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Checking Graph-Transformation Systems for Confluence

Detlef Plump

The University of York, UK

Abstract: In general, it is undecidable whether a terminating graph-transformation
system is confluent or not. We introduce the class ofcoverablehypergraph-transfor-
mation systems and show that confluence is decidable for coverable systems that are
terminating. Intuitively, a system is coverable if its typing allows to extend each crit-
ical pair with a non-deletable context that uniquely identifies the persistent nodes of
the pair. The class of coverable systems includes all hypergraph-transformation sys-
tems in which hyperedges can connect arbitrary sequences ofnodes, and all graph-
transformation systems with a sufficient number of unused edge labels.

Keywords: Confluence, graph transformation, coverable systems

1 Introduction

Confluent sets of graph-transformation rules can be executed without backtracking since all ter-
minating derivations produce the same result for a given input graph. Applications of confluence
include the efficient recognition of graph classes by graph reduction [ACPS93, BF01, BPR04],
the parsing of languages defined by graph grammars [FKZ76, RS97], and the deterministic in-
put/output behaviour of programs in graph-transformationlanguages such as AGG [Tae04], FU-
JABA [NNZ00], GrGen [GBG+06] or GP [Plu09].

In the settings of string and term rewriting, confluence is decidable for terminating systems
[BO93, BN98, BKV03]: one computes allcritical pairs t← s→ u of rewrite steps and checks
whethert and u are joinable in that they reduce to a common string resp. term. In contrast,
confluence is undecidable in general for terminating graph-transformation systems [Plu05]. The
problem is, in brief, that the joinability of all critical pairs need not imply confluence of a system.
To guarantee confluence, one has to impose extra conditions on the joining derivations, leading to
the notion of a strongly joinable critical pair. However, strong joinability of all critical pairs is not
a necessary condition for confluence and hence, in general, cannot be used to decide confluence.

In this paper, we introducecoverablehypergraph-transformation systems and show that con-
fluence is decidable for coverable systems that are terminating. Intuitively, a system is cover-
able if its typing allows to extend each critical pair with a non-deletable context—a cover—that
uniquely identifies the persistent nodes of the pair. We givea decision procedure for confluence
that processes each extended critical pairΓ̂ : Û1⇐ Ŝ⇒ Û2 by reducingÛ1 andÛ2 to normal
forms X1 andX2, and checking whetherX1 andX2 are isomorphic. If this is the case, then the
critical pair underlyingΓ̂ is strongly joinable; otherwise, a counterexample to confluence has
been found.

Roughly speaking, a cover for a critical pair can be constructed if the signature of the hyper-
graph-transformation system under consideration contains (hyper-)edge labels that do not occur
in rules and that can be used to connect the persistent nodes of the critical pair by edges. Such a
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cover cannot be deleted by rules. Moreover, there must be a unique surjective morphism from the
cover to each of its images under a graph morphism. We give different conditions under which
covers can be constructed and show, in particular, that the class of coverable systems includes
all hypergraph-transformation systems in which hyperedges can connect arbitrary sequences of
nodes.

The rest of this paper is organised as follows. The next section recalls some terminology for
binary relations and defines hypergraphs and their morphisms. Section3 reviews the double-
pushout approach to (hyper-)graph transformation in a setting where rules are matched injec-
tively and can have non-injective right-hand morphisms. Wedefine confluence of hypergraph-
transformation systems and recall the fact that confluence is undecidable for terminating systems.
In Section4 we review the role of critical pairs in establishing confluence. Section5 introduces
covers for critical pairs and coverable systems, discussesour main result and the associated de-
cision procedure for confluence, and presents special caseswhere confluence is decidable. In
Section6, we conclude and discuss a topic for future work.

2 Preliminaries

We recall some terminology for binary relations (consistent with [BN98, BKV03]) and define
hypergraphs and their morphisms.

2.1 Relations

Let→ be a binary relation on a setA. The inverse relation of→ is denoted by←. We write→+

for the transitive closure of→ and→∗ for the transitive-reflexive closure of→. Two elements
a,b∈ A have acommon reductif a→∗ c←∗ b for somec. If a→∗ c and there is nod such that
c→ d, thend is anormal formof a.

