Electronic Communications of the EASST

Volume 29 (2010)

Proceedings of the
Ninth International Workshop on
Graph Transformation and
Visual Modeling Techniques
(GT-VMT 2010)

Defining Models — Meta Models versus Graph Grammars
Berthold Hoffmann, Mark Minas

13 pages

Guest Editors: Jochen Kuster, Emilio Tuosto

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Defining Models — Meta Models versus Graph Grammars

Berthold Hoffmann?!, Mark Minas 2

hof@informatik.uni-bremen.de
Universiéat Bremen und DFKI Bremen, Germany

2Mark.Minas@unibw.de
Universitat der Bundeswehr Mhchen, Germany

Abstract: The precise specification of software models is a major concern in model-
driven design of object-oriented software. Metamodelling and graphmeas are
apparent choices for such specifications. Metamodelling has sedeeitages: it

is easy to use, and provides procedures that check automatically whethedel

is valid or not. However, it is less suited for proving properties of model$on
generating large sets of example models. Graph grammars, in contrasta offe
natural procedure — the derivation process — for generating exampuelsnand
they support proofs because they define a graph language indyctivewever,
not all graph grammars that allow to specify practically relevant modelseaity e
parseable. In this paper, we propasmtextual star grammaras a graph grammar
approach that allows for simple parsing and that is powerful enoughpiecify-

ing non-trivial software models. This is demonstrated by defining programphs,

a language-independent model of object-oriented programs, with a twtehape
(static structure) rather than behavior.

Keywords: Graph grammar, Meta-model

1 Introduction

The precise specification of software models is a major concern in modehdtesign of object-
oriented software. Such specifications should support a checkingguee for distinguishing
valid from invalid models, they should be well-suited for proofs in order ssom about the
specified models, and they should allow for automatically generating modelé¢astémat may
be used as test cases for computer programs being based on such riibdatseta-modeling
approach is an apparent choice for such specifications. It allovpsdoise model definitions and
provides checking procedures. However, it is less suited for peoadgor instance generation.
Graph grammars are another natural candidate for specifying softwaatels. They precisely
define model languages, they are well-suited for proofs becauseiiinithective way of defin-
ing a graph language, and they offer a natural procedure for aut@ihatiEenerating model
instances. Several kinds of graph grammars have been proposedliterdiere. In order to
allow for the specification of practically relevant models, we need a formdhisitnis powerful
so that all properties of models can be captured,samgblein order to be practically useful, in
particular forparsingmodels in order to determine their validity. However, easy to use graph
grammar approaches often fail to completely specify models. As a case sidpnsidepro-

1/13 Volume 29 (2010)

mailto:hof@informatik.uni-bremen.de
mailto:Mark.Minas@unibw.de

Meta Models versus Graph Grammars Eﬁ

gram graphsa language-independent model of object-oriented programs thaebagevised
for specifying refactoring operations on progrardE[DJ0Y. However, neither hyperedge re-
placement grammar®HK97], nor the equivalent star grammai3HlJM10, Theorem 2.8], nor
node replacement grammaisH97 are powerful enough for completely specifying program
graphs. Even the recently proposed adaptive star gramméatd D6, DHIM1(fail for cer-
tain more delicate properties of program graphs. Their rules must bedextdry application
conditions in order to describe program graphs completebf10].

In this paper, we propose the simpler graph grammar approacbneéxtual star grammays
an extension of star grammars that allows for easy parsing. Plain stamarelextended with
positive and negative contexts, which must exist (or must not existectsgely) in order to ap-
ply a star rule. Contexts may specify the existence of paths to certain notles hiost graph,
which may then be linked by the rule application. It turns out that prograptgr can be defined
by a contextual star grammar. Hence, this graph grammar approach ablothie fprecise spec-
ification of program graphs, i.e., non-trivial software models, supgortatural procedure for
generating model instances, is well-suited for proofs, and allows forgasing. We contrast
this grammar with the definition of program graphs using a conventional metaimwehich is
specified by a UML class diagram and logical OCL constraints.

