
Electronic Communications of the EASST
Volume 28 (2010)

Proceedings of the
Third International DisCoTec Workshop on
Context-Aware Adaptation Mechanisms for

Pervasive and Ubiquitous Services
(CAMPUS 2010)

Modelling Feedback Control Loops for Self-Adaptive Systems

Russel Nzekwa, Romain Rouvoy and Lionel Seinturier

6 pages

Guest Editors: Sonia Ben Mokhtar, Romain Rouvoy, Michael Wagner
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Modelling Feedback Control Loops for Self-Adaptive Systems

Russel Nzekwa, Romain Rouvoy and Lionel Seinturier

ADAM Project-Team
INRIA Lille – Nord Europe

University of Lille 1, LIFL CNRS UMR 8022
F-59650 Villeneuve d’Ascq
firstname.lastname@inria.fr

Abstract: Feedback Control Loops(FCLs) are the heart of any self-adaptive sys-
tem. Existing engineering approaches for building self-adaptive systems mask FCL
by providing abstraction layers that hide the application complexity. In this paper,
we investigate a model-driven approach for the engineeringof FCLs whose archi-
tecture is based on theService Component Architecture(SCA) model. Our proposal
consists in exploiting the data streaming model, to specifythe characteristics of the
control policies, and to generate FCLs of self-adaptive systems deployed in large-
scale environment. We argue that the use of a data-oriented model for designing
self-adaptive systems significantly increases FCL visibility.

Keywords: Modelling, Feedback Control Loop, Self-Adaptation

1 Introduction

This last decade, there has been an increasing demand for self-managing systems, achieving de-
sired quality requirements with a reasonable cost. Self-adaptive systems (or autonomic systems)
are self-managing system that useFeedback Control Loops(FCLs) tomonitor, analyse, plan,
andact according to changes occurring in their environment. Existing engineering techniques
for building self-adaptive systems hide software complexity behind abstraction layers. However,
these layers do not provide support for handling control elements (sensors, actuators, etc.) of
the system explicitly. This situation results in fastidious, opaque (there is no explicit view of
different politics implemented by the FCL), and not scalable FCLs [BSC+09]. In this paper,
we introduce a model-driven approach for generating distributed FCLs. In particular, this ap-
proach exploits the data streaming model [BBD+02] to specify the flow and the deployment of
the components implementing FCLs. The originality of the proposed approach lies in the use
of annotations within models, which are seamlessly processed as specific runtime artefacts. We
illustrate the key elements of our approach on a case study, focusing on real-time tracking of a
large fleet of trucks. The rest of this paper is organized as follows. After introducing some back-
grounds on FCL, we next present an example of a large-scale self-adaptive system, dedicated to
the real-time tracking of a fleet of trucks (cf. section2). Then, we introduce our design approach
and the associated distributed infrastructure (cf. section 3). After that, we compare our approach
with some state-of-the-art related works (cf. section4). Finally, we conclude and discuss the
perspectives of this work (cf. section5).

1 / 6 Volume 28 (2010)

mailto:firstname.lastname@inria.fr


Modelling Feedback Control Loops

2 Background & Scenario

This section presents some background on autonomic FCL and amotivation scenario, that we
use later to illustrate our modelisation approach for FCLs in a self-adaptive systems.

2.1 MAPE-K Loop

The reference standard from the IBMAutonomic Computing Initiative, codifies an external, FCL
approach in itsMonitor-Analyze-Plan-Execute(MAPE) Model [IBM06].

Monitor

Analyze Plan

Execute

Execution Environment

Supporting Platform

adaptation

policy
adaptation

situation
adaptation

plan

Application

EffectorsSensors

Autonomic

Manager

Managed Resources

Knowledge

Figure 1: Overview of the autonomic MAPE
model

TheMonitor part provides the mechanisms
that collect, aggregate, filter and report infor-
mation (such as metrics and topologies) col-
lected from managed resources. TheAna-
lyze part contains the mechanisms that cor-
relate and model complexadaptation situa-
tions. ThePlan function encloses the mech-
anisms that construct the actions needed to
achieve goals and objectives. The planning
mechanism usesadaptation policiesinforma-
tion to guide its work. TheExecutefunction
groups the mechanisms that control the exe-
cution of anadaptation planwith consider-
ations for dynamic updates. In the MAPE-
K loop model as shown in Figure1, Knowl-
edge(symptoms, policies) is the relevant data
shared amongst theMonitor, Analyze, Plan andExecuteactivities of theAutonomic Manager.
The run-time knowledge must be complete—i.e., including the whole aspects influencing adap-
tation decisions—, modifiable—i.e, following the application changes—, and at a high-level of
abstraction—i.e, comprising only relevant information.

