
Electronic Communications of the EASST
Volume 29 (2010)

Proceedings of the
Ninth International Workshop on

Graph Transformation and
Visual Modeling Techniques

(GT-VMT 2010)

Defining Models – Meta Models versus Graph Grammars

Berthold Hoffmann, Mark Minas

13 pages

Guest Editors: Jochen Küster, Emilio Tuosto
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Defining Models – Meta Models versus Graph Grammars

Berthold Hoffmann1, Mark Minas 2

1hof@informatik.uni-bremen.de
Universiẗat Bremen und DFKI Bremen, Germany

2Mark.Minas@unibw.de
Universiẗat der Bundeswehr M̈unchen, Germany

Abstract: The precise specification of software models is a major concern in model-
driven design of object-oriented software. Metamodelling and graph grammars are
apparent choices for such specifications. Metamodelling has several advantages: it
is easy to use, and provides procedures that check automatically whethera model
is valid or not. However, it is less suited for proving properties of models, or for
generating large sets of example models. Graph grammars, in contrast, offer a
natural procedure – the derivation process – for generating example models, and
they support proofs because they define a graph language inductively. However,
not all graph grammars that allow to specify practically relevant models are easily
parseable. In this paper, we proposecontextual star grammarsas a graph grammar
approach that allows for simple parsing and that is powerful enough forspecify-
ing non-trivial software models. This is demonstrated by defining programgraphs,
a language-independent model of object-oriented programs, with a focus on shape
(static structure) rather than behavior.

Keywords: Graph grammar, Meta-model

1 Introduction

The precise specification of software models is a major concern in model-driven design of object-
oriented software. Such specifications should support a checking procedure for distinguishing
valid from invalid models, they should be well-suited for proofs in order to reason about the
specified models, and they should allow for automatically generating model instances that may
be used as test cases for computer programs being based on such models. The meta-modeling
approach is an apparent choice for such specifications. It allows forprecise model definitions and
provides checking procedures. However, it is less suited for proofsand for instance generation.

Graph grammars are another natural candidate for specifying softwaremodels. They precisely
define model languages, they are well-suited for proofs because of their inductive way of defin-
ing a graph language, and they offer a natural procedure for automatically generating model
instances. Several kinds of graph grammars have been proposed in theliterature. In order to
allow for the specification of practically relevant models, we need a formalismthat ispowerful
so that all properties of models can be captured, andsimplein order to be practically useful, in
particular forparsingmodels in order to determine their validity. However, easy to use graph
grammar approaches often fail to completely specify models. As a case study, we considerpro-

1 / 13 Volume 29 (2010)

mailto:hof@informatik.uni-bremen.de
mailto:Mark.Minas@unibw.de


Meta Models versus Graph Grammars

gram graphs, a language-independent model of object-oriented programs that has been devised
for specifying refactoring operations on programs [MEDJ05]. However, neither hyperedge re-
placement grammars [DHK97], nor the equivalent star grammars [DHJM10, Theorem 2.8], nor
node replacement grammars [ER97] are powerful enough for completely specifying program
graphs. Even the recently proposed adaptive star grammars [DHJ+06, DHJM10] fail for cer-
tain more delicate properties of program graphs. Their rules must be extended by application
conditions in order to describe program graphs completely [Hof10].

In this paper, we propose the simpler graph grammar approach ofcontextual star grammars,
an extension of star grammars that allows for easy parsing. Plain star rulesare extended with
positive and negative contexts, which must exist (or must not exist, respectively) in order to ap-
ply a star rule. Contexts may specify the existence of paths to certain nodes inthe host graph,
which may then be linked by the rule application. It turns out that program graphs can be defined
by a contextual star grammar. Hence, this graph grammar approach allows for the precise spec-
ification of program graphs, i.e., non-trivial software models, supportsa natural procedure for
generating model instances, is well-suited for proofs, and allows for easy parsing. We contrast
this grammar with the definition of program graphs using a conventional meta-model, which is
specified by a UML class diagram and logical OCL constraints.

The paper is structured as follows. InSection 2, we recall how object-oriented programs can
abstractly be represented asprogram graphs. We define the language of program graphs by a
metamodel that consists of a class diagram with additional OCL constraints. Then we introduce
star grammars inSection 3, show that they can defineprogram skeletons, a sub-structure of
program graphs, but fail to define program graphs themselves. We introduce contextual star
grammars inSection 4, define program graphs with them, and outline an easy parsing procedure.
We discuss these specifications—by metamodels and by contextual star grammars—inSection 5.
We conclude with some remarks on related and future work inSection 6.

2 Graphs Representing Object-Oriented Programs

Program graphs have been devised as a language-independent representation of object-oriented
code that can be used for studying refactoring operations [MEDJ05]. Therefore, they do not
represent the abstract syntax of an object-oriented program, but rather its structural components
and their dependencies. For instance, they capture single inheritance ofclasses and method
overriding. Data flow between parameters, attributes, and method invocations represents the
structure within method bodies.

Consider the object-oriented program shown inFigure 1as an example. The program, written
in object-oriented pseudo code, consists of classCell and its subclassReCell. The superclass
has an attribute variablects and two methodsget andset. SubclassReCell inherits these three
features and additionally has an attribute variablebackup and a methodrestore. Moreover, it
overrides the methodset of its superclass.

