
Electronic Communications of the EASST
Volume 29 (2010)

Proceedings of the
Ninth International Workshop on

Graph Transformation and
Visual Modeling Techniques

(GT-VMT 2010)

On A Graph Formalism for Ordered Edges

Maarten de Mol and Arend Rensink

12 pages

Guest Editors: Jochen Küster, Emilio Tuosto
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

On A Graph Formalism for Ordered Edges

Maarten de Mol∗ and Arend Rensink

http://www.cs.utwente.nl/∼molm, molm@cs.utwente.nl
http://www.cs.utwente.nl/∼rensink, rensink@cs.utwente.nl

Department of Computer Science, University of Twente
Enschede, The Netherlands

Abstract: Though graphs are flexible enough to model any kind of data structure
in principle, for some structures this results in a rather large overhead. This is for
instance true for lists, i.e., edges that are meant to point to an ordered collection of
nodes. Such structures are frequently encountered, for instance as ordered associa-
tions in UML diagrams. Several options exist to model lists using standard graphs,
but all of them need auxiliary structure, and even so their manipulation in graph
transformation rules is not trivial.

In this paper we propose to enrich graphs with special ordered edges, which more
naturally represent the intended structure, and define how lists can be manipulated.
We show that the resulting category satisfies sufficient HLR properties to apply stan-
dard algebraic graph transformation. We believe that in a context where lists are
common, the cost of a more complicated graph formalism is outweighed by the ben-
efit of a smaller, more appropriate model and more straightforward manipulation.

Keywords: Graph Rewriting, Ordered Edges

1 Introduction

The context of the work in this paper is graph transformation. This means that we use graphs,
essentially only consisting of nodes and edges, to model different kinds of structures such as
real-world systems or software concepts. A rich source of such structures comes from soft-
ware engineering, in the form of UML models. Graph transformation offers a mathematically
well-founded method for systematically encoding changes to graphs; this in turn can be used to
describe the dynamics of the system being modelled.

In principle, appropriate compositions of the basic building blocks of nodes and binary edges
can encode arbitrary structures. In many cases the resulting graphs reflect the original structures
quite naturally. There are, however, situations in which the encoding is awkward, for instance
because it requires auxiliary elements in the graph that do not directly reflect anything from
the original structure. This impacts the understandability and complexity of the encoding, and
thus decreases the usability of graph transformation. In such cases, one may choose to use a
richer graph formalism instead, which more closely reflects the structures at hand. Examples of
enrichments, introduced exactly for the reason of modelling particular structures more naturally,
are: attributed graphs [EEPT06a], hierarchical graphs [DHP02], and hypergraphs [Hab92].

∗ Supported by the EU Artemis project CHARTER

1 / 12 Volume 29 (2010)

http://www.cs.utwente.nl/~molm
mailto:molm@cs.utwente.nl
http://www.cs.utwente.nl/~rensink
mailto:rensink@cs.utwente.nl

On A Graph Formalism for Ordered Edges

There is, however, a price to pay for graph enrichments, in the form of added complexity in
their usage and understanding (often called the learning curve), as well as in their manipulation,
both on the level of theory and of implementation. Enrichments in the graph formalism are only
justified if the complexity increase is outweighed by the corresponding advantages in modelling.

In this paper we propose an enrichment of the basic graph formalism to cope with the structural
concept of ordered lists. Such lists occur frequently in practice, for instance in the form of
ordered associations in UML diagrams or array- and list-like structures in software. We will
argue that encoding lists using simple graphs introduces spurious elements and thus increases
their complexity; also the manipulation of the encodings is non-trivial.

In order to justify the cost of a more complex formalism on the level of theory, we show
that DPO graph rewriting is well-behaved in the resulting category of list graphs. For a suitably
chosen admissible[CL03] subclass of M-morphisms, we prove that pushouts along M-morphisms
exist, and that these pushouts are partial VK squares[Hei09]. We then make use of [Hei09], in
which Heindel proves that these conditions imply the important HLR properties[Pad93]. Note
that our category is not HLR adhesive [EEPT06b]; see Section 3 for a counter-example.

In the next section, we motivate and explain our extension on an intuitive level, using an exam-
ple inspired by the Olympic winter games. After that, Section 3 presents the formal definitions
and states the main theoretical result. We show the use of list graphs in Section 4. Finally,
Section 5 discusses related work and presents conclusions.

