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Checking Graph-Transformation Systems for Confluence

Detlef Plump

The University of York, UK

Abstract: In general, it is undecidable whether a terminating graphsformation
system is confluent or not. We introduce the classovierablehypergraph-transfor-
mation systems and show that confluence is decidable foraolesystems that are
terminating. Intuitively, a system is coverable if its tygiallows to extend each crit-
ical pair with a non-deletable context that uniquely idiéesi the persistent nodes of
the pair. The class of coverable systems includes all hyagphgtransformation sys-
tems in which hyperedges can connect arbitrary sequenaezdes, and all graph-
transformation systems with a sufficient number of unuseg d¢abels.

Keywords: Confluence, graph transformation, coverable systems

1 Introduction

Confluent sets of graph-transformation rules can be exéautbout backtracking since all ter-
minating derivations produce the same result for a giveatigpaph. Applications of confluence
include the efficient recognition of graph classes by gratuction ACPS93 BF01, BPR04,
the parsing of languages defined by graph gramnt&&}6, RS97, and the deterministic in-
put/output behaviour of programs in graph-transformaléomguages such as AGGde04, FU-
JABA [NNZO0Q], GrGen [GBG"06] or GP [Plu09.

In the settings of string and term rewriting, confluence isidigble for terminating systems
[BO93 BN98, BKV03]: one computes altritical pairs t < s— u of rewrite steps and checks
whethert andu are joinable in that they reduce to a common string resp..tdmcontrast,
confluence is undecidable in general for terminating graphsformation system&[u05. The
problem is, in brief, that the joinability of all critical pa need not imply confluence of a system.
To guarantee confluence, one has to impose extra conditiothe goining derivations, leading to
the notion of a strongly joinable critical pair. Howeverpstg joinability of all critical pairs is not
a necessary condition for confluence and hence, in genaraipt be used to decide confluence.

In this paper, we introduceoverablehypergraph-transformation systems and show that con-
fluence is decidable for coverable systems that are terimgnatntuitively, a system is cover-
able if its typing allows to extend each critical pair with @nadeletable context—a cover—that
uniquely identifies the persistent nodes of the pair. We gidecision procedure for confluence
that processes each extended critical ;ﬁauUl =S5=10, by reducmgUl andU, to normal
forms X; and Xy, and checking whetheX; and X, are isomorphic. If this is the case, then the
critical pair underlyingl” is strongly joinable; otherwise, a counterexample to cemfte has
been found.

Roughly speaking, a cover for a critical pair can be conggdid the signature of the hyper-
graph-transformation system under consideration cosdiyper-)edge labels that do not occur
in rules and that can be used to connect the persistent nbties axitical pair by edges. Such a
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Checking Graph-Transformation Systems for Confluence @

cover cannot be deleted by rules. Moreover, there must bigjaeiaurjective morphism from the
cover to each of its images under a graph morphism. We giferelift conditions under which
covers can be constructed and show, in particular, thatlédss of coverable systems includes
all hypergraph-transformation systems in which hyperedgs connect arbitrary sequences of
nodes.

The rest of this paper is organised as follows. The next@ectcalls some terminology for
binary relations and defines hypergraphs and their morghisgection3 reviews the double-
pushout approach to (hyper-)graph transformation in angetthere rules are matched injec-
tively and can have non-injective right-hand morphisms. d&Bne confluence of hypergraph-
transformation systems and recall the fact that conflueardecidable for terminating systems.
In Section4 we review the role of critical pairs in establishing confloenSectiorb introduces
covers for critical pairs and coverable systems, discusgesmain result and the associated de-
cision procedure for confluence, and presents special ease® confluence is decidable. In
Section6, we conclude and discuss a topic for future work.

2 Preliminaries

We recall some terminology for binary relations (consisteith [BN98, BKV03]) and define
hypergraphs and their morphisms.

2.1 Relations

Let — be a binary relation on a sét The inverse relation of- is denoted by—. We write—*
for the transitive closure of> and—* for the transitive-reflexive closure ef:. Two elements
a,b € A have acommon reducif a—* ¢ <* b for somec. If a—* c and there is nal such that
¢ — d, thend is anormal formof a.