The paper is structured as follows. $ection 2 we recall how object-oriented programs can
abstractly be represented p®gram graphs We define the language of program graphs by a
metamodel that consists of a class diagram with additional OCL constrairgs.Wéintroduce
star grammars irsection 3 show that they can defingrogram skeletonsa sub-structure of
program graphs, but fail to define program graphs themselves. Waluae contextual star
grammars irSection 4 define program graphs with them, and outline an easy parsing precedur
We discuss these specifications—by metamodels and by contextual star gsarimaection 5
We conclude with some remarks on related and future wofeiction 6

2 Graphs Representing Object-Oriented Programs

Program graphs have been devised as a language-independererggation of object-oriented
code that can be used for studying refactoring operatibtsCjJO0g. Therefore, they do not
represent the abstract syntax of an object-oriented program, bat iegtlstructural components
and their dependencies. For instance, they capture single inheritartassés and method
overriding. Data flow between parameters, attributes, and method invacaépresents the
structure within method bodies.

Consider the object-oriented program showfrigure 1las an example. The program, written
in object-oriented pseudo code, consists of clasis and its subclasReCell. The superclass
has an attribute variablgs and two methodget andset. Subclas®ReCell inherits these three
features and additionally has an attribute varidizekup and a methodestore. Moreover, it
overrides the methoskt of its superclass.

Figure lalso shows the corresponding program graph. The graph is actuatsented as
an object diagram according to the program graphs’ model whose dilagsam is shown in
Figure 2 Note that not all association roles Bfgure 2are shownFigure 1 Only one of the
two roles of the associations is shown to avoid clutter. Note also the fat linkgime %, they

Proc. GT-VMT 2010 2/13

Eﬁ ECEASST

class Cell is Any:Class sub

var cts: Any;

LCeII:CIassI

method get() Any is
return cts;

set:Method restore:Method

bod bod
o oy EOQ :Invoc :Body_]

feature

cts:Variable I refersTo
expr

body

method set(var n: Any) is
cts:=n

exprl

feature

subclass ReCell of Cell is

:Access
G

param

var backup: Any;

:Access :Access n:Variable

refersTo
refersTo
refersTo

backup:Variable

method restore() is
cts := backup; value

override set(var n: Any) is l LU l cees
backup := cts; value

super.set(n)

param
expr
value

:Access

Figure 1: An object-oriented program and its program graph

0..1 | super
sub [Class
featureClassY0..1 1Y bodyClass /parent
{union}
feature body B 0.1 /child
B Feature H Body body expr 1. H Eer {union}
- 0.1 aram L 0..1 value
£ MRl callee [{subsets childl A {Subsets child} | var
{subsets {subsets
1|sig parent} A0..1 0..1 g parent}
[Variable method [Method 1 H Invoc [Access
param 0..1 calls

refersTo

fay

Figure 2: A model# for program graphs shown as a class diagram

correspond to the composition associationEiglire 2

Each class is represented byCkss node. Note the universal superclass). Each class
represents its (protected) attribute variables and (public) methods asefeattethod nodes
together withvariable nodes as their parameters represent method signatures; method bedies ar
represented separately Bgdy nodes. If a method is overridden, a new body refers to (we say:
implementsthe signature of the overridden method. Metketis an example: The signature
nodeset:Method is implemented by twBody nodes, one being part of clagsll, the other being
part of subclasgeCell. Data flow within method bodies is represented by (abstract) expressions
that a body consists of (linkxpr). Expressions are representedAmgess or Invoc nodes, both
being subclasses @&xpr. Access represents a reference to a variable either using its value, or
assigning the value of an expression tolitvoc nodes represent method invocations with their
actual parameters being referred todayam links.

3/13 Volume 29 (2010)

Meta Models versus Graph Grammars

[

Figure 2shows a UML class diagram for program graphs. The class diagrarasents a
model.# of program graphs and also a meta-model because program graphsodels of
object-oriented programs, i.e# is a model of a modeling language. As usual, missing car-
dinalities mear0..*. Also note thechild-parent association at classxpr. It is subsetted by the
corresponding associations (actually their association ends) for thassbsnvoc andAccess.

However, not all instances of the model represented by the class mi@geavalid program
graphs. Certain syntactic properties, usually cafiedic semantic®r consistency conditions
cannot be expressed by just a class diagram. The gfagBall program graphs is rather defined
by the class diagram and additional constraints:

Definition 1 (Program graphs) The clasg of program graphsonsists of all instances of the
model.# in Figure 2that additionally satisfy the following constraints:

P w N PE

subclass ot.