The relation→ is (1) terminating if there is no infinite sequencea1→ a2→ a3→ . . . , (2)
confluentif for all a, b andc with b←∗ a→∗ c, elementsb andc have a common reduct (see
Figure1(a)), (3) locally confluentif for all a, b andc with b← a→ c, elementsb andc have a
common reduct (see Figure1(b)).

•

• •

∗ ∗

•

∗ ∗

•

• •

•

∗ ∗

(a) confluence (b) local confluence

Figure 1: Confluence properties
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By the following well-known result, local confluence and confluence are equivalent in the
presence of termination.

Lemma 1 (Newman’s Lemma [New42]) A terminating relation is confluent if and only if it is
locally confluent.

2.2 Hypergraphs

We deal with directed, labelled hypergraphs and use a simpletype system where the label of a
hyperedge restricts the number of incident nodes and their labels. AsignatureΣ = 〈ΣV ,ΣE,Type〉
consists of a setΣV of node labels, a setΣE of hyperedge labelsand a mapping Type assigning
to eachl ∈ ΣE a set Type(l)⊆ Σ∗V . Unless stated otherwise, we denote byΣ an arbitrary but fixed
signature over which all hypergraphs are labelled.

A hypergraphoverΣ is a systemG = 〈VG,EG,markG, labG,attG〉 consisting of two finite sets
VG and EG of nodes(or vertices) and hyperedges, two labelling functions markG : VG→ ΣV

and labG : EG→ ΣE, and an attachment function attG : EG→ V∗G such that mark∗G(attG(e)) ∈
Type(labG(e)) for each hyperedgee. (The extensionf ∗ : A∗→ B∗ of a function f : A→ B maps
the empty string to itself anda1 . . .an to f (a1) . . . f (an).) We write H (Σ) for the set of all
hypergraphs overΣ.

In pictures, nodes and hyperedges are drawn as circles and boxes, respectively, with labels
inside. Lines represent the attachment of hyperedges to nodes, where numbers specify the left-
to-right order in the attachment string. For example, Figure 2 shows a hypergraph with four
nodes (all labelled with•) and three hyperedges (labelled with B and S).

S
1

2

1

B
2 3

S
1

2

Figure 2: A hypergraph

A hypergraphG is agraphif each hyperedgee is an ordinary edge, that is, if attG(e) has length
two. Ordinary edges may be drawn as arrows with labels written next to them.

Given hypergraphsG and H, a hypergraph morphism(or morphismfor short) f : G→ H
consists of two functionsfV : VG→ VH and fE : EG→ EH that preserve labels and attachment
to nodes, that is, markH ◦ fV = markG, labH ◦ fE = labG and attH ◦ fE = f ∗V ◦attG. A morphism
incl : G→H is aninclusionif inclV(v) = vandinclE(e) = efor all v∈VG ande∈EG. In this case
G is a subhypergraphof H which is denoted byG⊆ H. Every morphismf : G→ H induces
a subhypergraph ofH, denoted byf (G), which has nodesfV(VG) and hyperedgesfE(EG).
Morphism f is injective(surjective) if fV and fE are injective (surjective). Iff is surjective, then
H is animageof G. If f is both injective and surjective, then it is anisomorphism. In this case
G andH areisomorphic, which is denoted byG∼= H.
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Thecompositionof two morphismsf : G→ H andg: H→M is the morphismg◦ f : G→M
consisting of the composed functionsgV ◦ fV andgE ◦ fE. The composition is also written as
G→ H→M if f andg are clear from the context.

A partial hypergraph morphism f: G→H is a hypergraph morphismS→H such thatS⊆G.
HereS is thedomain of definitionof f , denoted by Dom( f ).

3 Graph Transformation

We briefly review thedouble-pushout approachto graph transformation. In our setting, rules
are matched injectively and can have non-injective right-hand morphisms. (See [HMP01] for a
comparison with other variants of the double-pushout approach.)

