Electronic Communications of the EASST

Volume 28 (2010)

Proceedings of the
Third International DisCoTec Workshop on
Context-Aware Adaptation Mechanisms for
Pervasive and Ubiquitous Services
(CAMPUS 2010)

Modelling Feedback Control Loops for Self-Adaptive Syssem
Russel Nzekwa, Romain Rouvoy and Lionel Seinturier

6 pages

Guest Editors: Sonia Ben Mokhtar, Romain Rouvoy, Michael Wagner

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

M odelling Feedback Control L oopsfor Self-Adaptive Systems

Russel Nzekwa, Romain Rouvoy and Lionel Seinturier

ADAM Project-Team
INRIA Lille — Nord Europe
University of Lille 1, LIFL CNRS UMR 8022
F-59650 Villeneuve d’Ascq
firstname.lastname@inria.fr

Abstract: Feedback Control Loop@CLs) are the heart of any self-adaptive sys-
tem. Existing engineering approaches for building segdide systems mask FCL
by providing abstraction layers that hide the applicatiomplexity. In this paper,
we investigate a model-driven approach for the engineeasfrigCLs whose archi-
tecture is based on ti&ervice Component Architectuf@CA) model. Our proposal
consists in exploiting the data streaming model, to spebiéycharacteristics of the
control policies, and to generate FCLs of self-adaptiveesys deployed in large-
scale environment. We argue that the use of a data-orientetkInfor designing
self-adaptive systems significantly increases FCL vigjbil

Keywords: Modelling, Feedback Control Loop, Self-Adaptation

1 Introduction

This last decade, there has been an increasing demandffonaghging systems, achieving de-
sired quality requirements with a reasonable cost. Selptide systems (or autonomic systems)
are self-managing system that Ussedback Control Loopf-CLs) to monitor, analyse plan,
andact according to changes occurring in their environment. Egsengineering techniques
for building self-adaptive systems hide software compyelsehind abstraction layers. However,
these layers do not provide support for handling contrainelets (sensors, actuators, etc.) of
the system explicitly. This situation results in fastidipwpaque (there is no explicit view of
different politics implemented by the FCL), and not scataBlCLs BSC"09]. In this paper,
we introduce a model-driven approach for generating Oistieid FCLs. In particular, this ap-
proach exploits the data streaming mod&BD " 02] to specify the flow and the deployment of
the components implementing FCLs. The originality of thepgmsed approach lies in the use
of annotations within models, which are seamlessly prazkas specific runtime artefacts. We
illustrate the key elements of our approach on a case stadysing on real-time tracking of a
large fleet of trucks. The rest of this paper is organized kmais. After introducing some back-
grounds on FCL, we next present an example of a large-scifladaptive system, dedicated to
the real-time tracking of a fleet of trucks (cf. secti®)n Then, we introduce our design approach
and the associated distributed infrastructure (cf. se@joAfter that, we compare our approach
with some state-of-the-art related works (cf. sectign Finally, we conclude and discuss the
perspectives of this work (cf. secti@).

1/6 Volume 28 (2010)

mailto:firstname.lastname@inria.fr

Modelling Feedback Control Loops @

2 Background & Scenario

This section presents some background on autonomic FCL amotigation scenario, that we
use later to illustrate our modelisation approach for FCGLa self-adaptive systems.

2.1 MAPE-K Loop

The reference standard from the IBAMitonomic Computing Initiativecodifies an external, FCL
approach in itdvlonitor-Analyze-Plan-Executé/APE) Model 1BMO061.

TheMonitor part provides the mechanisms [Autonomic N

. . Manager = | adaptation

that collect, aggregate, filter and report infor- ac{apta,tfﬂ policy adaptatron{
mation (such as metrics and topologies) col staron | an |
lected from managed resources. TARa-
lyze part contains the mechanisms that cor
relate and model compleadaptation situa-
tions ThePlan function encloses the mech-
anisms that construct the actions needed t
achieve goals and objectives. The planning
mechanism useadaptation policiesnforma-
tion to guide its work. Thdexecutefunction
groups the mechanisms that control the exg
cution of anadaptation planwith consider-
ations for dynamic updates. In the MAPEFigure 1: Overview of the autonomic MAPE
K loop model as shown in Figurg, Knowl- model
edge(symptoms, policies) is the relevant data
shared amongst thdonitor, Analyze Plan and Executeactivities of theAutonomic Manager
The run-time knowledge must be completees including the whole aspects influencing adap-
tation decisions—, modifiable+e, following the application changes—, and at a high-level of
abstraction—e, comprising only relevant information.