There is exactly one root class, i.@ass node without superclass.

A Variable node either belongs to a class (lifélature) or to a method (linkparam).

An Expr node either belongs toiody (link body) or to another expression (lirdarent).
A bodyb may implement a method contained in some ctai$d is contained irc or in a

5. Every class may contain at most one body defining or overriding a plartimethodm.

6. AnAccess nodee may refer to a/ariable node representing an attribute contained in some
classcif eis a sub-expression of a body that is containedan some subclass af

7. An Access nodee may refer to a parameter ofethod nodemif eis a sub-expression of

a body implementingn.

contextClass

def: visible : Sef(Feature) =

if super~isEmpty()then
feature

else
feature—union(super.visible)

endif

context Expr
def: visible : Set(Feature) =
if body—isEmpty()then
parent.visible
else
body.bodyClass.visible
—union(body.sig.param)
endif

1) inv unigueRoot:
Class.alllnstances()
—select(d c.supersisEmpty())—+size() = 1

2) context Variableinv validVariable:
featureClass>isEmpty() <> method—isEmpty()

3) context Exprinv validExpr:
body—isEmpty()<> parent-isEmpty()

4) context Body inv implementsVisibleMethod:
bodyClass.visiblerincludes(sig)

5) context Body inv methodimplementedOnce:
not bodyClass.body-exists(b| b <> selfand b.sig = self.sig)

6,7) context Accessinv accessesVisibleVariable:
visible—includes(refersTo)

Figure 3: OCL constraints for the program graph maogaél

Proc. GT-VMT 2010

4713

@ ECEASST

The Object Constraint Languag®CL of the UML has been defined for formally defining
such consistency condition®pj0o€. Figure 3shows the OCL constraints for program graphs
based on the class diagramHkingure 2 The derived attributesisible of eachClass instance
contain all features directly defined in the own class together with all visilaifes of its
superclass. These sets, together with all parameters of the implemented raethmwpagated
to sub-expressions of method bodies. ConditibAsare formalized by constraintsiqueRoot,
validVariable, validExpr, implementsVisibleMethod, andmethodimplementedOnce, respectively.
ConstraintaccessesVisibleVariable formalizes condition$ as well as7. Numbers inFigure 3
correspond to the ones used above.

Note that conditiond4—3 require each node, except a unidtlass node, to be a composite part
of exactly one other node. The following observation follows from the tilaat compositions
cannot form cycles:

Factl The subgragrﬁof a program graph P induced by the composition edges is a spanning
tree of P; the root oP is aClass node.

3 Star Grammars

We first recall many-sorted graphs:

Definition 2 (Graph) Lets = (3, %) be a pair of disjoint finite sets @brts _

A many-sorted directed graph ovar(graph, for short) is a tuples = (G,G, st,o) whereG
is a finite set ohodes G is a finite set okdgesthe functions,t: G — G define thesourceand
targetnodes of edges, and the pair= (g, g) of functionso: G — 2 ando: G — T associate
nodes and edges with sorts. o

Given graph$s andH, a pairm= (rn, m) of functionsm: G — H andm: G — H is amorphism
if it preserves sources, targets and sorts.

Star grammars are a special case of double pushout (DPO) grapfotnaaison EEPTO4.
By [DHIM10 Theorem 2.8], they are equivalent to hyperedge replacement grafibmék97]
a well-understood context-free kind of graph grammars.

Definition 3 (Star) We assume that the node sorts comtainterminal sortg, C 5 so that the
terminal node sortare>; = ¥\ 2.

Consider a (star-like) grapk, with one center nodey of nonterminal sork € %, and with
some border nodes (of terminal sorts fr&g) so that the edges of connectck to some of the
border nodes. TheX is called anincomplete star named »An incomplete star is called star
if each border node is incident with at least one edge. An (incompletelsstaightif every
border node is incident with at most one edge. Zétenote the class stars ¥ (.2") the graphs
with stars, and/ those without stars (where all nodes are labeledfyWe assume that nodes
of nonterminal sort are not adjacent to each other in any graph.