3.1 Rules and derivations

A rule r : 〈L← K→ R〉 consists of two hypergraph morphisms with a common domain, where
K→ L is an inclusion. The hypergraphsL andR are theleft- andright-hand sideof r, andK is
the interface. The rule isinjectiveif the morphismK→ R is injective.

Let G andH be hypergraphs,r : 〈L← K → R〉 a rule andf : L→ G an injective morphism.
ThenG directly derives Hby r and f , denoted byG⇒r, f H, if there exist two pushouts as in
Figure3. Given a set of rulesR, we write G⇒R H to express that there existr ∈ R and a

L K R

G D H

f

Figure 3: A double-pushout

morphism f such thatG⇒r, f H.
We refer to [Plu05] for the definition and construction of hypergraph pushouts. Intuitively, the

left pushout corresponds to the construction ofD from G by removing the items inL−K, and the
right pushout to the construction ofH from D by merging items according toK→ Rand adding
the items inR that are not in the image ofK.

A double-pushout as in Figure3 is called adirect derivationfrom G to H and may be denoted
by G⇒r, f H or just byG⇒r H or G⇒ H. A derivation from G to H is a sequence of direct
derivationsG = G0⇒ . . .⇒Gn = H, n≥ 0, and may be denoted byG⇒∗ H.

Given a ruler : 〈L←K→R〉, an injective morphismf : L→G satisfies thedangling condition
if no hyperedge in EG− fE(EL) is incident to a node infV(VL−VK). It can be shown that, given
r and f , a direct derivation as in Figure3 exists if and only if f satisfies the dangling condition
[HMP01].

With every derivation∆ : G0⇒
∗ Gn a partial hypergraph morphism can be associated that

tracks the items ofG0 through the derivation: this morphism is undefined for all items inG0 that
are removed by∆ at some stage, and maps all other items to the corresponding items inGn.
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Definition 1 (Track morphism) Given a direct derivationG⇒ H as in Figure3, the track
morphismtrG⇒H : G→ H is the partial hypergraph morphism defined by

trG⇒H(x) =

{
c′(c−1(x)) if x∈ c(D),
undefined otherwise.

Herec: D→G andc′ : D→H are the morphisms in the lower row of Figure3 andc−1 : c(D)→
D maps each itemc(x) to x.

The track morphism of a derivation∆ : G0⇒
∗ Gn is defined by tr∆ = idG0 if n = 0 and tr∆ =

trG1⇒∗Gn ◦ trG0⇒G1 otherwise, where idG0 is the identity morphism onG0.

Definition 2 (Hypergraph-transformation system) Ahypergraph-transformation system〈Σ,R〉
consists of a signatureΣ and a setR of rules overΣ. The system isinjectiveif all rules inR are
injective. It is agraph-transformation systemif for each labell in ΣE, all strings in Type(l) are
of length two.

As graph-transformation systems are special hypergraph-transformation systems, results for
the latter also apply to the former. In particular, Theorem2, Theorem3 and Corollary1 below
hold for graph-transformation systems, too.

Example1 Figure4 shows hypergraph-transformation rules for reducing control-flow graphs
(see also [Plu05]). The associated signature contains a single node label• and two hyperedge

seq:

x

y

⇒

y

x

while: y

x

⇒

y

x

dec1:

y

x

⇒

y

x

dec2: y

z

x

⇒
y z

x

Figure 4: Hypergraph-transformation system for flow-graphreduction

labels which are graphically represented by hyperedges formed as squares and rhombs. Instead
of using numbers to represent the attachment function, we use an arrow to point to the second
attachment node of a square and define the order among the links of a rhomb to be “top-left-
right”. The rules are shown in a shorthand notation where only the left- and right-hand sides are
depicted, the interface and the morphisms are implicitly given by the node names x,y,z. This
example will be continued as Example2, where it is shown that the system is confluent.
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3.2 Independence and confluence

Two direct derivationsH1⇐r1 G⇒r2 H2 do not interfere with each other if, roughly speaking,
the intersection of the left-hand sides ofr1 andr2 in G consists of common interface items. If one
of the rules is not injective, however, an additional injectivity condition is needed. Fori = 1,2,
let r i denote a rule〈Li ← Ki→ Ri〉.