2.2 Motivating Scenario

We consider a self-adaptive application for the managementof the truck fleet (80,000 to 1,000,000
trucks) of a company specialized in the transportation of fragile products. The trucks do not have
the same characteristics: some are equipped with good a air conditioning system, while others
provide a robust slip system. In the same way, transported goods do not have the same re-
quirements: some are very sensitive to temperature variations, while others need high security
systems. The overall objective of the application is to makesure the trucks reach their desti-
nation on time. The application must be able to detect stop times, temperature variation inside
containers, security violation and truck position. The application is also connected to remote
services, like the weather service or the city traffic service. The self-adaptive application must
also notify the destination platform about truck arrivals.All the aforementioned information is
sent to the central control center, which processes and decides which adaptation process can be
triggered. From the analysis of the data exchanged between the nodes (hosts) of the application,

Proc. CAMPUS 2010 2 / 6



ECEASST

several adaptations can result, such as the frequency of thepositioning requests or the number of
resources (server node) allocated to process data.

3 Feedback Control Loops Engineering

This section introduces the design and runtime architecture of FCL for the scenario presented in
Section2 using our approach.

3.1 Feedback Control Loop Metamodel

+name: String
Node

Edge

 #name:String
Localisation

Stabilisation Security QoS

*

NodeType

Planner

 
Actor

Analyser

Sensor

 
Property

Time AccuracyEncryption

+Mobile

+Stable

<<enumeration>>

HostType

 
Processor

+name:String

System 
Graph

#hostType: HostType
Host

from

to

0..* *

1..*

 
Property

Figure 2: Feedback Control Loop Metamodel

One way to provide visibility for FCL in an
application, is to find a way of specifying re-
quired control features. To meet this goal,
we present here a meta-model to express con-
trol properties in the application. The pre-
sented metamodel allows to express control
elements concepts likesensors, processors,
or actorswhich correspond to architectural el-
ements aiming tosense, process, or act on the
system respectively. The metamodel charac-
terizes also the process flow between the ele-
ments of the system, by offering concepts to
express non-functional properties such as sta-
bilization or security. All these concepts can
be used at design time by the application architect in order to specify control elements of the sys-
tem, using annotation artefacts. The following section shows an example of how this metamodel
can be used, by presenting a variant of the data processing model for the scenario presented
above.

3.2 Data-oriented Modelling of Feedback Control Loops

Our model is inspired by the context policy specification of the COSMOS context processing
framework [RCS08]. Concretely, the data processing model that we defined is a connected
graph where the nodes reflect processed data, and the edges identify data dependencies. Nodes
on the left side of Figure3 are raw data sensors, while the right-side nodes describe decision
actuators. Nodes located in the middle are called processor(analyzer, planner) nodes. The data
therefore flows through the nodes, where it is incrementallytransformed into information of an
higher level of abstraction.

Figure3 shows the specification of the real-time truck tracking infrastructure, that we intro-
duced in Section2. The shaded nodes of the graph identify data sensors and effectors of the
infrastructure, whose location is statically assigned. For example, theTruck Positionnode is
shaded to specify that the associated sensor is necessarilydeployed in the truck. White nodes
represent data processors, whose host is not explicitly identified and can therefore be deployed
in any part of the infrastructure.