Definition 4 (Star Replacement) Aimcomplete star rulés writtenr = L ::= R, where thdeft-
hand side Le 2" is a straight incomplete star and tfeplacemen{right-hand side) is a graph

5/13 Volume 29 (2010)

Meta Models versus Graph Grammars Eﬁ
1 .

o o ()
Pl i] |)iy] 1= e

® @ 1

Figure 4: The rules of the star gramnrr

i
ey

Re ¢ (%) that contains the border nodeslofAn incomplete star rule is calledssar ruleif L
is a star.

The (incomplete) star ruleappliesto some grap if there is a morphisrm: L — G, yielding
a graphH that is constructed by adding the nodésf_ and edge®R disjointly to G, and by
replacing, for every edge iR, every source or target nodec L by the nodem{v), and by
removing the edges(L) and the noden(cy).

We write G = H if such a star replacement exis@ =4 H if G =, H for somer from a
finite setZ of (incomplete) star rules, and denote the reflexive-transitive closuhesarelation

by =7,.

In the remainder of this section, we consider star rules only; incompleteutgarwill only be
used as a part of contextual star rule$erction 4

Examplel (Star Replacement) Figure 4shows a set of star rules. The center nodes of stars are
depicted as boxes enclosing the star name. Nodes with terminal symbolaare as circles
with their sort inscribed.

The replacements of some rules show examples of abbreviating notatiogpetitions in
graphs and for optional subgraphs, which we will use frequently irrgtes. Shaded boxes with
a “«” in the top-right corner, like those in rulés, cls, meth, bdy, andcall, designatemultiple
subgraphghat may occun times,n > 0, in the graph, with the same connections to the rest. If
the shaded box has a “?” in its top-right corner (in rutesh andacc), its contained subgraph
may occur 1 or 0 times in the graph. Note that this notation is similar to the EBNF notation
of context-free string grammars. Likewise, it is just an abbreviating notatine can always
replace rules with this notation by several plain star rules using auxiliary atat recursion, as
long as shaded boxes do not include any of their rules’ border nodes.

Definition 5 (Star Grammar) ' =(4(2"), 2", %, Z) is astar grammamwith astart star Zc 2".
Thelanguageof I' is obtained by exhaustive star replacement with its rules, starting from the sta
star:.Z (N ={Ge¥|Z=},G}.

Proc. GT-VMT 2010 6/13

@ ECEASST

Example2 (Star Grammar for Program Skeletonsyigure 4shows the star rules generating the
program skeletons that underlie program graphs. The rules defiae grammaPT, with the
left-hand side of the first rule indicating the start star (nafpey). Terminal node sorts are
abbreviations of the class namesFigure 2 e.g.,C instead ofClass. Terminal edge sorts are
omitted completely. They can be easily inferred from the sorts of the incidelds: Rulexp,
which already is a shorthand for two rules, indicated by the two alternapacgements, uses
x as border node sort whexestands foiB, A, orl. Note that this is again just an abbreviating
notation.

Consider rulesvrd, acc, andcall, which generate method overriding, variable access, and
method invocations. The overridden method, the accessed variable, anyaked method,
respectively, are distinguished by drawing them as filled circles with thick.linethe skeleton
rules, they are created anew. In a correct program graph acgaaifection 2 these distin-
guished nodes have to be identified (“merged”) with the correspondidgsthat have been
created elsewhere by rulesr andmeth, and represent their declarations. However, identifica-
tion of nodes cannot be represented by star grammars, but requitegtc@al star grammars as
defined in the next section.

PT generates graphs that are closely related to program graphs. GivegnegphG € £ (PT),
let G" denote the graph obtained fra@by removing all filled nodes and dashed edges fam
Let ZT(PT) := {G" | G € .Z(PT)} denote the class of all such graphs. The following fact
directly follows from the structure of rules ipiT:

Fact2 ZT(PT)is alanguage of trees.

Obviously, grammaPT creates a single root class, and for each class an arbitrary number of
subclasses. Each class gets arbitrarily many variables, method deckratidribodies that con-
sist of an arbitrary number of expressions that are either variableseser method invocations,
consistent with the class diagramFigure 2 Apparently,.#T(PT) is the language of all trees
that fit the class diagram when considering just its composition associatidhadalitionally
requiring the conditiond—3 in Definition 1. Based orf-act 1we can infer:

Fact3 The spanning treP of each program graph B & (cf. Fact 1) is a member ofZT (PT).