Definition 3 (Independence) Direct derivationsH1⇐r1 G⇒r2 H2 as in Figure5 are indepen-
dentif there are morphismsL1→ D2 andL2→ D1 such that the following holds:

Commutativity:L1→ D2→G = L1→G andL2→ D1→G = L2→G.
Injectivity: L1→ D2→ H2 andL2→ D1→ H1 are injective.

R1 K1 L1 L2 K2 R2

H1 D1 GG D2 H2

Figure 5: Independent direct derivations

If r1 andr2 are injective, the direct derivations of Figure5 are independent if and only if the
intersection of the two left-hand sides coincides with the intersection of the two interfaces.

Lemma 2 (Independence for injective rules)Let r1 and r2 be injective rules. Then direct
derivations H1⇐r1,g1 G⇒r2,g2 H2 are independent if and only if g1(L1)∩ g2(L2) ⊆ g1(K1)∩
g2(K2).

To define confluence and local confluence of hypergraph-transformation systems, we slightly
relax the properties of Figure1. Rather than require that converging⇒R-derivations must end
in thesamegraph, we allow them to end in isomorphic graphs.

Definition 4 (Confluence of〈Σ,R〉) A hypergraph-transformation system〈Σ,R〉 is confluent
(locally confluent) if for all G,G1,G2 ∈H (Σ), G1⇐

∗
R

G⇒∗
R

G2 (G1⇐R G⇒R G2) implies
that there areH1,H2 ∈H (Σ) such thatG1⇒

∗
R

H1
∼= H2⇐

∗
R

G2.

This definition is equivalent to that in Subsection2.1 as long as the converging derivations
G1⇒

∗
R

H1 andG2⇒
∗
R

H2 do not both have length 0. This is because, by pushout properties,
A⇒R B∼= B′ always impliesA⇒R B′. If the converging derivations have length 0, however, we
may haveG1

∼= G2 withoutG1 andG2 being transformable into a common graph. It is natural to
consider this still as confluence, because in (double-pushout) graph transformation the results of
rule applications are unique only up to isomorphism.

This view on confluence can be substantiated by considering hypergraph transformation “up to
isomorphism”, that is, the transformation of isomorphism classes of hypergraphs. Given a hyper-
graphG, denote by[G] the isomorphism class{G′ | G′ ∼= G}. For a hypergraph-transformation
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system〈Σ,R〉, define the relation⇒R,
∼= on isomorphism classes of hypergraphs overΣ by:

[G]⇒R,
∼= [H] if G⇒R H. (This is well-defined sinceG′ ∼= G⇒R H ∼= H ′ impliesG′⇒R H ′.)

Then (local) confluence in the sense of Definition4 is equivalent to (local) confluence of⇒R,
∼=

in the sense of Subsection2.1, as shown by the next lemma.

Lemma 3 ([Plu05]) A hypergraph-transformation system〈Σ,R〉 is confluent (locally conflu-
ent) if and only if the relation⇒R,

∼= is confluent (locally confluent).

A system〈Σ,R〉 is terminatingif the relation⇒R is terminating. The following result follows
with Newman’s Lemma.

Lemma 4 A terminating hypergraph-transformation system is confluent if and only if it is lo-
cally confluent.

Proof. The “only if” direction holds trivially, so assume that〈Σ,R〉 is terminating and locally
confluent. Then⇒R,

∼= is locally confluent by Lemma3. Moreover,⇒R,
∼= is terminating because

[G]⇒R,
∼= [H] if and only if G⇒R H. Thus, by Lemma1,⇒R,

∼= is confluent. Using Lemma3
again shows that〈Σ,R〉 is confluent.

In general, confluence is undecidable even for terminating graph-transformation systems. The
precise result is as follows.