3 / 6 Volume 28 (2010)



Modelling Feedback Control Loops

Truck

Position Tolerance 

Distance

Progression 

Plan

Out of 

Corridor

Frequency

Retrieval

Illegal

Stop

Long Period

Stop

Corridor 

Report

Route Plan

Traffic 

Information

Hatchback 

Status

Hatchback 

Open
Hatchback 

Report

 Stop 

Report

Arrival

Truck 

Timestamp

Truck 

Identifier

Trailer

Position

Abnormal 

Distance Trailer 

Report

Progression 

Report

Truck 

Delay

Truck 

Ahead

Checkpoints

Checkpoint 

Distance

Tolerance 

Area

Checkpoint 

Area

Payment 

Report

Departure

Checkpoint 

Report

Monitor Analyse Plan Execute

@Qos (Encrypted)

@QoS (Data Precision)

@QoS (Data Precision)

@Stabilization (Fuzzy Logic)

@Stabilization (Fuzzy Logic)

@Host(hatchback)

@Host(Trailer)

@Host(Truck)

@Host(Company)

@Host(Company)

@Host(Truck)

@Host(Truck)

@Host(Hatchback)

@Host(Truck)

@Host(Truck)

@Host(Truck)

@Host(Truck)

@Host(Truck)

@Host(Truck)

@Host(Trailer)

@Qos (Encrypted)

@QoS (Data
 Precision)

@Stabilization (Fuzzy Logic)

@S
tab
iliz
atio

n (F
uzz

y L
ogi
c)

Figure 3: Data Processing Model of the Feedback Control Loop.

Trailer

Truck

Geo Hub

Customer

Company

Internet

Figure 4: Physical Infrastructure Deployment
Model.

Then, the deployment infrastructure shown
in Figure 4, specifies how the infrastructure
is deployed as a network of physical or vir-
tual devices, which can eventually host the
data processors. The connections between the
devices describe the available communication
links.

3.3 Deployment and Execution of Feedback Control Loops

This section describes the runtime part of our approach, which exploits the data-oriented specifi-
cation of the FCL, to generate a component-based infrastructure that implements it. In particular,
during the feedback loop generation process, we convert thepreviously introduced models into
software components, by combining the data processing and the deployment infrastructure mod-
els. We can assign the unshaded data processors to the devices of the infrastructure. For each
unallocated data processor, the algorithm computes the list of devices which are 0 or 1-hop away
from the data dependencies. Then, the most relevant device selected for hosting the data proces-
sor is the one that minimizes the memory consumption and the communication cost. Figure5
depicts a candidate architecture obtained when applying this algorithm.

The resulting architecture is mapped to theService Component Architecture(SCA) [SCA]
standard by applying the following rules:i) the nodes of the connected graph are mapped into
primitive components, ii) local data dependencies are converted intocomponent wires, while
remote data dependencies are exposed throughbindings, and finallyiii) nodes that are located on
the same device are grouped withincomposite components.

Proc. CAMPUS 2010 4 / 6



ECEASST

Customer

GeoHub

Truck

Internet

Trailer

Company

p
u
s
h

p
u
s
h

p
u
s
h

p
u
s
h

p
u
s
h

p
u
s
h

p
u
s
h

p
u
s
h

p
u
s
h

p
u
s
h

push push

push push

push push

pull pull

push push

push push

A

Primitive Data Component Composite Component Remote SCA Binding Local Wire Connection

Hatchback 

Status

Hatchback 

Open

Trailer

Position

Route Plan

ArrivalDeparture

Truck

Position

Tolerance 

Distance

Progression 

Plan

Out of 

Corridor

Retrieval 

Frequency

Illegal

Stop

Long Period

Stop

Corridor 

Report

Traffic 

Information

Hatchback 

Report

Stop Report

Truck 

TimestampTruck 

Identifier

Abnormal 

Distance

Trailer 

Report

Progression 

Report
Truck Delay

Truck AheadCheckpoints

Checkpoint 

Distance

Tolerance 

Area

Checkpoint 

Area

Payment 

Report

Checkpoint 

Report

Figure 5: Component-based Architecture of the Feedback Control Loop.

4 Related Work

The RAINBOW [GCH+04], ENTROPY [HLM+09], and CAPPUCINO [RRS+09] frameworks pro-
vide components that fulfill theMAPE Loop(cf. section2.1) phases to support self-adaptation.
Nonetheless, these frameworks propose a static or closed infrastructure for managing the adap-
tation policies. Besides that, in terms of autonomic software system, literature abounds of
many resources, such asKX (Kinesthetics eXtreme) [KPGV03], Astrolabe [BRV03], or Unity
[CSWW04]. However, as in the case of autonomic frameworks, the lack of transparency in the
design and the management of the FCL systems is one of the major limitations to the scalability
of such systems. To solve the problem of the opacity and the non-scalability of existing FCL,
some recent research works suggest that, “the feedback loops that control self adaptation must
become first-class entities.” [BSC+09]. The approach we propose in this paper stands in that
perspective. The idea is to generalize the autonomic MAPE model and to extend the CAPPU-
CINO framework to address very-large-scale environments. In particular, we propose to reify
the MAPE model as a very-large-scale data processing infrastructure, which converts data col-
lected in the environment into real-time reactions. The data processing distribution is driven by
the specification of data dependencies [RCS08] in order to maximize the performances of the
system and balance the processing load among the nodes available in the environment.

