrences of a process, and applying them in any
order consistent with the causality leads to the same result Conf (p,Max), where Max is the set
of maximal nodes of the causality relation.

Using the notions introduced above one has three ways to view the components that act as
building blocks in aggregation steps such as the one considered in Figure 2: a component with a
surface structure, a graph rewriting rule, and a process. Since such components are not composed
of smaller ones they are called “atomic”. Similarly, the processes that represent a single rule are
called atomic processes. Figure 6 depicts the three views; the arrows/lines labeled in and out
represent the embedding mechanism.

b̄

f
h

g

b

f hg

b

f hg

in out outin

ā a a

Figure 6: Atomic component, rule and atomic process

The relationship between processes and assemblies is illustrated in Figure 7 (in the process, on
the right, only the direct causality relation is represented). The confluency property is illustrated
by Figure 7: one may e.g. consider the situation of the assembly after building blocks 1 and 2

Festschrift H.-J. Kreowski 10 / 18



ECEASST

are added. The corresponding slice consists of the square nodes. The confluency property then
implies that the surface structure at this point of the aggregation process does not depend on the
order in which blocks 1 and 2 were added; a posteriori inspection of an assembly (which blocks
are present and how are they glued together) suffices to determine its surface structure. Since the
order in which the aggregation takes place would probably be very hard to control, this property
is of crucial importance.

ProcessAssembly

1 2

3

4

Figure 7: Assembly and process

4 Operations on assemblies

We wish to study algorithms that manipulate solutions containing potentially large amounts of
assemblies: the input is a set of solutions (test tubes) and the output is another set of solutions,
one or more of which should have a certain, desired property. In order to realize this we need a set
of operations to be used as instructions or steps in the algorithms. Self-assembly provides a first
powerful operation of this kind: one may add a number of cleverly designed atomic components
to the solution, let them aggregate, and obtain in this way a modified solution. The design of
aggregation steps is thus viewed as the design of a suitable set of graph transformation rules.
It is implicitly assumed that for each of those rules a component can be constructed which has
the right surface structure, and that this component interacts in the right way with the other
components. It has to be noted that the latter assumption is not obvious, but there is evidence
that unintended interactions can be made improbable by a clever design of the components; the
problem is somewhat similar to the DNA code word problem, which is an interesting research
topic on its own.

It is to be expected that self-assembly alone is insufficient to describe most meaningful algo-
rithms or processes taking place in living organisms, because its repeated use leads to ever larger
assemblies. In many forms of natural computing operations occur that partially break down or
disassemble larger components, e.g. cutting strands of DNA in a controlled way. Thus there is
a need for modeling operations that have a similar effect on assemblies. In this way one also
introduces the possibility to reactivate elements that have become inactive: in the building of

11 / 18 Volume 26 (2010)



Assemblies as Graph Processes

assemblies, we assumed so far that a surface element that is glued to a new building block ceases
to be on the surface of the resulting assembly and therefore becomes unavailable for further in-
teractions. However, partially breaking down an assembly may bring such elements back to the
surface and hence reactivate them. Since we describe assemblies by (valid) processes, we need
one or more operations that acts on processes. These have to be implemented by manipulations
such as heating, applying an electromagnetic field, irradiation, etc., where all components in a
solution are modified in a uniform way. Such “global steps” are not necessarily local changes
based on the surface structure of components, and thus the rewriting of graphs describing their
surface structure is not a natural way to formalize them. However the more complete description
of an assembly by a graph process provides information that is sufficient to express the global
steps: the atomic components it is built from and their surface elements.

4.1 Operations on processes

Apart from self-assembly, we propose three operations. Two of them, combine and extract, are
very simple, but the third one, retain, requires some more explanation. It enables one to partially
break down assemblies.

1. combine. This operation allows to combine a number of graphs as one: the resulting graph
simply consists of disjoint copies of the original graph. The combined graph can then
serve as the initial graph of a self-assembly process. Thus combine does not correspond to
a physical manipulation of test tubes, it is merely a technical convenience.