The relation— is (1) terminatingif there is no infinite sequenca, — a, — az — ..., (2)
confluentif for all a, b andc with b —* a —* ¢, elementd andc have a common reduct (see
Figurel(a)), (3)locally confluentf for all a, b andc with b — a — ¢, elementd andc have a
common reduct (see Figuigb)).

(a) confluence (b) local confluence
Figure 1: Confluence properties
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By the following well-known result, local confluence and flaence are equivalent in the
presence of termination.

Lemma 1 (Newman’s LemmalNlew47) A terminating relation is confluent if and only if it is
locally confluent.

2.2 Hypergraphs

We deal with directed, labelled hypergraphs and use a sitypiesystem where the label of a
hyperedge restricts the number of incident nodes and tifsétd. Asignaturex = (v, Zg, Type)
consists of a sefy of node labelsa setzg of hyperedge labeland a mapping Type assigning
to each € Zg a set Typél) C %,. Unless stated otherwise, we denotezbgn arbitrary but fixed
signature over which all hypergraphs are labelled.

A hypergraphoverX is a systenG = (Vg, Eg, marks, labg, attg) consisting of two finite sets
Vs and Es of nodes(or verticed and hyperedgestwo labelling functions magk: Vg — Zv
and lalks: Eg — Zg, and an attachment function @ttEg — V§ such that mark(atig(e)) €
Type(labg(e)) for each hyperedge (The extensiorf*: A* — B* of a functionf: A — B maps
the empty string to itself and;...a, to f(a1)... f(a,).) We write 77(X) for the set of all
hypergraphs ovex.

In pictures, nodes and hyperedges are drawn as circles aad,b@spectively, with labels
inside. Lines represent the attachment of hyperedges tesnechere numbers specify the left-
to-right order in the attachment string. For example, Fégishows a hypergraph with four
nodes (all labelled witle) and three hyperedges (labelled with B and S).

Figure 2: A hypergraph

A hypergraphG is agraphif each hyperedgeis an ordinary edge, that is, if aite) has length
two. Ordinary edges may be drawn as arrows with labels waritext to them.

Given hypergraph& and H, a hypergraph morphisnfor morphismfor short) f: G — H
consists of two functionsy : Vg — Vy and fg: Eg — Ep that preserve labels and attachment
to nodes, that is, magke fy = marks, laby o fg = labg and atg o fg = fy; o atiz. A morphism
incl: G — H is aninclusionif incly (v) = vandinclg(e) = efor allve Vg ande € Eg. In this case
G is asubhypergraptof H which is denoted bys C H. Every morphismf: G — H induces
a subhypergraph ofl, denoted byf(G), which has nodedy (Vg) and hyperedgese(Eg).
Morphism f is injective(surjective if fy and fg are injective (surjective). If is surjective, then
H is animageof G. If f is both injective and surjective, then it is @omorphism In this case
G andH areisomorphi¢ which is denoted by = H.
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Thecompositiorof two morphismsf : G — H andg: H — M is the morphisngo f: G— M
consisting of the composed functiogs o fy andgg o fe. The composition is also written as
G —H — M if f andg are clear from the context.

A partial hypergraph morphism :fG — H is a hypergraph morphis®@— H such thaSC G.
HereSis thedomain of definitiorof f, denoted by Dorff ).

3 Graph Transformation

We briefly review thedouble-pushout approacto graph transformation. In our setting, rules
are matched injectively and can have non-injective rigitichmorphisms. (Se¢iMPO0]] for a
comparison with other variants of the double-pushout a9

3.1 Rules and derivations

Aruler: (L — K — R) consists of two hypergraph morphisms with a common domalieres
K — L is an inclusion. The hypergraplhsandR are theleft- andright-hand sideof r, andK is
theinterface The rule isinjectiveif the morphismK — Ris injective.

Let G andH be hypergraphs;: (L — K — R) a rule andf : L — G an injective morphism.
ThenG directly derives Hoy r and f, denoted byG = ¢ H, if there exist two pushouts as in
Figure3. Given a set of rules?, we write G =4 H to express that there existc % and a

G-——D——~H

Figure 3: A double-pushout

morphismf such thatG = ¢ H.