2 Motivation

As a motivating example, we use sporting events taking place in the 2010 Olympic winter games.
In particular, we concentrate on ice-skating. Before the games, every skating event has a list of
participants; the order in the list corresponds to their starting order at the event. For instance,
Figure 1 shows three events (1500 m, 5 km and 10 km for men). The 1500 m event has four
participants, in the order from top to bottom; the 5 km event has three participants, namely
Kramer, Tuitert and Davis (in that order); and the 10 km has an empty list of participants.

Intuitively straightforward operations one may want to perform on such a list are:

• Appending an element when a new participant is enrolled;

• Removing participants convicted of doping abuse;

• After the event, moving the winner to the top of the list.

A more complex operation is list reversal. For instance, if we started with a ranking list (in which
the seasonal best skater is at the top), then it needs to be reversed to get the starting order.

2.1 Plain graph encoding

There are several ways to encode such lists using plain graphs, consisting only of nodes and
binary edges. We discuss the main issues.

• The core problem is to specify the order of the elements. For this purpose, one can either
rely on an implicit ordering, for instance using indices, or introduce an explicit ordering

Proc. GT-VMT 2010 2 / 12

ECEASST

Part
Kramer

Event
1500m

Part
Davis

Part
Fabris

Event
5000m

Part
Tuitert

Event
10000m

•
parts

•

•

•

•
parts

•

•

•
parts

Figure 1: Skating events with overlapping lists of participants

using special edges. Indices require updating whenever elements are added or removed
(except at the end of the list).

• Elements can be shared among lists (as Figure 1 shows), or may even occur multiple
times in the same list. For this reason, the indices or special edges specifying the ordering
cannot be incident to the list elements themselves (this would introduce confusion between
the lists); rather, one needs an intermediate layer of “slot” nodes.

• It is often convenient, or even necessary, to express that a given element is in a particular
list. To encode this information, we need further special edges pointing from the list owner
to the elements, or vice versa.

• Many list operations explicitly refer to the first or last element. To express this, either
we need negative application conditions stating that the element has no predecessor, re-
spectively successor; or this information can be captured using special edges — which,
however, then have to be maintained while manipulating the list.

• The empty list needs to be represented in some special way, as in that case there are no
element or slot nodes to attach information to.

Clearly, such a graph representation is expensive, in the sense of requiring many auxiliary el-
ements; moreover, unless one is careful, the last two issues will require case distinctions in
transformation rules. From programming, we know an encoding for lists that copes with most of
the issues relatively well (in particular avoiding case distinctions), but is expensive in terms of
overhead: namely, a circular linked list consisting of “slot” nodes pointing to the elements and
back to the list owner, and a special “head” node without an element, marking the start and the
end of the list. Figure 2 shows a plain graph encoding of the structure of Figure 1.

Figure 3 shows an example rule that will result in the winner of an event being moved to the
start of the list. The figure shows the left hand side and right hand side of the rule; the connecting
morphisms are implicit in the positioning of the nodes. The unlabelled nodes are meant to match
any node in the graph; in particular, they may match Head or Slot nodes. A solution that works
for properly typed graphs requires inheritance. Note that this only works under the assumption
that non-injective matches are allowed.

An important observation is that the issues discussed above are exactly those one encounters
while programming with lists. This goes against the idea that graph transformation provides an

3 / 12 Volume 29 (2010)

On A Graph Formalism for Ordered Edges

Event
5000m

Head

Slot

Slot

Slot

Event
10000m

Slot
Part
Davis

Slot

Slot

Part
Fabris

HeadHead

Part
Tuitert

Event
1500m

Part
Kramer

Slothead

next

parts

next

next

elem

head

elem

next

elem

head

elem

next

elemhead

next

head

next

head

next

parts

head

head

head

next

elem

parts

elem

head

next

Figure 2: Plain graph representation of the structure in Figure 1

PartHead

Slot

Event

next

next

head

elem

next

parts winner

head

Event

Slot

PartHead

headnext

next

next
head

winnerparts

elem

Figure 3: Plain graph rule moving the winner of an event to the top of the list.

abstract, declarative way of manipulating structures. If the graph model is used for the design
of a software system, from which an implementation is to be derived, then the graph represen-
tation choices will influence the implementation, possibly in unintended ways. For instance, the
encoding in Figure 2 makes it unnatural to choose an array-based implementation.