2. extract(m), where m is a node label. The symbol m represents a marker, i.e. a part of a
component that can easily be detected by its physical properties. The operation removes
all components in which the marker occurs from a test tube.

3. retain(R), where R is a subset of the set of node labels. The operation removes, from each
component in a test tube, the part that does not correspond to R. The remaining part is again
considered as a component; its surface structure is derived from the internal structure of
the original component. Such effect can be achieved by designing these components in
such a way that the elements in R are they are more stable or more resistant to heat or
radiation than the other elements. Since the surface of the remaining part of an assembly
may contain elements that have been added at various stages of the assembly process, it
may contain elements that are causally related in the process description of the assembly.
In this first approach it is therefore assumed that the causality relation of the resulting
assembly is trivial: thus all its elements are maximal, and belong to the surface. Formally,
the effect of retain(R) on a set of processes is that each process p is replaced by the graph
Conf (p,Ret) where Ret is the set {x ∈ Nd(p) | labp(x) ∈ R} .

Evidently, the operation retain(R) is rather limited in that it completely destroys the internal
structure of an assembly. It is easy to conceive more sophisticated variants of the operation,
e.g. a version where the substructure of the process p induced by the nodes with labels in R
is preserved. The structures obtained in that way would not be valid according to Definition 8,
since they are not obtained by composing elements of a designated set of basic components, but
nevertheless one may decide to introduce them if desired.

Festschrift H.-J. Kreowski 12 / 18



ECEASST

Example 1 As a first example of the use of retain, consider the situation of Figure 8. One wishes
to let the string-like component grow by adding a building block. The assembly step would lead
to a disconnected graph, but the desired result (bottom) appears if that step is followed by the
operation retain({a,b,c}). Note that the rule corresponding to the building block contains an
edge connecting its left-hand side to its right-hand side.

baa c a

baa c a

baa c

c a

assembly

retain{a,b,c}

baa a

baa c a

baa c

graph rewriting

c a

(lhs) (rhs)
rule

building block

surface structure

surface structure

surface structure

Figure 8: Growing a string

4.2 Example algorithms

The aim of this section is to sketch how aggregation steps (building assemblies) and global steps
(acting in a uniform way on all components) may be combined into a meaningful algorithm. An
algorithm describes a sequence of steps in which test tubes containing a solution are manipulated
in order to obtain a solution with certain desired properties.

We present two language recognition algorithms: in both cases the input is a test tube contain-
ing string-like components such as the one depicted in Figure 9, which is used as the encoding of
the word x1x2 . . .xn. In both cases the output is a test tube from which the components encoding
words of a certain language L are removed. This is achieved by using self-assembly to attach a
“marker” to them, which allows their extraction. In both cases the retain operation can be used
to return to a situation where the process of self-assembly and extraction can be iterated. In the
first algorithm the language L is given by a context-free grammar, and the assembly process es-
sentially builds a parse tree. In the second algorithm the language L is given in the form of a test
tube that contains its encoding by components, so the structure of the words in L is not known
explicitly. In this case one may think of L as a contamination that is to be removed from the input
solution.

13 / 18 Volume 26 (2010)



Assemblies as Graph Processes

x1 x2 xnl r
...

Figure 9: Component encoding a string

4.2.1 Recognizing the language of a context-free grammar

The method demonstrated works for any context-free grammar, but for the example consider the
following one.

S→ AB A→ aab B→ ab

The set of node labels is {l,r,a,b,S,A,B,m}. The algorithm consists of repeating the following
steps for as long as step 3 yields a significant amount of extracted components:

1. Mark the components encoding words in L, by adding the encodings of the rules of Fig-
ure 10 to the test tube and letting them aggregate. Note that the rightmost rule contains an
edge from the only node of its right-hand side to a node of its left-hand side.

2. Execute retain({l,r,a,b,m}) to partially destroy the assemblies formed, so that compo-
nents which have not been correctly parsed return to their original form.