5 Conclusion

We have outlined in this paper an approach for the engineering of FCLs drawing on the data
flow model. We argue that, the data flow model comes with additional information that can be
crucial for FCL engineering earlier at design time, to understand ongoing control mechanisms,

5 / 6 Volume 28 (2010)



Modelling Feedback Control Loops

and later at runtime for an efficient adaptation of the system. We used thetruck trackingscenario,
to explain how to specify a data-oriented model of a FCL, and how to generate the underlying
execution platform with the SCA standard. As futur works, weare planning to evaluate the
overhead introduced by our approach in a realistic deployment.

Acknowledgements: The work reported in this paper is partly funded by the ANR ARPEGE
SALTY project (http://salty.unice.fr)under contract ANR-09-SEGI-012 and FEDER
project.

Bibliography

[BBD+02] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom. Models and issues in data stream
systems. InIn Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems (PODS’02). Pp. 1–16. ACM, New York, NY, USA, 2002.

[BRV03] K. P. Birman, R. V. Renesse, W. Vogels. Navigating inthe storm:using astrolabe for dis-
tributed self-configuration, monitoring and adaptation. In Proceedings of the autonomic
computing workshop, 5th international workshop on active middleware services (AMS’03).
Pp. 4–13. 2003.

[BSC+09] Y. Brun, G. D. M. Serugendo, H. G. Cristina Gacek, H. Kienle, H. M. Marin Litoiu,
M. Pezzè, M. Shaw.Software Engineering for Self-Adaptive Systems (SEfSAS). LNCS 5525,
chapter Engineering Self-Adaptive Systems through Feedback Loops, pp. 48–70. Springer,
2009.

[CSWW04] D. M. Chess, A. Segal, I. Whalley, S. R. White. Unity: experiences with a prototype au-
tonomic computing system. InProceedings of IEEE first international conference on auto-
nomic computing. Pp. 140–147. May 2004.

[GCH+04] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, P. Steenkist. Rainbow: Architecture-
Based Self-Adaptation with Reusable Infrastructure.IEEE Computer37(10):46–54, Oct.
2004.

[HLM +09] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, J. Lawall. Entropy: a Consolidation Man-
ager for Clusters. InProceedings of the ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments (VEE’09). Pp. 41–50. ACM, New York, NY, USA, 2009.

[IBM06] IBM. An Architectural Blueprint for Autonomic Computing. White paper, June 2006.

[KPGV03] G. Kaiser, J. Parekh, P. Gross, G. Valetto. Kinesthetics eXtreme: an external infrastruc-
ture for monitoring distributed legacy systems. InProceedings of the autonomic computing
workshop, fifth international workshop on active middleware services (AMS’03). Pp. 22–30.
ACM, June 2003.

[RCS08] R. Rouvoy, D. Conan, L. Seinturier. Software Architecture Patterns for a Context Processing
Middleware Framework.IEEE Distributed Systems Online (DSO)9(6):12, June 2008.

[RRS+09] D. Romero, R. Rouvoy, L. Seinturier, S. Chabridon, D. Conan, N. Pessemier.Enabling
Context-Aware Web Services: Methods, Architectures, and Technologies. Chapter Enabling
Context-Aware Web Services: A Middleware Approach for Ubiquitous Environments,
pp. 113–135. Chapman and Hall/CRC, July 2009.

[SCA] SCA Service Component Architecture.http://www.osoa.org.

Proc. CAMPUS 2010 6 / 6


	Introduction
	Background & Scenario
	MAPE-K Loop
	 Motivating Scenario

	Feedback Control Loops Engineering
	Feedback Control Loop Metamodel
	Data-oriented Modelling of Feedback Control Loops
	Deployment and Execution of Feedback Control Loops

	Related Work
	Conclusion