Theorem 1([Plu05]) The following problem is undecidable in general:

Instance:An injective and terminating graph-transformation system〈Σ,R〉 such thatΣV is a
singleton andΣE andR are finite.
Question:Is 〈Σ,R〉 confluent?

Note that since graph-transformation systems are special hypergraph-transformation systems,
the result also applies to the latter.

4 Critical Pairs

Critical pairs consist of direct derivations of minimal size that are not independent. We recall
their definition from [Plu93, Plu05].

Definition 5 (Critical pair) Let r i : 〈Li ← Ki → Ri〉 be rules, fori = 1,2. A pair of direct
derivationsU1⇐r1,g1 S⇒r2,g2 U2 is acritical pair if

(1) S= g1(L1)∪g2(L2) and

(2) the steps are not independent.

Moreover, we requireg1 6= g2 in caser1 = r2.

Two critical pairsU1⇐r1,g1 S⇒r2,g2 U2 andU ′1⇐r1,g′1
S′⇒r2,g′2

U ′2 are isomorphicif there is
an isomorphismf : S→ S′ such that fori = 1,2, g′i = f ◦gi . In the sequel, we equate isomorphic

7 / 15 Volume 26 (2010)



Checking Graph-Transformation Systems for Confluence

critical pairs so that condition (1) guarantees that a finiteset of rules has only a finite number of
critical pairs.

Example2 Figure6 shows the critical pairs of the hypergraph-transformationsystem of Figure
4 and demonstrates that all pairs arestrongly joinablein the sense of the next definition. (Track
morphisms are indicated by node names.)

w

y

z

⇐
seq

w

x

y

z

⇒
seq

w

x

z

x

z ⇐
seq

x

y

z

⇒
seq

x

y

w

y

z

⇐
while

⇒
seq

x y

w

z

z

w

⇒
dec2

⇐
while

x z

w

w y

v

z

⇐
dec2

w x

v

y

z

⇒
seq

w x

v

z

w y

v

⇐
dec2

w x

v

y

⇒
seq

w x

v

w y

v

⇐
dec2

w x

v

y

⇒
seq

w x

v

Figure 6: The critical pairs of the system of Figure4
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Given a critical pairΓ : U1⇐ S⇒U2, let PersistΓ be the subhypergraph ofSconsisting of all
nodesv such that both trS⇒U1(v) and trS⇒U2(v) are defined.

Definition 6 (Joinability) Let〈Σ,R〉 be a hypergraph-transformation system. A critical pair
Γ : U1⇐ S⇒U2 is joinable if there are derivationsUi ⇒

∗
R

Xi, for i = 1,2, and an isomorphism
f : X1→ X2. Moreover,Γ is strongly joinableif, in addition, for each nodev in PersistΓ,

(1) trS⇒U1⇒∗X1(v) and trS⇒U2⇒∗X2(v) are defined and

(2) fV(trS⇒U1⇒∗X1(v)) = trS⇒U2⇒∗X2(v).

In [Plu05] it is shown that a hypergraph-transformation system is locally confluent if all its
critical pairs are strongly joinable. Combining this result with Newman’s Lemma yields a suffi-
cient condition for the confluence of terminating systems.

Theorem 2 ([Plu05]) A terminating hypergraph-transformation system is confluent if all its
critical pairs are strongly joinable.

For example, the system of Figure4 is terminating since each of the rules reduces the size of
a hypergraph it is applied to. Thus, by Theorem2, the system is confluent.

5 Coverable Systems

In general, by Theorem1, confluence of a terminating hypergraph-transformation system〈Σ,R〉
cannot be decided by checking whether all critical pairs arestrongly joinable. For, suppose we
encounter a critical pairU1⇐ S⇒ U2 that is joinable but not strongly joinable, that is, there
are hypergraphsX1 andX2 such thatU1⇒

∗
R

X1
∼= X2⇐

∗
R

U2 but no isomorphismX1→ X2 is
compatible with the track morphisms trS⇒Ui⇒∗Xi . Then, assuming that all other critical pairs are
joinable,〈Σ,R〉may or may not be confluent. This is demonstrated by the following example.