Let.ZM(PT) denote the language of all graphs that can be obtained from a memb&pPaf)
by merging each filled node with a corresponding declaration nodeP ket” be an arbitrary
program graph. Its spanning tréeis equal to graplG' of some graplG € .Z(PT) because
of Fact 3 P can be obtained by identifying the filled nodes@fwith appropriate declaration
nodes, i.e.P e M (PT). On the other hand, it is obvious that each identification of filled nodes
with declaration nodes fits the class diagram and conditiesn Definition 1. Therefore, each
graphG € #M(PT) satisfying conditiong-7, too, is a program graph. We can summarize:

Fact 4 The set of all graphs @ .M (PT) that satisfy conditiong—7 in Definition 1is equal
to 7.

Star grammars are context-free in the sense defined by CourCell8]. This suggests that

7113 Volume 29 (2010)

Meta Models versus Graph Grammars Eﬁ

their generative power is limited. Indeed, we have the following

Fact5 There is no star grammdr with £ (') = 2.

Proof Sketch Consider the ruleall in Figure 4 (The situation is similar for rules/rd andacc.)
This rule generates a new node for a method (drawn filled, and with thick.likiesvever, for
generating a program graph, the rule should insert a call to a methodréeat\aexists in the
host graph, and may be called in the expression. Due to the restrictecbfastar rules, the
method had to be on the border of the rule. Since expressions may callreednod in the
graph, the star rule must have all these methods as its border nodes spédludtthem can be
selected. However, the number of callable methods depends on the sizepwbtfrtam, and is
unbounded. Thus a finite set of star rules does not suffice to defilsgallmethod calls. [

4 Contextual Star Grammars

The adaptive star grammars defined HJ"06] overcome the deficiencies illustrated in the
proof sketch foract 5by allowing the left-hand sides of star rules to adapt to as many border
nodes as needed. A further extension, by positive and negative appliconditions, extended
their power, however with rather complicated rule®{10]. In this paper, we therefore consider

a different extension of star rules with which program graphs can bwpletely defined in a
simple way. We allow that the application of a star rule depends aoittextin the host graph.
Somepositivecontext may be required whereas othmgative context is forbidden if the rule
shall apply. Nodes of the positive context may be used by the replacgmagtt of the rule.

Definition 6 (Contextual Star Rule) Aontextual star rule thas the fornr = P/NIL =R,
wherel ::= R is an incomplete star rule, and tipesitive contexts Rs well as thenegative
contexts Nare (decidable) sets of graphs that contain the border nodea®tubgraph. (Note
thatr is a star rule ifL is a star and the seBsandN are empty.)

The contextual star ruleappliesto some grapl@ if there is a morphisnm: L — G that can
be extended to a morphis@— G for at least one positive contegt € P (if P ## 0) and that
cannot be extended to a morphi€w- G for any negative contex € N, yielding a graptH by
applying the incomplete star rule::= Rto G with morphismm.

Then we writeG ==, H, G ==, H if G ==, H for somer from a finite setZ of contextual
star rules, and denote the reflexive-transitive closure of this relati@%bj;é.

Definition 7 (Contextual Star Grammar)l' = (¥(%2"), Z",%,Z) is acontextual star grammar
(CSG) with astart star Ze 2" and a finite setZ of contextual star rules. THanguageof I
is obtained by exhaustive application of its rules, starting from the start 8tér) = {G € ¢ |

z-=5, Gl

In the following, we will either enumerate context graphs of the BeasdN of positive and
negative contexts, respectively, or we will specify them by path egpmes similar to the Ro-
GRESlanguage $ch97. Even more powerful specifications of context graphs are coabkgy
e.g., by hyperedge replacement systems, as proposetRihd, or by star grammars. But this

Proc. GT-VMT 2010 8/13

@ ECEASST

1 1
Acc a; 5 : C:a?
@ © ® ®

P, — DD —O—@:

Figure 5: The contextual star rules of the gramipar

is not necessary for specifying program graphs.