N

Plan
- ~~

Analyze
o=

Monitor P

Execute
RS

2.2 Motivating Scenario

We consider a self-adaptive application for the managewfahe truck fleet (80,000 to 1,000,000
trucks) of a company specialized in the transportationagjife products. The trucks do not have
the same characteristics: some are equipped with good araditoning system, while others
provide a robust slip system. In the same way, transportedigydo not have the same re-
quirements: some are very sensitive to temperature \amgtiwhile others need high security
systems. The overall objective of the application is to msike the trucks reach their desti-
nation on time. The application must be able to detect stopdj temperature variation inside
containers, security violation and truck position. Thelaapion is also connected to remote
services, like the weather service or the city traffic sexrvi€he self-adaptive application must
also notify the destination platform about truck arrivaddl the aforementioned information is
sent to the central control center, which processes andekegihich adaptation process can be
triggered. From the analysis of the data exchanged betviieemades (hosts) of the application,

Proc. CAMPUS 2010 2/6

@ ECEASST

several adaptations can result, such as the frequency pb#itoning requests or the number of
resources (server node) allocated to process data.

3 Feedback Control Loops Engineering

This section introduces the design and runtime architeatfiFCL for the scenario presented in
Section2 using our approach.

3.1 Feedback Control Loop Metamodel

One way to provide visibility for FCL in an
application, is to find a way of specifying re-
quired control features. To meet this goal,
we present here a meta-model to express con-
trol properties in the application. The pre-
sented metamodel allows to express control
elements concepts likeensors processors,
or actorswhich correspond to architectural el-
ements aiming teenseprocessor acton the
system respectively. The metamodel charac-
terizes also the process flow between the ele- O) N
ments of the system, by offering concepts to '_'ZL‘ HH
EXpress non-funct?onal properties such as St‘i'k'igure 2: Feedback Control Loop Metamodel
bilization or security. All these concepts can

be used at design time by the application architect in ospécify control elements of the sys-
tem, using annotation artefacts. The following sectiomghan example of how this metamodel
can be used, by presenting a variant of the data processiniglrfar the scenario presented
above.

Localisation
#1 Str

3.2 Data-oriented Modelling of Feedback Control L oops

Our model is inspired by the context policy specification lif COSMOS context processing
framework RCS08. Concretely, the data processing model that we defined isnaected
graph where the nodes reflect processed data, and the edgéfy/idata dependencies. Nodes
on the left side of Figur&® are raw data sensors, while the right-side nodes descritisiale
actuators. Nodes located in the middle are called procdasatyzer, planner) nodes. The data
therefore flows through the nodes, where it is incrementadlgsformed into information of an
higher level of abstraction.

Figure 3 shows the specification of the real-time truck trackingasfructure, that we intro-
duced in Sectior2. The shaded nodes of the graph identify data sensors arctoeffeof the
infrastructure, whose location is statically assignedr &@mple, theTruck Positionnode is
shaded to specify that the associated sensor is necesdepilgyed in the truck. White nodes
represent data processors, whose host is not explicithtifced and can therefore be deployed
in any part of the infrastructure.