We refer to Plu0g for the definition and construction of hypergraph pusholntuitively, the
left pushout corresponds to the constructioibdfom G by removing the items ih — K, and the
right pushout to the construction bif from D by merging items according # — R and adding
the items inR that are not in the image .

A double-pushout as in Figufis called adirect derivationfrom G to H and may be denoted
by G = H orjust byG = H or G= H. A derivationfrom G to H is a sequence of direct
derivationsG = Gp = ... = G, = H, n > 0, and may be denoted I&y="*H.

Givenarule: (L« K — R), aninjective morphisni : L — G satisfies thelangling condition
if no hyperedge in E— fg(E.) is incident to a node ity (V. — V). It can be shown that, given
r and f, a direct derivation as in Figuieexists if and only iff satisfies the dangling condition
[HMPO1].

With every derivationA: Gg =* G, a partial hypergraph morphism can be associated that
tracks the items og through the derivation: this morphism is undefined for &liris inGg that
are removed byA at some stage, and maps all other items to the corresportding inGy,.
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Definition 1 (Track morphism) Given a direct derivatidd = H as in Figure3, the track
morphismtre_y : G — H is the partial hypergraph morphism defined by

tro—n(X) = { c(c(x)) if xec(D),

undefined otherwise.

Herec: D — Gandc : D — H are the morphisms in the lower row of FiglBandc™: ¢(D) —
D maps each item(x) to x.

The track morphism of a derivatioh: Go =* Gy, is defined by % = idg, if n=0 and th =
trg,—+c, o trgy,=c, otherwise, where ig, is the identity morphism of&o.

Definition 2 (Hypergraph-transformation system) h&pergraph-transformation systefh, #)
consists of a signature and a set# of rules overz. The system isnjectiveif all rules in % are
injective. It is agraph-transformation systeihfor each label in Zg, all strings in Typé¢l) are
of length two.

As graph-transformation systems are special hypergnapisformation systems, results for
the latter also apply to the former. In particular, Theorzrmheorem3 and Corollaryl below
hold for graph-transformation systems, too.

Examplel Figure4 shows hypergraph-transformation rules for reducing ofilow graphs
(see alsoPlu0g). The associated signature contains a single node ball two hyperedge

X

X
X
seq = [% while: y = E%

[ B iy
oy

X X
X X
decl: = [TE dec2: y = l—é—l
oy y z
e Z

y

Figure 4: Hypergraph-transformation system for flow-gregduction

labels which are graphically represented by hyperedgesddras squares and rhombs. Instead
of using numbers to represent the attachment function, weansarrow to point to the second
attachment node of a square and define the order among ttsedird& rhomb to be “top-left-
right”. The rules are shown in a shorthand notation wherg trd left- and right-hand sides are
depicted, the interface and the morphisms are implicithegiby the node names x,y,z. This
example will be continued as Exam@ewhere it is shown that the system is confluent. [
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3.2 Independence and confluence

Two direct derivationdH; <, G =, Hy do not interfere with each other if, roughly speaking,
the intersection of the left-hand sidesrefandr, in G consists of common interface items. If one
of the rules is not injective, however, an additional injtt condition is needed. Far= 1,2,
letr; denote a ruldL; — K; — Ry).

Definition 3 (Independence) Direct derivatiohly <, G =, H> as in Figure5 areindepen-
dentif there are morphismk; — D, andL, — D4 such that the following holds:
Commutativity: Li—-D,—-G=L;—GandL, = D1 —-G=L, — G.
Injectivity: L1 — D2 — H» andL, — D; — Hj are injective.

Rl Ki—=Ly  Lp=—Kp— =Ry

Ny
e
P
VAN
A
P <
P <
. <
P N
P <
. N
P N
P <
»~ N

Hy<—D¢ -G- Dy——H>

Figure 5: Independent direct derivations

If ry andr, are injective, the direct derivations of Figuseare independent if and only if the
intersection of the two left-hand sides coincides with thterisection of the two interfaces.