Example3 (Contextual Star Grammar for Program Graph3he CSG for program graphs con-
tains the star rulestart, hy, cls, var, meth, bdy, andexp of PT in Figure 4 and the contextual
rules inFigure 5 In these rules, specifications of positive and negative contexts ane drelow
their incomplete star rules. Small numbers indicate the correspondenceehatargtext nodes
and border nodes.

So filled nodes in rulesvrd, acc, andcall of PT are turned into context nodes RG. Path
expressions encode conditiofts7 in Definition 1. A small “+" above an edge represents any
path of length= 1. In ruleovrd, the path expression of the positive contexncodes conditio#,
i.e., the method declaration must be inherited by the current class, while ta8veegontext
encodes conditioB, i.e., the current class must not have a second body for the same method
declaration. Rulecc does not have a negative context, but two positive contexts. d&almay
be applied either with contel or with context?. P, andP, encode condition§ and?7, i.e.,
access to a visible attribute variable and to a visible parameter, respecfitielpode labeler
represents a node of any sort. Red#é has empty positive and negative contexts and is applicable
if its incomplete star rule applies. However, it still is a contextual star ruleusecis left-hand
side requires the existence ofanode in the context.

In Figure § some steps in the derivation of the program grapFkiiqure 1are shown. The
first graph represents the class hierarchy of the program grajghgrély bubbles in these graphs
abstract from parts of the derived graph that are nor relevantéadeghivation steps shown. The
ruleovrd can be applied to this graph, where we draw the context node filled, withlithésg and
underlay the path leading to it in grey. We use the same drawing conventitimefoemaining
derivation steps usinigdy, call, acc, and agairacc.

The following fact is a direct implication dfact 4
Fact6 Z(PG)= 2.

Star grammars can be easily transformed into equivalent hyperedgeemgiat gram-
mars PHJIJM10, Theorem 2.8] and vice versa by interpreting stars as hyperedgesomitiarmi-
nal labels. Hence, parsers for hyperedge replacement grammar®liReMBEN parser Min02]

9/13 Volume 29 (2010)

Meta Models versus Graph Grammars Eﬁ

ReCell ReCell ReCell

Any Any

)
(V&N

ReCell ReCell

Figure 6: Deriving the program graph of Figurevith PG

can be used to parse star grammars. The same parser with only slighiangeren also be
used for parsing CSGs. This parser is outlined below.

The parser works on CSGs likeGocke-Younger-KasariCYK) parser for string grammars.
The CSG has to be i@homsky normalforrlCNF) so that each production rule is either terminal
or nonterminal. The right-hand side of a terminal rule is a terminal graph wiyhome edge, the
right-hand side of a non-terminal rule is the union of two stars. Similar to strimggars, each
CSG that does not produce the empty graph can be transformed into G&R.a3erminal graph
G, the parser creates a derivation 8y if it exists, in two phases. The first phase completely
ignores contexts of contextual star rules and creates candidatesifatidas. The second phase
searches for a derivation by checking these candidates, this time camgidentexts.

In the first phase, the parser buildsmgetsLy,L,,...,L, wheren is the number of edges in
G. Each set; eventually contains all stars that can be derived to any subgraphhaft contains
exactlyi edges. Selt1 is built by first finding each embedding of the right-hand side of each ter-
minal rule and adding the star of the corresponding left-hand side tbthe corresponding rule
is a contextual star rule with an incomplete star as left-hand side, only the i@ejngtar within
the incomplete star is added k. The remaining sets are then constructed using nonterminal
rules. A nonterminal rule is reversely applied by searching for apjatepstarss ands' in sets
S and§;, respectively. If a nonterminal rule (without considering contexts) diegble, i.e., if
the rule’s right-hand side is isomorphic to the uniorsainds’, a new star corresponding to the
rule’s left-hand side is added to a st Note thatk =i+ j since each star in a s&t can be
derived to a subgraph @& with exactlyi edges. Each instance of the start &am S, represents
a derivation candidate fds.

Proc. GT-VMT 2010 10/13

@ ECEASST

The second parser phase checks these derivation candidates hyfaaséiach application of
a contextual star rule whether required context has already bedpdi@ad forbidden context
has not (yet) been created earlier in the derivation. The parser stapsitvfinds the first valid
derivation, or when it has checked the last derivation candidate withumgess.