3/6 Volume 28 (2010)

Modelling Feedback Control Loops

@Qos (Encrypted) Hatchback
g Open

@Qos (Encrypted)

@Host(Hatchback)

®
I
Ey
2
B
3
g
. H
8
£

lilegal
/—> Stop -

_p| Hatchback
Report

@Host(Truck)

Traffic
Information " i — o
\-> Progression o [Long Period Report
@Host(Truck) / Plan L Stop
@Host(Truck)
\ Truck »|Progression
Timestamp Ahead Report
@Host(Compan e
Truck @Host(Truck)
Departure C] |
> y
Route Plan Checkpoints Féi?:::?;y

ol

Arrival

@Host(Truck)

\ A

isi Tolerance
& (Data Precision)
el Area

Checkpoint 7
Area

A

—

@Host(Truck)
Payment
Report

@Host(Truck)

- @Qof (Data Precision)
Checkpoint L ———>
/ Distance
@Stabilization (Fyzz, m
y Logic) Tolerance @QS (Data pregici

biliza
0 Fuzzy 1o,
= Abnormal
= | Distance

Analyse

Truck
Identifier
@Host(Truck)

Truck
Position

+——| Checkpoint
Report
@Host(Truck)
Corridor
—{ et
@Host(Trailer)

»| Trailer
Report

i
/

Out of

@Host(Trailer) Corridor

(Fuzzy Logic)

Monitor Plan Execute

Figure 3: Data Processing Model of the Feedback Control Loop

Company

Then, the deployment infrastructure shown
in Figure 4, specifies how the infrastructure
is deployed as a network of physical or vir-
tual devices, which can eventually host the
datg Processors. The cor_mectlons betw_een_ F—t]ﬁure 4: Physical Infrastructure Deployment
devices describe the available communicatiqR o
links.

Geo Hub Internet

j w—

Truck

3.3 Deployment and Execution of Feedback Control L oops

This section describes the runtime part of our approachchwsploits the data-oriented specifi-
cation of the FCL, to generate a component-based infrasteithat implements it. In particular,
during the feedback loop generation process, we convegirthgously introduced models into
software components, by combining the data processinghendeployment infrastructure mod-
els. We can assign the unshaded data processors to thesdetite infrastructure. For each
unallocated data processor, the algorithm computes thef lilevices which are 0 or 1-hop away
from the data dependencies. Then, the most relevant deslieetad for hosting the data proces-
sor is the one that minimizes the memory consumption anddheranication cost. Figurg
depicts a candidate architecture obtained when applyisgtgorithm.

The resulting architecture is mapped to tBervice Component Architectu(@CA) [SCA]
standard by applying the following rule§: the nodes of the connected graph are mapped into
primitive componentsii) local data dependencies are converted mumponent wireswhile
remote data dependencies are exposed thrbimgtings and finallyiii) nodes that are located on
the same device are grouped witlsiomposite components

Proc. CAMPUS 2010 4/6

@ ECEASST

Route Plan !

Company,

Checkpoint
Distance

Long Period|
Stop

0 0
2
Truck Truck
Position Truck) | Timestamp
Identifier
Traile
raiter Trailer L ‘Abnormal Trailer Corridor | (Retrieval | (Checkpoint
Position Distance Report Report Frequency Report
Hatchback Hatchback ¥ Hatchback

Primitive Data Component ~ Composite Component Remote SCA Binding Local Wire Connection

Figure 5: Component-based Architecture of the Feedbackr@ldroop.

4 Related Work

The RaiNBow [GCH'04], ENTROPY[HLM *09], and CAPPUCINO[RRS"09] frameworks pro-
vide components that fulfill thmMAPE Loop(cf. section2.1) phases to support self-adaptation.
Nonetheless, these frameworks propose a static or clofedtitucture for managing the adap-
tation policies. Besides that, in terms of autonomic saftwsystem, literature abounds of
many resources, such KX (Kinesthetics eXtreme)PGV03, Astrolabe [BRV03], or Unity
[CSWWO04. However, as in the case of autonomic frameworks, the ldd¢kaasparency in the
design and the management of the FCL systems is one of the lngifations to the scalability

of such systems. To solve the problem of the opacity and tinesnalability of existing FCL,
some recent research works suggest thtag feedback loops that control self adaptation must
become first-class entiti#s[BSC'09]. The approach we propose in this paper stands in that
perspective. The idea is to generalize the autonomic MAPHemand to extend the APpPuU-
cINO framework to address very-large-scale environments. iticoéar, we propose to reify
the MAPE model as a very-large-scale data processing tniiare, which converts data col-
lected in the environment into real-time reactions. Thagebcessing distribution is driven by
the specification of data dependenci&C[E0§ in order to maximize the performances of the
system and balance the processing load among the nodesbéail the environment.