Lemma 2 (Independence for injective rules)et r; and r, be injective rules. Then direct
derivations H <, g, G =, g, H> are independent if and only ifig1) N g2(L2) € g1(K1) N
92(Kz).

To define confluence and local confluence of hypergraphftramation systems, we slightly
relax the properties of Figure Rather than require that convergiagy,-derivations must end
in the samegraph, we allow them to end in isomorphic graphs.

Definition 4 (Confluence of>,#)) A hypergraph-transformation systefh, %) is confluent
(locally conflueny if for all G,G1,G, € (), G1 <3, G =}, Gy (G1 <=4 G =4 Gy) implies
that there aréd;, Hy € J7(Z) such thaiG, =, Hi = Hy <, Go.

This definition is equivalent to that in Subsecti@ri as long as the converging derivations
G1 =}, H1 andG; =, H> do not both have length 0. This is because, by pushout piepgert
A=, B=B always impliesA =4 B'. If the converging derivations have length 0, however, we
may haveG; = G, without G; andG, being transformable into a common graph. It is natural to
consider this still as confluence, because in (double-puslgoaph transformation the results of
rule applications are unique only up to isomorphism.

This view on confluence can be substantiated by consideyipgrgraph transformation “up to
isomorphism”, that is, the transformation of isomorphidasses of hypergraphs. Given a hyper-
graphG, denote by[G] the isomorphism clas§G’ | G' = G}. For a hypergraph-transformation
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system(X, %), define the relation=4~ on isomorphism classes of hypergraphs oxeby:
|G] =%~ [H] if G=4% H. (This is well-defined sinc& = G =, H = H’ impliesG' =4, H'.)
Then (local) confluence in the sense of Definitibis equivalent to (local) confluence ef 5 ~
in the sense of Subsecti@nl, as shown by the next lemma.

Lemma 3 ([Plu0g) A hypergraph-transformation systefh, %) is confluent (locally conflu-
ent) if and only if the relation=4 ~ is confluent (locally confluent).

A system(Z, %) is terminatingif the relation=-4 is terminating. The following result follows
with Newman'’s Lemma.

Lemma 4 A terminating hypergraph-transformation system is comiiuiand only if it is lo-
cally confluent.

Proof. The “only if” direction holds trivially, so assume th&X, %) is terminating and locally
confluent. Thenr= 4 ~ is locally confluent by Lemma. Moreover= 4 ~ is terminating because
[G] =%~ [H] ifand only if G =4 H. Thus, by Lemmd, =4 ~ is confluent. Using Lemma
again shows thaz, %) is confluent. O

In general, confluence is undecidable even for terminatraglgtransformation systems. The
precise result is as follows.

Theorem 1([PIu0g) The following problem is undecidable in general:

Instance: An injective and terminating graph-transformation systém#) such thatzy is a
singleton and g and % are finite.
Question:ls (X, %) confluent?

Note that since graph-transformation systems are spegi@rgraph-transformation systems,
the result also applies to the latter.

4 Critical Pairs

Critical pairs consist of direct derivations of minimal sithat are not independent. We recall
their definition from Plu93 Plu0j.

Definition 5 (Critical pair) Letr;: (Lj — Ki — R;) be rules, fori = 1,2. A pair of direct
derivationsU; <, g, S=r,,g, U2 is acritical pair if

(1) S= gl(Ll) U gz(Lz) and
(2) the steps are not independent.

Moreover, we requir@; # g in caser; =r.

Two critical pairsUs <, g, S=r, g, Uz andUj < o S =, o U; areisomorphicif there is
an isomorphisnt : S— S such that foi = 1,2, g/ = f og;. In the sequel, we equate isomorphic
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critical pairs so that condition (1) guarantees that a figdtieof rules has only a finite number of
critical pairs.

Example2 Figure6 shows the critical pairs of the hypergraph-transformasigstem of Figure
4 and demonstrates that all pairs atengly joinablein the sense of the next definition. (Track
morphisms are indicated by node names.) O

T
seq [% seq
7]

[% w
y <~ = X z
[% while dec2

[ ]

E*e

ez

w w
dec2 seq

ez

v

w w X
dec2 seq
f@ wl < i f%
dec2 seq

Figure 6: The critical pairs of the system of Figdre
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Given a critical paifl” : U; <= S=- Uy, let Persist be the subhypergraph &fconsisting of all
nodesv such that both ¥y, (v) and tik-y,(v) are defined.