Example3 Consider the graph-transformation system〈Σ,R〉 consisting of singletonsΣV and
ΣE, and the following rules:

r1 :
x y

⇒
x y

r2 :
x

⇒
x

r3 :
x y

⇒
x y

This system is terminating as every rule application reduces the number of edges. It is also
confluent since wheneverH1 ⇐

∗
R

G⇒∗
R

H2, there are derivationsH1⇒
∗
R

H ′1
∼= H ′2 ⇐

∗
R

H2

whereH ′1 andH ′2 consist of|VG| nodes and either no edges (ifG is loop-free) or one loop and no
other edges. However, despite confluence, the critical pair

9 / 15 Volume 26 (2010)
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x y
⇐
r1 x y

⇒
r1 x y

is not strongly joinable because the outer graphs are normalforms1 and the isomorphism between
them is not compatible with the track morphisms as required by condition (2) of Definition6.

Thus, we cannot report non-confluence if we encounter a joinable critical pair that is not
strongly joinable. On the other hand, joinability of all critical pairs does not guarantee conflu-
ence. Suppose, for instance, that we add an edge labela to ΣE. Then all critical pairs are still
joinable but confluence breaks down, as witnessed by the following counterexample:

a

⇐
r1 a

⇒
r1 a

This example also shows that signature extensions need not preserve confluence. In particular,
hyperedge labels that do not occur in rules turn out to be crucial for ensuring that local confluence
implies strong joinability of all critical pairs.

Given a hyperedgee in a hypergraphG, the pair〈labG(e), mark∗G(attG(e))〉 is theprofile of e.
If R is a set of hypergraph-transformation rules, we write Prof(R) for the set of all hyperedge
profiles occurring inR and Mark(R) for the set of all node labels occurring inR.

Definition 7 (GR andG⊖) Let 〈Σ,R〉 be a hypergraph-transformation system andG∈H (Σ).
We define subhypergraphsGR andG⊖ as follows:

(1) GR consists of all hyperedges with profile in Prof(R) and all nodes with label in Mark(R).

(2) G⊖ consists of all hyperedges in EG−EGR , all attachment nodes of these hyperedges, and
all nodes in VG−VGR .

It follows thatG = GR ∪G⊖, whereGR andG⊖ may share some attachment nodes of edges
in G⊖. These shared nodes cannot be removed by any rule inR, by the dangling condition for
direct derivations.

Definition 8 (Cover) Given a critical pairΓ of a hypergraph-transformation system〈Σ,R〉, a
coverfor Γ is a hypergraphC∈H (Σ) such that

(1) PersistΓ ⊆C,

(2) C⊖ = C, and

(3) for every imageC̃ of C, there is a unique surjective morphismC→ C̃.

Remarks

1. By condition (2), the profiles of the hyperedges inC are distinct from those in Prof(R).
Also, since all node labels in PersistΓ belong to Mark(R), (1) and (2) imply that each node
in PersistΓ is incident to some hyperedge inC.

1 A graphG is anormal formwith respect to a system〈Σ,R〉 if there is no graphH such thatG⇒R H.

Festschrift H.-J. Kreowski 10 / 15



ECEASST

2. Intuitively,C uniquely identifies the nodes in PersistΓ in that for every imagẽC of C, each
node in PersistΓ corresponds to a unique node inC̃. Moreover, the rules inR can affectC
at most by merging some nodes in PersistΓ.

3. By condition (3),C does not possess nontrivial automorphisms. That is, the identity
idC : C→C is the only isomorphism onC.

Example4 Consider a critical pairΓ : U1⇐ S⇒U2.

1. If PersistΓ = /0, then the empty hypergraph is a cover forΓ.

2. Let PersistΓ consist of a single nodev with label m. If there is somel ∈ ΣE such that
m∈Type(l) and〈l , m〉 6∈Prof(R), then the hypergraphC consisting ofv and an hyperedge
e with labC(e) = l and attC(e) = v is a cover forΓ. Alternatively, if mm∈ Type(l) and
〈l , mm〉 6∈ Prof(R), then the graphC consisting ofv and an edgee with labC(e) = l and
attC(e) = vv is a cover forΓ.