3. Execute extract(m) to remove the correctly parsed components from the test tube.

in out

ba

A

in out

BA

S

in out

ba

B

l rS

m

a

Figure 10: Rules for first algorithm

Figure 11 depicts a process that represents the correct parsing of a component encoding a
word from L. The dotted edges are the edges added by the embedding mechanism, these are the
edges of the graphs Conf (p,S). An application of the rightmost rule of Figure 10 leads to the
process sketched in Figure 12, where the shaded triangle represents the parse tree. A subsequent
execution of retain({l,r,a,b,m}) leads to the graph of Figure 13. The edge from m to l in the
rightmost rule of Figure 10 is not really necessary; it was only added to avoid an isolated node
in Figure 13. In general Step 1 yields also processes corresponding to failed attempts at parsing,
e.g. reducing ab in the word aab to B. One can only expect to remove all components encoding
a word of L if the procedure can be iterated, and thus one needs to break down the unmarked
assemblies so that step 1 can be repeated; this happens in step 2.

Festschrift H.-J. Kreowski 14 / 18



ECEASST

l

ab

r

a ba

B

S

A

Figure 11: Parsing

l r

m

S

Figure 12: Attaching the marker

4.2.2 Recognizing the components of a test tube

In the second algorithm we start from two test tubes T and TL: the first one contains a solution
that has to be modified, whereas the second one only serves as an additional input: it contains
the encodings of the language L. The aim is to remove from the first test tube the components
that encode words of L.

m rl a b a ba

Figure 13: Marked component

15 / 18 Volume 26 (2010)



Assemblies as Graph Processes

Let the set of node labels be {l,r,a,b,q,c,m}. The algorithm consists of the following steps:

1. Mark the components encoding words in L, by first adding the rule depicted at the left of
Figure 14 to test tube TL and letting it aggregate, and then executing retain({l,r,a,b,c}) to
obtain components such as the one on the right of Figure 14: hence a node with label c is
attached.

c rl a b aa
l

c

Figure 14: Step 1

2. Repeat the following steps for as long as step (c) effectively yields a significant change:

(a) Add part of the contents of TL to T , and allow pairs of components to be considered
as one; formally, apply a combine operation.

(b) Add the rules depicted in Figure 15 and let them assemble. The aggregation process
traverses both words from left to right, as illustrated in Figure 16. The rightmost rule,
which attaches the marker m, can be applied only to an assembly that has been built
on a pair of components that both encode the same word.

 x ∈ {a,b}

out out

x xq

q

out out

l l

q

r rq

m

c

Figure 15: Step 1

l

l
q q ...qc

Figure 16: Step 1

Festschrift H.-J. Kreowski 16 / 18



ECEASST

(c) Execute extract(m) to remove the marked components from the test tube.

(d) Execute retain({l,r,a,b,c,m}). This has the effect of partially destroying the assem-
blies formed, so that components representing unsuccessful comparisons (starting
from pairs of components that encode different words) return to their original form:
a string starting with c ad a string starting with l. As a result, step 2 can be repeated.

5 Discussion

The aim of the paper is to explore the use of graph rewriting based on embedding for the un-
derstanding of self-assembly and natural computing. The basic idea is that graphs capture the
active surface structure that controls the way components in a solution aggregate, and that the
way in which such aggregation changes the surface structure can be captured by graph rewriting.
However one may expect that most meaningful algorithms in this context do not only require
the building of ever larger assemblies, but also operations that break down or modify such as-
semblies. Thus what seems to be needed is an interplay between aggregation operations, which
are described by graph transformation rules, and which act on the graphs that describe the active
surface of components, and global operations in which all assemblies of a given kind in a solu-
tion are modified. Since assemblies correspond to processes of the graph rewriting systems that
describe their formation, the theory of graph rewriting and graph processes may provide a way
to obtain a formal framework in which both kinds of operations can be combined in an elegant
way.