Definition 6 (Joinability) Let(X, %) be a hypergraph-transformation system. A critical pair
I: Uy <= S= U isjoinableif there are derivationb); =7, X, for i = 1,2, and an isomorphism
f: Xy — Xo. Moreover,[ is strongly joinableif, in addition, for each nodg in Persist,

(1) trseu,—+x, (V) and tis-y,-+x, (V) are defined and

(2) fy (trS:)U1:>*X1 (V)) = trssu=%, (V)

In [PIu0g it is shown that a hypergraph-transformation system igllgaconfluent if all its
critical pairs are strongly joinable. Combining this résuith Newman’s Lemma vyields a suffi-
cient condition for the confluence of terminating systems.

Theorem 2 ([Plu0g) A terminating hypergraph-transformation system is comfiugall its
critical pairs are strongly joinable.

For example, the system of Figufas terminating since each of the rules reduces the size of
a hypergraph it is applied to. Thus, by Theor&nthe system is confluent.

5 Coverable Systems

In general, by Theorerh, confluence of a terminating hypergraph-transformatistesy(Z, %)
cannot be decided by checking whether all critical pairsstn@ngly joinable. For, suppose we
encounter a critical pald; <= S=- U, that is joinable but not strongly joinable, that is, there
are hypergraphX; and X, such thatl; =7, X; = X; <=}, U but no isomorphisnX; — X; is
compatible with the track morphismsstiy,—.-x,. Then, assuming that all other critical pairs are
joinable, (3, %) may or may not be confluent. This is demonstrated by the fatigwexample.

Example3 Consider the graph-transformation syst&m#) consisting of singleton&y and
2k, and the following rules:

e VY -

°
y
w0 - O
X X
rs: *—o = ° °
X y X y

This system is terminating as every rule application redube number of edges. It is also
confluent since whenevétl; <, G =7, Hy, there are derivationsl; =, H; = Hj <, H>
whereH; andH;, consist of|\g| nodes and either no edges@fis loop-free) or one loop and no
other edges. However, despite confluence, the critical pair
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Qo f??i o<;>

X y I Iy X y

is not strongly joinable because the outer graphs are ndomas' and the isomorphism between
them is not compatible with the track morphisms as requiseddmdition (2) of Definitiong.

Thus, we cannot report non-confluence if we encounter aljeneritical pair that is not
strongly joinable. On the other hand, joinability of allt@al pairs does not guarantee conflu-
ence. Suppose, for instance, that we add an edge dafoete. Then all critical pairs are still
joinable but confluence breaks down, as witnessed by thenfimlfy counterexample:

P £ DX - LD

a 1 r

This example also shows that signature extensions needessrpe confluence. In particular,
hyperedge labels that do not occur in rules turn out to baalrtar ensuring that local confluence
implies strong joinability of all critical pairs. O

Given a hyperedgein a hypergraplG, the pair(labg(e), marks(atig(e))) is theprofile of e.
If # is a set of hypergraph-transformation rules, we write @@ffor the set of all hyperedge
profiles occurring inZ and MarkK%) for the set of all node labels occurring 4#.

Definition 7 (G” andG®) Let (X, %) be a hypergraph-transformation system &nd .7 (%).
We define subhypergrapl®” andG® as follows:
(1) G” consists of all hyperedges with profile in Pgaf) and all nodes with label in Mafkz).

(2) G® consists of all hyperedges insE- Eg#, all attachment nodes of these hyperedges, and
all nodes in\& —Vg».

It follows thatG = G” U G®, whereG” andG® may share some attachment nodes of edges
in G®. These shared nodes cannot be removed by any ru# oy the dangling condition for
direct derivations.

Definition 8 (Cover) Given a critical paif of a hypergraph-transformation systémn %), a
coverfor I is a hypergrapIC € .7#°(X) such that

(1) Persist CC,

(2) C®=C,and

(3) for every image€ of C, there is a unique surjective morphi€n— C.