5 Conclusion
We have outlined in this paper an approach for the engingerirFCLs drawing on the data

flow model. We argue that, the data flow model comes with amidhtiinformation that can be
crucial for FCL engineering earlier at design time, to ustierd ongoing control mechanisms,

5/6 Volume 28 (2010)

Modelling Feedback Control Loops @

and later at runtime for an efficient adaptation of the systéfm used théruck trackingscenario,
to explain how to specify a data-oriented model of a FCL, amd to generate the underlying
execution platform with the SCA standard. As futur works, ave planning to evaluate the
overhead introduced by our approach in a realistic deplogyme

Acknowledgements. The work reported in this paper is partly funded by the ANR ARFE
SALTY projectht t p: // sal ty. uni ce. f r)under contract ANR-09-SEGI-012 and FEDER
project.

Bibliography

[BBD*02] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom. Madahd issues in data stream
systems. Irin Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGAEMposium
on Principles of database systems (PODS!®3). 1-16. ACM, New York, NY, USA, 2002.

[BRV0O3] K. P. Birman, R. V. Renesse, W. Vogels. Navigatinglie storm:using astrolabe for dis-
tributed self-configuration, monitoring and adaptatiam.Froceedings of the autonomic
computing workshop, 5th international workshop on activeédieware services (AMS’03)
Pp. 4-13. 2003.

[BSCT09] Y. Brun, G. D. M. Serugendo, H. G. Cristina Gacek, H. K&nH. M. Marin Litoiu,
M. Pezze, M. Shawsoftware Engineering for Self-Adaptive Systems (SEfEAE)S 5525,
chapter Engineering Self-Adaptive Systems through Fegdbaops, pp. 48—70. Springer,
20009.

[CSWWO04] D. M. Chess, A. Segal, I. Whalley, S. R. White. Unigxperiences with a prototype au-
tonomic computing system. IRroceedings of IEEE first international conference on auto-
nomic computingPp. 140-147. May 2004.

[GCHT04] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, P. StistnRainbow: Architecture-
Based Self-Adaptation with Reusable InfrastructdBEE Computer37(10):46-54, Oct.
2004.

. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, J. tropy: a Consolidation Man-

HLM*09] F.H ier, X. L J-M.M d, G. Muller, J. LalwBh C lidation M
ager for Clusters. IfProceedings of the ACM SIGPLAN/SIGOPS international aenfse
on Virtual execution environments (VEE'0®p. 41-50. ACM, New York, NY, USA, 2009.

[IBMO06] IBM. An Architectural Blueprint for Autonomic Comgting. White paper, June 2006.

[KPGV03] G. Kaiser, J. Parekh, P. Gross, G. Valetto. Kineg8tis eXtreme: an external infrastruc-
ture for monitoring distributed legacy systemsHroceedings of the autonomic computing
workshop, fifth international workshop on active middlesvservices (AMS’03Pp. 22—-30.
ACM, June 2003.

[RCSO08] R. Rouvoy, D. Conan, L. Seinturier. Software Arebitire Patterns for a Context Processing
Middleware FrameworKEEE Distributed Systems Online (DS@():12, June 2008.

[RRS"09] D. Romero, R. Rouvoy, L. Seinturier, S. Chabridon, D. &unnN. PessemieEnabling
Context-Aware Web Services: Methods, Architectures, antinblogiesChapter Enabling
Context-Aware Web Services: A Middleware Approach for Uhkiqus Environments,
pp. 113-135. Chapman and Hall/CRC, July 2009.

[SCA] SCA Service Component Architectulg.t p: / / ww. osoa. or g.

Proc. CAMPUS 2010 6/6

	Introduction
	Background & Scenario
	MAPE-K Loop
	 Motivating Scenario

	Feedback Control Loops Engineering
	Feedback Control Loop Metamodel
	Data-oriented Modelling of Feedback Control Loops
	Deployment and Execution of Feedback Control Loops

	Related Work
	Conclusion