2.2 List edges

The proposal in this paper is to enrich graphs with explicit support for lists, avoiding both the
overhead and the “programming” nature of the plain graph encoding. We do this by extending
the notion of edges: rather than binary edges with a single source node and a single target
node, we propose to use list edges of which the target is a sequence of nodes. Thus, list edges
are somewhat like hyperedges in that they may have different numbers of tentacles: however,
hyperedges typically have a fixed number of tentacles (called the arity) determined by their
labels, which is not the case for list edge arity.

For instance, Figure 1 is a straightforward visualisation of a graph with list edges from the
Event nodes to different sequences of Part nodes. The string of “knots” in the edge gives the
order of the elements in the list; the arrows from the knots point to the actual elements.

Proc. GT-VMT 2010 4 / 12

ECEASST

Part

Event

winner

parts
•

•

•

Part

Event

winner

parts
•

•

•

•

•

Figure 4: List graph rule moving the winner of an event to the top of the list.

Part
Kramer

Event
1500m

Part
Davis

Part
Fabris

Event
5000m

Part
Tuitert

•
parts

•

•

•

winner

winner

•
parts

•

•

Part
Kramer

Event
1500m

Part
Davis

Part
Fabris

Event
5000m

Part
Tuitert

•
parts

•

•

•

winner

winner

•
parts

•

•

Figure 5: Applying Figure 4 twice to the left hand side graph yields the right hand side graph

The real innovation, however, does not lie in the graphs but in the rules. For these, we introduce
a new type of node, called list nodes, which will only appear in rules and stand for arbitrary
sequences of nodes from the host graph. List nodes can only occur as edge targets, never as
sources. Graph morphisms are extended by matching list nodes either to a sequence of plain
nodes, or to a single list node. This is extended to list edges in the natural way.

For instance, Figure 4 shows the same rule as Figure 3, but this time for list graphs. The
‘doubled’ nodes are list nodes. The parts edge in the left hand side matches any list edge in
the host graph from an Event node, pointing to an arbitrary sequence of nodes (matched by the
upper list node of the LHS), followed by the Part-node that the winner-edge points to, followed
by another arbitrary sequence of nodes (matched by the lower list node of the LHS). The effect
of the rule is to delete this list edge and create a new one, in which the Part-node and the first
sub-sequence are swapped. This has the effect of moving the Part-node to the top of the list.

An example of the application of this rule is shown in Figure 5. The initial state is the same
as in Figure 1, but now with Kramer and Tuitert indicated as winners for the 1500m and 5000m
respectively. The rule can be applied twice, resulting in the right hand side graph.

3 Formalisation

In this section, we will show that lists can be incorporated in graph theory in a sound manner.
For this purpose, we extend a standard representation of multi-sorted graphs with list nodes and
list edges. We define an admissible subclass of M-morphisms, and prove that pushouts along
M-morphisms exist and are partial VK squares. Using [Hei09], this implies that sufficient HLR
properties hold. We will use double pushouts (DPO) for the formalisation of graph rules.

First, we extend a standard (V,E,src, tgt, lab) representation of multi-sorted graphs, by: (1)
splitting V into V̂ (normal nodes) and V (list nodes); and (2) changing the result of tgt from V (a

5 / 12 Volume 29 (2010)

On A Graph Formalism for Ordered Edges

single node) to V? (a sequence of nodes, may be empty). In other words, we add list nodes and
replace one-to-one (plain) edges with one-to-many (list) edges:

Definition 1 (multi-sorted list graphs)
Let G = (V̂ ,V ,E,src, tgt, lab) be a multi-sorted list graph, where:
◦ V̂ and V are the sets of plain nodes and list nodes respectively (let V denote V̂ ∪V)
◦ E is the set of (list) edges
◦ V̂ , V and E are disjoint
◦ src : E→ V̂ is the function that yields the source node of an edge
◦ tgt : E→ V? is the function that yields the sequence of target nodes of an edge
◦ lab : E→ L is the labelling function (assuming a fixed set of labels L)

As usual, we will use graph homomorphisms as arrows in our category. A homomorphism
f : G→H is a structure preserving mapping of nodes and edges. In our category, three cases are
distinguished: (1) plain nodes are mapped to plain nodes; (2) list nodes are mapped either to list
nodes or to sequences of plain nodes; and (3) list edges are mapped to list edges. The one-to-one
mapping of list nodes will be used to restrict our graph rules, and the one-to-many mapping of
list nodes will be used for the matching of a rule to a graph.