5 Discussion

In the previous sections we have used two different techniques talaeepcogram graphs. We
have shown that the specification of program graphs by CSGs is indeeclent to their defi-
nition using a model together with OCL constraints. Moreover, both appesaallow for auto-
matic checking whether a given graph is a valid program graph. Botlifispéions are actually
even more closely related as the following discussion shows.

The CSG for program graphs consists of (plain) star rules and coatestar rules. As de-
scribed byFact 2 the tree structure (made from composition links) of program graphs €an b
constructed by (plain) star rules. Plain star grammars, however, fdihfar refersTo andcall,
i.e., those program graph edges that represent references to db@dase located “far away”
in the program structure. Contextual star rules are needed to add thgess ¢éhe far away ob-
jects are represented by the rules’ context noBagife 5. The positive and negative contexts of
those rules play the same role like the OCL constraints for condifienms Figure 3 These con-
straints actually can be considered as an OCL implementation of the rulesktoatglitions.
E.g., constraintnethodimplementedOnce for condition5 in Definition 1prohibits a second body
of the same method within the same class; this exactly corresponds to the eegatiextN of
rule ovrd (Figure 5. The path expressiorid Py, andP, of rulesovrd andacc, respectively, re-
alize conditions4, 6, and7. Their OCL realizations make use of the derived attribwisible
whose recursive definition exactly reflects the iteration operator “+” irp#ik expressions.

The contextual star gramma&G (Figure 4and5) for program graphs has been created by
hand. The discussion, however, has revealed a close relation bed@teoonstraints and pos-
itive as well as negative contexts on the one hand, and between classndiagd contextual
star rules without those contexts on the other hand. This close relation nubiplagrocedure
for translating CSGs and meta models with OCL constraints into each other tainl@asemi-
automatic way. This line of research is also motivated by work of Ehrig eE&ITD9]. They
create graph transformation rules with graph constraints from meta model®@itlconstraints.
The graph transformation system is then used to automatically generate nsidatées of the
meta model. However, they only consider very restricted OCL constrairitarthaot sufficient
for the specification of program graphs, and their generated layeagpth ransformation rules
are rather complicated, and are less suited for parsing.

6 Conclusions

We have extended star rules by positive and negative context. Thes@l star grammars al-
low to define program graphs precisely, without sacrificing parsealflityggram graphs, which
represent certain aspects of object-oriented programs, can alsditeddey a class diagram
together with OCL constraints in a model-based style. However, this appisdess suited

11/13 Volume 29 (2010)

Meta Models versus Graph Grammars Eﬁ

for inductive proofs or for automatic instance generation than the pegpgsammar-based ap-
proach. A comparison of both specification approaches, howeweshuavn close relations be-
tween both specification approaches which may allow for a semi-automatitatrangrocess
between both specification approaches. This will be subject of futurie. wo

Too many kinds of graph grammars are related to contextual star grammarstioma| of
them. So we restrict our discussion to those that aim at similar applicationtex@aal star rules
re-usepath expressionfrst devised by M. NaglNlag79, which have later been implemented
in the RROGRESgraph transformation languag&dh97. Using context conditions and exam-
ining their relation to logical graph properties and constraints is not newreitheHabel and
K.-H. Pennemann have shown that nested graph conditions are eqtiwaf@st-order graph
formulas HP09. These conditions are still too weak to specify program graphs, asottigy
allow to require or forbid the existence of subgraphs of bounded sizly.i®[HR1(, A. Habel
and H. Radke devised nested graph conditions with variables that allowtessxthe conditions
of CSGs (and more). However, rules and grammars using such conditiemst yet consid-
ered in that paper. Context-embedding rulegsn02] extend hyperedge replacement grammars
by rules that add a single edge to an arbitrary graph pattern. Theyeddadefine and parse
diagram languages, but are not powerful enough to define modelsrbkeam graphs. Graph
reduction grammarsgPR1(J have been proposed to define and check the shape of data struc-
tures with pointers. While the form of their rules is not restricted, reductitmtivem is required
to be terminating and confluent, so that random application of rules prosiblasktracking-free
parsing algorithm. It is still open whether graph reduction grammars sudfidefine program
graphs.

The nested pattern$i)G0§ recently introduced to &GEN [GBG'06], an efficient graph
rewrite tool, allow to express nested graph conditions with variables thakedireed by hyper-
edge replacement systems, and can thus be used to implement contextgedrstaiars (like
that for program graphs) in the future.