Remarks

1. By condition (2), the profiles of the hyperedge<Limre distinct from those in Pro#).
Also, since all node labels in Persistelong to Mark#), (1) and (2) imply that each node
in Persist is incident to some hyperedge@

L A graphG is anormal formwith respect to a syste, %) if there is no grapht such thaG =5 H.

Festschrift H.-J. Kreowski 10/ 15
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2. Intuitively, C uniquely identifies the nodes in Persit that for every imag€ of C, each
node in Persigtcorresponds to a unique nodeGnMoreover, the rules i can affeciC
at most by merging some nodes in Pefsist

3. By condition (3),C does not possess nontrivial automorphisms. That is, thetifgde
idc: C — C s the only isomorphism o@.

Example4 Consider a critical pair : Uy < S=-U,.

1. If Persist = 0, then the empty hypergraph is a coverfor

2. Let Persist consist of a single node with label m. If there is somd € g such that
me Typeg(l) and(l, m) & Prof(#), then the hypergrap@ consisting ofv and an hyperedge
e with labc(e) =1 and atg(e) = vis a cover forl. Alternatively, if mme Type(l) and
(I, mm & Prof(#), then the grapl€ consisting ofv and an edge with labc(e) = | and
atic(e) = vvis a cover forl.

3. Let Persist consist of nodess,...,v, with n > 2 and mark(v;) =m, fori=1,...,n. If
there id € Zg such thatm ... m, € Type(l) and(l, my....my) ¢ Prof(%), thenC consisting
of vi,...,vy and an hyperedge with labc(e) =1 and atg(e) = vi...v, is a cover for
I". Alternatively, suppose that there are distinct lab¢ls..,l, 1 € Zg such that for =
1,...,n—1, mm_; € Type(l;) and(l;, mm;1) & Prof(%#). Then a graph covet for I
is given byv,...,v, and edge®y,...,e,_1 Where fori=1,...,n—1, lakz(e) = I; and
atic(e) = vivi1. (For instance, the critical pair discussed in Exanfpban be covered in
this way after the edge labelwith Type(a) = {ee} has been added &) O

Figure7 shows the alternative covers of Exampl8 for a critical pair withn persistent nodes.
Note thatl4,...,l,_1 need to be distinct as otherwise condition (3) of Definittomay be vio-
lated.

Figure 7: Alternative covers for a critical pair withpersistent nodes

Definition 9 (Coverable system) A hypergraph-transformation systecoverableif for each
of its critical pairs there exists a cover.

Our main result is that for coverable systems, local confiaeis equivalent to the strong
joinability of all critical pairs.
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Checking Graph-Transformation Systems for Confluence @

Theorem 3 A coverable hypergraph-transformation system is locatigftuent if and only if
all its critical pairs are strongly joinable.

Sketch of proofTheorem?2 establishes the “if” direction. We outline the proof for tben-
verse, which is based on extending critical pairs with tloeivers. Consider a critical pair
MNu<Ss==u, and a covelC for I such thatSNC = Persist. Then there are extended direct
derlvatlonsU1 < S= U,, whereS= SUC. By local confluence, there are hypergrapisand
X, such thatd; =* Xy 22 X, <* U,. The derivationsS = U=*X%,i= 1,2, preserve the nodes
in Persist because the latter are incident to edge€in Hence, after taking the covér off,
one obtains restricted derivatioBs= U; =* Xj, i = 1,2, that satisfy condition (1) of Definition
6. Moreover, one can show thXy = X/ = X5/ = X,. Restricting the morphismsdr; .y,
i=1,2,t0S and X yields surjective morphisnis: S X. Also, given an isomorphism
f: Xy — Xo, its restrictionf: X — X5 is an isomorphism. Hence both ot;: S7 — X5’
andt,: S° — X5 are surjective morphisms. Sin& = C, condition (3) of Definition8 im-
plies f ot; =ty. It then follows that condition (2) of Definitiof is satisfied. Thu$ is strongly
joinable. O

Assumption For the rest of this section, we consider hypergraph-toangition system&, %)
in which Xy, g andZ are finite.