For the sake of convenience, we will combine the mappings of nodes into a single function that
always produces a sequence. Furthermore, we will often implicitly convert a singleton sequence
to its element or vice-versa; it will always be clear from the context when we do this. Finally, we
will write f ?

V for the sequence homomorphism that is generated by fV ; that is, if fV is a function
from VG to V?

H , then f ?
V is the natural extension that maps V?

G to V?
H .

Definition 2 (homomorphisms)
Let G = (V̂G,V G,EG,srcG, tgtG, labG) and

H = (V̂H ,V H ,EH ,srcH , tgtH , labH) be multi-sorted list graphs.
Let f = (fV , fE) with fV : VG→ V?

H and fE : EG→ EH map the nodes and edges of G to H.
Then, f is a homomorphism when the following conditions hold:
◦ for all vg ∈ V̂G there exists a vh ∈ V̂H such that fV(vg) = 〈vh〉
◦ for all vg ∈V G, there either exists a vh ∈V H such that fV(vg) = 〈vh〉, or fV(vg) ∈ V̂ ?

H
◦ labH ◦ fE = labG

◦ srcH ◦ fE = fV ◦ srcG

◦ tgtH ◦ fE = f ?
V ◦ tgtG

The composition of two homomorphisms can now easily be defined by means of a combination
of function composition and natural extension to sequences. By construction, it follows that the
result is a homomorphism as well, which allows us to define list graphs as a category.

Definition 3 (composition of homomorphisms)
If f = (fV , fE) : G→H and g = (gV ,gE) : H→ I are homomorphisms on list graphs, then g◦ f
is defined by (g?

V ◦ fV ,gE ◦ fE).

Definition 4 (list graphs as a category)
The category GL consists of list graphs (Definition 1) as objects, homomorphisms (Defini-

Proc. GT-VMT 2010 6 / 12

ECEASST

tion 2) as arrows and composition as in Definition 3. The identity arrows are the homomor-
phisms that are pairs of identity functions.

Next, we define a suitable subclass of M-morphisms and show that it is admissible [CL03]. In
this paper, we present a part of the proof only; the full proof can be found in [MRH10].

Definition 5 (M-morphisms in GL)
A monomorphism f = (fV , fE) : G→ H in GL belongs to the subclass M if for all vG ∈ V G

there exists a vH ∈ V H such that fV(vG) = 〈vH〉. In other words: a M-morphism does not
perform matching of list nodes to sequences, but maps them one-to-one to list nodes only.

Theorem 1 (M is admissible)
The subclass M is admissible: M contains the identity morphisms, GL has pullbacks along
M-morphisms and the opposing morphism in the pullback diagram is a M-morphism itself.

Proof (sketch).
◦ Identity morphisms always map list nodes to themselves, and are therefore M-morphisms.
◦ Pullbacks are constructed as follows. Suppose that B−b→ A←c− C, and that b is a M-morphism.

Let AB be the subgraph of A that is formed by the image of b. Because b is a M-morphism, B
is isomorphic to AB. Construct the largest subgraph D ⊆C such that c maps all elements of
D to elements of AB. Then, D is the pullback of B −b→ A←c− C, with D→C by means of idD

and D→ B by means of z◦ c, where z is the isomorphism between AB and B.
◦ The opposing morphism is idD, which is a M-morphism.

Next, we show that GL also has pushouts along M-morphisms. Again, we we present a part
of the proof only; the full proof can be found in [MRH10].

Theorem 2 (pushouts)
GL has pushouts along M-morphisms.

Proof (sketch).
◦ Pushouts are constructed as follows. Suppose that B←b− A−c→ C, and that b is a M-morphism.

Assume that B and C are disjoint (if not, find isomorphic graphs that are disjoint). Let BA be
the subgraph of B that are in the image of b. Because b is an M-morphism, A is isomorphic
to BA. Then, D = C∪ (B\BA) is the pushout of B←b− A −c→ C, with C→ D by means idC and
B→D by means of idB\BA ∪ (c◦ z), where z is the isomorphism between BA and A. Note that
when edges are added by b (i.e. they appear in B\BA), then the sources and targets of these
edges have to be transformed by means of idB\BA ∪ (c◦ z) as well.
◦ Note that the opposing morphism is again an identity (idC), and is therefore a M-morphism.