Acknowledgements: We thank the reviewers for their constructive criticism that helped to
improve our paper.

Bibliography

[BPR10] A. Bakewell, D. Plump, C. Runciman. Specifying Pointer StrustiseGraph Re-
duction.Mathematical Structures in Computer Scieri2@10. To appear.

[CEM™06] A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, G. Rozenberggg. 3rd Int’l
Conference on Graph Transformation (ICGT'0&gcture Notes in Computer Sci-
ence 4178. Springer, 2006.

[Cou87] B. Courcelle. An Axiomatic Definition of Context-free Rewriting atslApplica-
tion to NLC rewriting.Theoretical Computer Scien&&:141-181, 1987.

[DHJT06] F. Drewes, B. Hoffmann, D. Janssens, M. Minas, N. V. Eetveldiaptive Star
Grammars. Pp. 77-91 iCEM™*06).

Proc. GT-VMT 2010 12/13

@ ECEASST

[DHIM10] F. Drewes, B. Hoffmann, D. Janssens, M. Minas. Ada8tar Grammars and Their
LanguagesTheoretical Computer Scienc2010. Accepted for publication.

[DHK97] F. Drewes, A. Habel, H.-J. Kreowski. Hyperedge Replaceint&aph Grammars.
Chapter 2 in Roz97.

[EEPTO6] H.Ehrig, K. Ehrig, U. Prange, G. TaentZzaundamentals of Algebraic Graph Trans-
formation EATCS Monographs on Theoretical Computer Science. Springe8,. 200

[EKT09] K. Ehrig, J. M. Kuster, G. Taentzer. Generating instance models from meta models.
Software and System ModeliB¢#):479-500, 2009.

[ER97] J. Engelfriet, G. Rozenberg. Node Replacement Graph Grasni@aapter 1 in
[Roz97.

[GBG'06] R. Geif3, G. V. Batz, D. Grund, S. Hack, A. Szalkowski. GrGen:a&tFSPO-Based
Graph Rewriting Tool. Pp. 383-397 iREM ' 06]. URL: http://www.grgen.net

[HIJG08] B.Hoffmann, E. Jakumeit, R. Geil3. Graph Rewrite Rules with &trakcRecursion.
In Mosbah and Habel (eds2nd Intl. Workshop on Graph Computational Models
(GCM 2008) Pp. 5-16. 2008.

[Hof10] B. Hoffmann. Conditional Adaptive Star GrammaEectr. Comm. of the EASST
2010. To appear.

[HPO9] A. Habel, K.-H. Pennemann. Correctness of high-level toansdtion systems rela-
tive to nested conditionddathematical Structures in Computer Scied€2):245—
296, 2009.

[HR10] A. Habel, H. Radke. Expressiveness of graph conditions vatiables. In Ehrig
and Ermel (eds.)lnternational Colloquium on Graph and Model Transformation
(GraMoT’10). 2010. To appear in Electr. Comm. of the EASST.

[MEDJO5] T. Mens, N. V. Eetvelde, S. Demeyer, D. Janssens. Forimgliefactorings with
graph transformationgdournal on Software Maintenance and Evolution: Research
and Practicel7(4):247-276, 2005.

[Min02] M. Minas. Concepts and Realization of a Diagram Editor Geneésed on Hy-
pergraph Transformatio®cience of Computer Programmidg(2):157-180, 2002.

[Nag79] M. Nagl. Graph-Grammatiken: Theorie, Anwendungen, Implementierungen
Vieweg-Verlag, Braunschweig, 1979. In German.

[Obj06] Object Management Group. Specification of the Object Constlaamguage.
http://www.omg.org/spec/OCL/2.02006.

[Roz97] G. Rozenberg (ed.Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. |: Foundation®Vorld Scientific, Singapore, 1997.

[Sch97] A. Sclirr. Programmed Graph Replacement Systems. ChapteiRoiD[].

13/13 Volume 29 (2010)

http://www.grgen.net
http://www.omg.org/spec/OCL/2.0/

	Introduction
	Graphs Representing Object-Oriented Programs
	Star Grammars
	Contextual Star Grammars
	Discussion
	Conclusions