As a consequence of Theorednconfluence of terminating coverable systems is equivalent
to the strong joinability of all critical pairs. This allowts decide confluence by testing for the
latter property.

Corollary 1 Confluence is decidable for coverable hypergraph-tramefiiion systems that
are terminating.

Given a terminating and coverable system, Algorithrohecks whether all critical pairs are
strongly joinable by extending critical pairs with coverslahen testing for simple joinability
of all “covered pairs”. By the (full) proof of Theorer, joinability of a covered pair implies
strong joinability of the underlying critical pair. Givenavered paif: U, < S= U, one
nondeterministically computes a normal fodnof U;, for i = 1,2, and checks whetheé; and
Xo are isomorphic. If they are, then the critical pléiunderlyingf is strongly joinable, otherwise
a counterexample to confluence has been found.

Example5 Consider again the hypergraph-transformation systenxairiplel. Suppose that
its typing allows a rhomb hyperedge to have two attachmedesi@nd a square hyperedge to
have three attachment nodes, besides the versions of rhemdisquares occurring in the rules.
Then each critical pair of this system can be covered andrittgo 1 determines that the system
is confluent. For instance, FiguBesshows the extended version of a critical pair of Figéiend
its joining derivations.

The graph-transformation system of Exampleon the other hand, is not coverable. It be-
comes coverable after the edge labélas been added to the signature, when Algorithdeter-
mines that the resulting system is non-confluent. O

Festschrift H.-J. Kreowski 12 /15
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Algorithm 1 Decision procedure for confluence
Input: aterminating and coverable hypergraph-transformatistesy(Z, %) and its set of crit-
ical pairs CP
forall I': Uy <, g, S=r,, U2in CPdo
{letC be a cover fol” such thatSN C = Persis }
S:=SuC
{fori = 1,2, letg; be the extension af to S}
for i=1to 2do
construct a derivatio® =16 0] =7, % such thatX; is a normal form
end for
if Xg '\7:” X2 then
return “non-confluent”
end if
end for
return “confluent”

[iN

= -
y [% while x dec2
2 2
AN V.
z \S‘@Q z \0\\@

Figure 8: An extended critical pair of the system of Figdre

Particular classes of hypergraph- and graph-transfoomatystems for which confluence is
decidable can be obtained by specialising Corollawyith the conditions given in Exampke3
or with similar conditions. For instance, in the case of gréjansformation, another sufficient
condition for terminating systems is that for each critigair I with persistent nodeg, ..., vy,
there are distinct labels, ..., I, € Zg such that fori = 1,...,n, marks(vi)marks(vi) € Typeg(l;)
and (li, marks(vi)marks(vi)) & Prof(#). In this case a cover can be constructed by attaching to
Vi,...,Vn lOOps labelled withy, ..., I,.

In the case of hypergraph transformation, a sufficient camrdfor the decidability of conflu-
ence (of terminating systems) can be given purely in terntiseo$ignatur&. We call a signature
Z universalif for eachl € g, Typgl) = 3.

Corollary 2 Confluence is decidable for terminating hypergraph-transiation systems with
universal signatures.
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For, if hyperedges can have arbitrary sequences of attathmogles, we can cover critical
pairs with hyperedges that have longer attachment segsi¢haa any hyperedges in rules by
using repeated nodes in the attachment.

6 Conclusion

Confluence is an undecidable property of terminating grapt-hypergraph-transformation sys-
tems. We have identified coverable systems as a subclassothat with a decision procedure
for confluence. The class is nontrivial and properly inchid# hypergraph-transformation sys-
tems with universal signatures.

A topic for future work is to extend Algorithm 1 such that itaiges confluence for certain
non-coverable systems. The idea is to add to the signatuem d@fiput system a hyperedge
label whose typing allows to cover all critical pairs. Onertruns the algorithm as before: if
all extended pairs are joinable, one can conclude that tdertying critical pairs are strongly
joinable and hence that the system is confluent. Howevernidrajoinable extended pair is
encountered whose underlying critical pair is joinablentthe procedure has to give up because
the input system may or may not be confluent.
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