The next step is to show that the constructed pushouts form partial VK squares [Hei09]. This
is a more involved proof, for which we refer to the technical report [MRH10] completely. Here,
we present the definition of partial VK squares only:

Definition 6 (partial VK squares)
A pushout A

D
B

C is a partial Van Kampen square if for each commutative cube on top of the
pushout as shown in Figure 6 on the left, which has pullback as back faces such that both b

7 / 12 Volume 29 (2010)

On A Graph Formalism for Ordered Edges

B C
A

D

B′ C′
A′

D′

f
m

a

b c

f ′
m′

n′

n d

g′

g

⇒

 B C
A

D

B′ C′
A′

D′

f
m

a

b c

f ′
m′

n′

n d

g′

g

⇔

B C
A

D

B′ C′
A′

D′

f
m

a

b c

f ′
m′

n′

nd

g′

g

Figure 6: Partial Van Kampen square property

and c are M-morphisms, its top face is a pushout if and only if the front faces are pullback and
the morphism d is an M-morphism (as illustrated in Figure 6 on the right).

Theorem 3 (pushouts are partial VK squares)
The pushouts in GL are partial VK squares.

Proof: see technical report [MRH10].

In [Hei09], Heindel has shown that the important HLR properties hold in a category with
admissible M-morphisms, pushouts along M-morphisms and partial VK squares. Therefore, the
combination of Theorems 1, 2 and 3 ensures that graph rewriting is well-behaved in our category
GL, using the following standard definition of double pushout (DPO) rewriting:

Definition 7 (double pushout rewriting)
A graph production L←l− K −r→ R is applied to a host graph G with the following procedure:
◦ Find a morphism m that maps L to G, and a morphism k that maps K to D such that the

pushout of K −l→ L and K −k→ D is G (with m).
◦ Then, build the pushout of K −r→ R and K −k→ D, which is the result of applying the rule.

If either of the morphisms m or k does not exist, the rule cannot be applied. The well-
behavedness shown above ensures that k is unique (if it exists).

Contrary to our earlier beliefs, GL is not HLR adhesive [EEPT06b].
This is illustrated by the cube on the right, in which v and w are plain
nodes and l is a list node (and no edges occur). The arrows are inclu-
sions, except the one that maps l to 〈v,w〉. The bottom face is a pushout,
the back faces are pullbacks, but the top face is not a pushout. The cube
is therefore an example of a pushout that is not a VK square.

∅

{v} {w}

{v,w}

∅

∅ ∅

{l}

Unfortunately, the current definitions, although sound, still give rise to some strange behaviour.
Suppose that p = (L← K→ R) is a production. Then:

• If R contains list nodes that have no counterpart in K, then the application of p introduces
list nodes in the host graph. This is undesirable, because a list node in a normal graph has
no meaning; a list node only makes sense in a rule.

• Conversely, if L contains list nodes that have no counterpart in K, then p can never be
applied to graphs that do not contain list nodes. This is due to the pushout construction
(see Theorem 2), which copies L\K in the host graph.

Proc. GT-VMT 2010 8 / 12

ECEASST

Event
rank

Event

•
parts

rank

copy

Event

Part
parts

•
copy

•

Event

Part

copy

parts

•

•

Event

•
copy

Event

start build finish

Figure 7: List graph rules creating a reversed parts list out of a rank list.

We will disallow this strange behaviour by demanding that both the morphisms in a production
must be surjective with respect to list nodes, which ensures that L and R cannot contain list nodes
that do not have a counterpart in K.

Definition 8 (surjective M-morphisms)
A M-morphism f = (fV , fE) : G→ H in GL is surjective if for all vH ∈ V H there exists a
vG ∈V G such that fV(vG) = 〈vH〉.

Definition 9 (productions in GL)
For graph rewriting in the category GL, only productions p = (L←l− K −r→ R) are allowed in
which both l and r are surjective M-morphisms.

It turns out that l and r being surjective is not only a necessary, but even a sufficient condition
for ensuring that rules do not introduce list nodes. A proof of this property can again be found
in the technical report [MRH10]. This implies that graph rewriting in our category GL always
transforms normal graphs (i.e. without list nodes) to normal graphs.

4 List reversal

We show some more applications of list graph transformations, inspired by the setting of Sec-
tion 2. In particular, we show how we can obtain a participants list, parts, from a ranking list,
rank, by copying and reversing the list. The entire behaviour is specified by the rules in Figure 7.

• The start rule copies the rank list into a copy list, and creates an empty parts list. Note that
this is a “shallow” copy: the elements are not copied but shared among the lists.