3. Let PersistΓ consist of nodesv1, . . . ,vn with n≥ 2 and markS(vi) = mi, for i = 1, . . . ,n. If
there isl ∈ ΣE such thatm1 . . .mn∈Type(l) and〈l , m1 . . .mn〉 6∈Prof(R), thenC consisting
of v1, . . . ,vn and an hyperedgee with labC(e) = l and attC(e) = v1 . . .vn is a cover for
Γ. Alternatively, suppose that there are distinct labelsl1, . . . , ln−1 ∈ ΣE such that fori =
1, . . . ,n− 1, mimi+1 ∈ Type(l i) and〈l i , mimi+1〉 6∈ Prof(R). Then a graph coverC for Γ
is given byv1, . . . ,vn and edgese1, . . . ,en−1 where fori = 1, . . . ,n− 1, labC(ei) = l i and
attC(ei) = vivi+1. (For instance, the critical pair discussed in Example3 can be covered in
this way after the edge labela with Type(a) = {••} has been added toΣE.)

Figure7 shows the alternative covers of Example4.3 for a critical pair withn persistent nodes.
Note thatl1, . . . , ln−1 need to be distinct as otherwise condition (3) of Definition8 may be vio-
lated.

l
1

m1

. . .

. . .

n

mn m1 m2
l1 l2 . . . ln−1 mn

Figure 7: Alternative covers for a critical pair withn persistent nodes

Definition 9 (Coverable system) A hypergraph-transformation system iscoverableif for each
of its critical pairs there exists a cover.

Our main result is that for coverable systems, local confluence is equivalent to the strong
joinability of all critical pairs.
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Theorem 3 A coverable hypergraph-transformation system is locally confluent if and only if
all its critical pairs are strongly joinable.

Sketch of proof.Theorem2 establishes the “if” direction. We outline the proof for thecon-
verse, which is based on extending critical pairs with theircovers. Consider a critical pair
Γ : U1⇐ S⇒U2 and a coverC for Γ such thatS∩C = PersistΓ. Then there are extended direct
derivationsÛ1⇐ Ŝ⇒ Û2, whereŜ= S∪C. By local confluence, there are hypergraphsX1 and
X2 such thatÛ1⇒

∗ X1
∼= X2⇐

∗ Û2. The derivationŝS⇒ Ûi ⇒
∗ Xi, i = 1,2, preserve the nodes

in PersistΓ because the latter are incident to edges inC . Hence, after taking the coverC off,
one obtains restricted derivationsS⇒Ui ⇒

∗ Xi, i = 1,2, that satisfy condition (1) of Definition
6. Moreover, one can show thatX1 = XR

1
∼= XR

2 = X2. Restricting the morphisms trŜ⇒Ûi⇒∗Xi
,

i = 1,2, to Ŝ⊖ andX⊖i yields surjective morphismsti : Ŝ⊖ → X⊖i . Also, given an isomorphism
f : X1→ X2, its restriction f⊖ : X⊖1 → X⊖2 is an isomorphism. Hence bothf⊖ ◦ t1 : Ŝ⊖ → X⊖2
and t2 : Ŝ⊖ → X⊖2 are surjective morphisms. SincêS⊖ = C, condition (3) of Definition8 im-
plies f ◦ t1 = t2. It then follows that condition (2) of Definition6 is satisfied. ThusΓ is strongly
joinable. �

Assumption For the rest of this section, we consider hypergraph-transformation systems〈Σ,R〉
in which ΣV , ΣE andR are finite.

As a consequence of Theorem3, confluence of terminating coverable systems is equivalent
to the strong joinability of all critical pairs. This allowsto decide confluence by testing for the
latter property.

Corollary 1 Confluence is decidable for coverable hypergraph-transformation systems that
are terminating.