Obviously, the material presented here is of a very speculative nature, since the implicit as-
sumptions concerning the possible realization of the approach in the physical world may turn
out to be naive or unrealistic. To mention just a few: when reducing the problem of controlling
self-assemby to the problem of writing a suitable graph transformation system, it is assumed that
each rule written down can be realized by a component that behaves exactly in the right way:
not only does it aggregate with another component when the structure corresponding to its left-
hand side matches part of the structure of the other component, but this is also the only way it
interacts with other components. Another thorny issue is the assumption about the information
to be encoded into the edges, information that is handled by the embedding mechanism: what
are exactly the relationships between locations on a component that are relevant? How to encode
spatial information into those edges? Also for the the global operations many questions remain:
on the one hand they may seem rather ad-hoc, but on the other hand they are quite simple and one
can easily define more sophisticated variants. It seems also rather straightforward to generalize
the approach to edge labeled graphs or hypergraphs, providing a more expressive language to
describe the surface structures. Finally, in this paper only assembly steps are considered where
a component combines with a basic component. However it may be more realistic to also in-
clude the possibility that large assemblies, perhaps each already composed of a number of basic
components, combine. It is probably not too hard to adapt the approach to this: on the one hand,
one may introduce operations that enable one to treat an assembly as a rule; hiding or encapsu-
lating part of its internal structure, and on the other hand one may define suitable composition
operations on processes, gluing them together over parts representing the surface of the compo-
nents they represent. Similar operations have been investigated for processes in the context of

17 / 18 Volume 26 (2010)



Assemblies as Graph Processes

concurrency theory, and it seems likely that a number of ideas studied there can be useful.
It seems fair to conclude that, in spite of a number of reservations, the correspondence between

graph rewriting and graph processes on the one hand and aggregation and assemblies on the other
hand is simple and natural enough to deserve further attention.

Bibliography

[Cas06] L. D. Castro. Fundamentals of natural computing: basic concepts, algorithms, and
applications. Chapman and Hall/CRC Press, 2006.

[CMR96] A. Corradini, U. Montanari, F. Rossi. Graph processes. Fundam. Inf. 26(3-4):241–
265, 1996.

[EEPT97] H. Ehrig, K. Ehrig, U. Prange, G. Taenzer. Fundamentals of Algebraic Graph Trans-
formation. EATCS Monographs in Theoretical Computer Science. Springer Verlag,
1997.

[EKMR97] H. Ehrig, H.-J. Kreowski, U. Montanari, G. Rozenberg. Handbook of Graph gram-
mars and Computing by Graph Transformation. World Scientific, 1997.

[ETP+04] A. Ehrenfeucht, T.Harju, I. Petre, D. Prescott, G. Rozenberg. Computation in Liv-
ing Cells - Gene Assembly in Ciliates. Natural Computing Series. Springer Verlag,
2004.

[HLP08] T. Harju, C. Li, I. Petre. Graph theoretic approach to parallel gene assembly. Dis-
crete Applied Mathematics 156(18):3416–3429, 2008.

[KGL04] E. Klavins, R. Ghrist, D. Lipsky. Graph Grammars for Self Assembling Robotic
Systems. In Proceedings of the 2004 IEEE International Conference on Robotics
and Automation. Pp. 5293–5300. 2004.

[KR08] L. Kari, G. Rozenberg. The many facets of natural computing. Commun. ACM
51(10):72–83, 2008.

[VJ02] N. Verlinden, D. Janssens. Algebraic properties of processes for Local Action Sys-
tems. Mathematical. Structures in Comp. Sci. 12(4):423–448, 2002.

[WLWS98] E. Winfree, F. Liu, L. Wenzler, N. Seeman. Design and self-assembly of two-
dimensional dna crystals. Nature 394:539–544, 1998.

[WMS91] G. Whitesides, J. Mathias, C. Seto. Molecular self-assembly and nanochemistry -
a chemical strategy for the synthesis of nanostructures. Science 254:1312–1319,
1991.

Festschrift H.-J. Kreowski 18 / 18


	Introduction
	Graph rewriting and self-assembly
	Basic assumptions
	The embedding mechanism

	Graph rewriting and processes
	Graphs, rules and rewriting
	Processes

	Operations on assemblies
	Operations on processes
	Example algorithms
	Recognizing the language of a context-free grammar
	Recognizing the components of a test tube


	Discussion