• The build rule repeatedly removes the last element from the copy list and appends it to the
parts list. By applying this rule as long as possible, eventually the copy list will be empty,
at which point the parts list contains all the elements of the original copy list, and hence of
the rank list, in reverse order.

• The finish rule deletes the empty copy list, completing the reversal process. Note that this
rule is only applicable if the copy list is indeed empty.

Figure 8 shows a sequence of applications of these rules.

9 / 12 Volume 29 (2010)

On A Graph Formalism for Ordered Edges

Part
Kramer

Part
Fabris

Event
5000m

Part
Davis

rank
•

•

•

−start−−→

Part
Kramer

Part
Fabris

Event
5000m

Part
Davis

parts •

copy

•

•

•

rank
•

•

•

−build−−→

Part
Kramer

Part
Fabris

Event
5000m

Part
Davis

parts

•

copy

•

•

rank
•

•

•

−build−−→

Part
Kramer

Part
Fabris

Event
5000m

Part
Davis

parts

•

•

copy

•
rank
•

•

•

−build−−→

Part
Kramer

Part
Fabris

Event
5000m

Part
Davis

parts

•

•

•

copy •
rank
•

•

•

−finish−−→

Part
Kramer

Part
Fabris

Event
5000m

Part
Davis

parts

•

•

•
rank
•

•

•

Figure 8: Example production sequence for the rules in Figure 7.

5 Conclusion

In this section, we look back on what we have achieved, and list the good and bad points. We
also briefly discuss related work and future extensions.

5.1 Evaluation

We have defined list graphs in order to directly capture ordered structures. We have shown that
encoding such structures into plain graphs is awkward and, worse, introduces programming-like
structures that break the inherent abstraction of graph-based models. In contrast, the construction
and manipulation of list graphs is much more abstract and results in smaller, more intuitive
graphs and rules. We have shown that list graphs fit into the theory of algebraic graph rewriting,
and so the cost of the more complex graph formalism is low, at least on the level of theory.

On the downside, the way lists are manipulated on the theoretical level is not attractive from
an implementation point of view. List edges are deleted and created as a whole, which, when
taken literally, would mean that entire lists are discarded and constructed every time a single
element is added or deleted. An implementation should instead recognise and efficiently deal
with frequently occurring patterns of list usage. A first attempt is to identify re-use of list edges
with a static analysis of stable nodes and edges, but it is yet unclear how this can be generalised.

It may be remarked that our lists break the usual symmetrical treatment of edge sources and
targets, since list nodes may only occur at an edge target. In this regard, we have been led by
the intended application of the enriched formalism. From the theoretical perspective there is no
reason to forbid list nodes at edge sources: our theory smoothly extends to standard hyperedges
(keeping our special notion of morphism), which do not have a distinguished source node at all.

Proc. GT-VMT 2010 10 / 12

ECEASST

Part

length=i-1Event
pos=i

new

parts
•

•

Part

length=i-1Event
pos=i

parts
•

•

•

Figure 9: List graph rule inserting an element at a specified position.

5.2 Related work

As far as we have been able to determine, there is essentially no prior work on enriching the
basic graph formalism with lists. On a more pragmatic level, however, many tools offer ways
to deal with ordered structures or associations, if only by suggesting a default encoding or syn-
tactic sugar. For instance, FUJABA reflects programming structures such as lists and arrays into
the rules, and provide notations to traverse them conveniently (see [MZ04]). FUJABA’s handling
of ordered edges is formalised in [Zün01]. For VIATRA2 it is suggested in [VB07] to use rela-
tions over relations to encode ordering. In general it is difficult to find information about such
pragmatic solutions.

Remotely related are extensions to deal with parallel or amalgamated rule applications (e.g.,
[Tae97]), since in this setting the rules also have nodes that can be mapped to more than one graph
node (a prime instance are the set nodes of PROGRES, see [Sch97]). However, the connection
stops there: the purpose and technical contribution of this work is entirely different.

5.3 Future work

So far, the concepts in this paper only exist in theory. The proof of their usability can only come
through an implementation. The natural way to go is to extend our research vehicle GROOVE (see
[Ren04]) to list graphs. However, this will require a major refactoring to generalise to hyperedges
— quite apart from the fact that GROOVE implements SPO and not DPO rewriting.