Given a terminating and coverable system, Algorithm1 checks whether all critical pairs are
strongly joinable by extending critical pairs with covers and then testing for simple joinability
of all “covered pairs”. By the (full) proof of Theorem3, joinability of a covered pair implies
strong joinability of the underlying critical pair. Given acovered pair̂Γ : Û1⇐ Ŝ⇒ Û2, one
nondeterministically computes a normal formXi of Ûi, for i = 1,2, and checks whetherX1 and
X2 are isomorphic. If they are, then the critical pairΓ underlyingΓ̂ is strongly joinable, otherwise
a counterexample to confluence has been found.

Example5 Consider again the hypergraph-transformation system of Example1. Suppose that
its typing allows a rhomb hyperedge to have two attachment nodes and a square hyperedge to
have three attachment nodes, besides the versions of rhombsand squares occurring in the rules.
Then each critical pair of this system can be covered and Algorithm 1 determines that the system
is confluent. For instance, Figure8 shows the extended version of a critical pair of Figure6 and
its joining derivations.

The graph-transformation system of Example3, on the other hand, is not coverable. It be-
comes coverable after the edge labela has been added to the signature, when Algorithm1 deter-
mines that the resulting system is non-confluent.
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Algorithm 1 Decision procedure for confluence
Input: a terminating and coverable hypergraph-transformation system〈Σ,R〉 and its set of crit-

ical pairs CP
for all Γ : U1⇐r1,g1 S⇒r2,g2 U2 in CPdo
{let C be a cover forΓ such thatS∩C = PersistΓ}
Ŝ:= S∪C
{for i = 1,2, let ĝi be the extension ofgi to Ŝ}
for i = 1 to 2do

construct a derivation̂S⇒r i ,ĝi Ûi⇒
∗
R

Xi such thatXi is a normal form
end for
if X1 6∼= X2 then

return “non-confluent”
end if

end for
return “confluent”

w

y

z

1

2

⇐
while

⇒
seq

x y
1

2

w

z

⇒
dec2

⇐
while

x z

1

2

w

z

w
1

2

Figure 8: An extended critical pair of the system of Figure4

Particular classes of hypergraph- and graph-transformation systems for which confluence is
decidable can be obtained by specialising Corollary1 with the conditions given in Example4.3
or with similar conditions. For instance, in the case of graph transformation, another sufficient
condition for terminating systems is that for each criticalpair Γ with persistent nodesv1, . . . ,vn,
there are distinct labelsl1, . . . , ln ∈ ΣE such that fori = 1, . . . ,n, markS(vi)markS(vi) ∈ Type(l i)
and〈l i , markS(vi)markS(vi)〉 6∈ Prof(R). In this case a cover can be constructed by attaching to
v1, . . . ,vn loops labelled withl1, . . . , ln.

In the case of hypergraph transformation, a sufficient condition for the decidability of conflu-
ence (of terminating systems) can be given purely in terms ofthe signatureΣ. We call a signature
Σ universalif for eachl ∈ ΣE, Type(l) = Σ∗V .

Corollary 2 Confluence is decidable for terminating hypergraph-transformation systems with
universal signatures.
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For, if hyperedges can have arbitrary sequences of attachment nodes, we can cover critical
pairs with hyperedges that have longer attachment sequences than any hyperedges in rules by
using repeated nodes in the attachment.

6 Conclusion

Confluence is an undecidable property of terminating graph-and hypergraph-transformation sys-
tems. We have identified coverable systems as a subclass thatcomes with a decision procedure
for confluence. The class is nontrivial and properly includes all hypergraph-transformation sys-
tems with universal signatures.

A topic for future work is to extend Algorithm 1 such that it decides confluence for certain
non-coverable systems. The idea is to add to the signature ofan input system a hyperedge
label whose typing allows to cover all critical pairs. One then runs the algorithm as before: if
all extended pairs are joinable, one can conclude that the underlying critical pairs are strongly
joinable and hence that the system is confluent. However, if anon-joinable extended pair is
encountered whose underlying critical pair is joinable, then the procedure has to give up because
the input system may or may not be confluent.
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