Instead, we first plan to use these ideas to define a suitable transformation language in the
project CHARTER1, in the context of which this work has been carried out. For this project
we will provide a tool that compiles graph transformation systems to Java source code which
accesses and manipulates the actual graphs through a predefined API. Since ordered lists and
arrays are a common feature in the graphs we will have to deal with, it is imperative to have a
suitable, declarative way to specify their transformation.

A theoretical extension that would add quite a bit of power to the formalism, and make it even
more generally usable, is indexing. Currently there is no way to specify or reason about the
position of an element in a list. We conjecture that this requires only a minor extension, namely
to add a default unmodifiable length attribute to all list nodes. Morphisms then have to respect
the length of list nodes, in the following way: if a morphism maps a list node to another list
node, then the value of the length attribute should remain unchanged, whereas if the image is a
sequence of plain nodes, the value of the length attribute should equal the actual length of the
sequence. For instance, Figure 9 specifies that a Part-node should be inserted at index i.

1 See http://charterproject.ning.com/.

11 / 12 Volume 29 (2010)

http://charterproject.ning.com/

On A Graph Formalism for Ordered Edges

Bibliography

[CL03] J. R. B. Cockett, S. Lack. Restriction Categories II: Partial Map Classification. The-
oretical Computer Science 294(1/2):61–102, 2003.

[DHP02] F. Drewes, B. Hoffmann, D. Plump. Hierarchical Graph Transformation. J. Comput.
Syst. Sci. 64(2):249–283, 2002.

[EEPT06a] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamental Theory for Typed At-
tributed Graphs and Graph Transformation based on Adhesive HLR Categories.
Fundam. Inform. 74(1):31–61, 2006.

[EEPT06b] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Springer, 2006.

[Hab92] A. Habel. Hyperedge Replacement: Grammars and Languages. Springer-Verlag
New York, Inc., 1992.

[Hei09] T. Heindel. A Category Theoretical Approach to the Concurrent Semantics of
Rewriting. PhD thesis, Universität Duisburg-Essen, 2009.

[MRH10] M. de Mol, A. Rensink, T. Heindel. A Graph Formalism For Ordered Edges. 2010.
Technical Report, University of Twente, The Netherlands. To appear. Preliminary
version available at http://wwwhome.cs.utwente.nl/∼molm/list techreport.pdf.

[MZ04] T. Maier, A. Zündorf. Yet Another Association Implementation. In Giese et al.
(eds.), Proceedings 2nd International Fujaba Days. Pp. 67–72. 2004. Avail-
able at http://www.fujaba.de/fileadmin/Informatik/Fujaba/Resources/Publications/
Fujaba Days/tr-ri-04-253.pdf.

[Pad93] J. Padberg. Survey of High-Level Replacement Systems. 1993. Technical Report,
Technische Universität Berlin. See http://citeseer.ist.psu.edu/padberg93survey.html.

[Ren04] A. Rensink. The GROOVE Simulator: A Tool for State Space Generation. In Pfaltz
et al. (eds.), Applications of Graph Transformations with Industrial Relevance (AG-
TIVE). Lecture Notes in Computer Science 3062, pp. 479–485. Springer, 2004.

[Sch97] A. Schürr. Programmed Graph Replacement Systems. In Rozenberg (ed.), Hand-
book of Graph Grammars and Computing by Graph Transformations, Volume 1:
Foundations. Pp. 479–546. World Scientific, 1997.

[Tae97] G. Taentzer. Parallel High-Level Replacement Systems. TCS 186(1-2):43–81, 1997.

[VB07] D. Varró, A. Balogh. The model transformation language of the VIATRA2 frame-
work. Sci. Comput. Program. 68(3):214–234, 2007.

[Zün01] A. Zündorf. Rigorous Object Oriented Software Development. 2001. Habilitation
Thesis. Universität Paderborn.

Proc. GT-VMT 2010 12 / 12

http://wwwhome.cs.utwente.nl/~molm/list_techreport.pdf
http://www.fujaba.de/fileadmin/Informatik/Fujaba/Resources/Publications/Fujaba_Days/tr-ri-04-253.pdf
http://www.fujaba.de/fileadmin/Informatik/Fujaba/Resources/Publications/Fujaba_Days/tr-ri-04-253.pdf
http://citeseer.ist.psu.edu/padberg93survey.html

	Introduction
	Motivation
	Plain graph encoding
	List edges

	Formalisation
	List reversal
	Conclusion
	Evaluation
	Related work
	Future work