Figure 1also shows the corresponding program graph. The graph is actually represented as
an object diagram according to the program graphs’ model whose classdiagram is shown in
Figure 2. Note that not all association roles ofFigure 2are shownFigure 1. Only one of the
two roles of the associations is shown to avoid clutter. Note also the fat links inFigure 1; they

Proc. GT-VMT 2010 2 / 13



ECEASST

class Cell is

var cts: Any;

method get() Any is
return cts;

method set(var n: Any) is
cts := n

subclass ReCell of Cell is

var backup: Any;

method restore() is
cts := backup;

override set(var n: Any) is
backup := cts;
super.set(n)

Figure 1: An object-oriented program and its program graph

AccessVariable

Body

Invoc

Class

ExprFeature

Method

value

1

expr 1..*

bodyClass1

sig1

calls

1

param

feature

sub

super0..1

body

featureClass 0..1

impl

0..1
body

0..1

param

method

0..1

/parent

/child

{union}

{union}

callee
{subsets
parent}

var
{subsets
parent}

{subsets child} {subsets child}
0..1

refersTo

0..1 0..1

Figure 2: A modelM for program graphs shown as a class diagram

correspond to the composition associations ofFigure 2.
Each class is represented by aClass node. Note the universal superclassAny. Each class

represents its (protected) attribute variables and (public) methods as features. Method nodes
together withVariable nodes as their parameters represent method signatures; method bodies are
represented separately byBody nodes. If a method is overridden, a new body refers to (we say:
implements) the signature of the overridden method. Methodset is an example: The signature
nodeset:Method is implemented by twoBody nodes, one being part of classCell, the other being
part of subclassReCell. Data flow within method bodies is represented by (abstract) expressions
that a body consists of (linkexpr). Expressions are represented byAccess or Invoc nodes, both
being subclasses ofExpr. Access represents a reference to a variable either using its value, or
assigning the value of an expression to it.Invoc nodes represent method invocations with their
actual parameters being referred to byparam links.

3 / 13 Volume 29 (2010)



Meta Models versus Graph Grammars

Figure 2shows a UML class diagram for program graphs. The class diagram represents a
model M of program graphs and also a meta-model because program graphs are models of
object-oriented programs, i.e.,M is a model of a modeling language. As usual, missing car-
dinalities mean0..*. Also note thechild-parent association at classExpr. It is subsetted by the
corresponding associations (actually their association ends) for the subclassesInvoc andAccess.

However, not all instances of the model represented by the class diagram are valid program
graphs. Certain syntactic properties, usually calledstatic semanticsor consistency conditions,
cannot be expressed by just a class diagram. The classP of all program graphs is rather defined
by the class diagram and additional constraints:

Definition 1 (Program graphs) The classP of program graphsconsists of all instances of the
modelM in Figure 2that additionally satisfy the following constraints:

1. There is exactly one root class, i.e.,class node without superclass.

2. A Variable node either belongs to a class (linkfeature) or to a method (linkparam).

3. An Expr node either belongs to aBody (link body) or to another expression (linkparent).

4. A bodyb may implement a method contained in some classc if b is contained inc or in a
subclass ofc.

5. Every class may contain at most one body defining or overriding a particular methodm.

6. An Access nodeemay refer to aVariable node representing an attribute contained in some
classc if e is a sub-expression of a body that is contained inc or some subclass ofc.

7. An Access nodeemay refer to a parameter of aMethod nodem if e is a sub-expression of
a body implementingm.

contextClass
def: visible : Set(Feature) =
if super→isEmpty()then

feature
else

feature→union(super.visible)
endif

contextExpr
def: visible : Set(Feature) =
if body→isEmpty()then

parent.visible
else

body.bodyClass.visible
→union(body.sig.param)

endif

1) inv uniqueRoot:
Class.allInstances()

→select(c| c.super→isEmpty())→size() = 1

2) contextVariableinv validVariable:
featureClass→isEmpty()<> method→isEmpty()

3) contextExpr inv validExpr:
body→isEmpty()<> parent→isEmpty()

4) contextBody inv implementsVisibleMethod:
bodyClass.visible→includes(sig)

5) contextBody inv methodImplementedOnce:
not bodyClass.body→exists(b| b<> selfand b.sig = self.sig)

6,7)contextAccessinv accessesVisibleVariable:
visible→includes(refersTo)

Figure 3: OCL constraints for the program graph modelM .

Proc. GT-VMT 2010 4 / 13



ECEASST

The Object Constraint LanguageOCL of the UML has been defined for formally defining
such consistency conditions [Obj06]. Figure 3shows the OCL constraints for program graphs
based on the class diagram inFigure 2. The derived attributesvisible of eachClass instance
contain all features directly defined in the own class together with all visible features of its
superclass. These sets, together with all parameters of the implemented method, are propagated
to sub-expressions of method bodies. Conditions1–5 are formalized by constraintsuniqueRoot,
validVariable, validExpr, implementsVisibleMethod, andmethodImplementedOnce, respectively.
ConstraintaccessesVisibleVariable formalizes conditions6 as well as7. Numbers inFigure 3
correspond to the ones used above.

Note that conditions1–3 require each node, except a uniqueClass node, to be a composite part
of exactly one other node. The following observation follows from the fact that compositions
cannot form cycles:

Fact 1 The subgraph̄P of a program graph P induced by the composition edges is a spanning
tree of P; the root ofP̄ is aClass node.

3 Star Grammars

We first recall many-sorted graphs:

Definition 2 (Graph) LetΣ = 〈Σ̇, Σ̄〉 be a pair of disjoint finite sets ofsorts.
A many-sorted directed graph overΣ (graph, for short) is a tupleG= 〈Ġ,Ḡ,s, t,σ〉 whereĠ

is a finite set ofnodes, Ḡ is a finite set ofedges, the functionss, t : Ḡ→ Ġ define thesourceand
targetnodes of edges, and the pairσ = 〈σ̇ , σ̄〉 of functionsσ̇ : Ġ→ Σ̇ andσ̄ : Ḡ→ Σ̄ associate
nodes and edges with sorts.

Given graphsGandH, a pairm= 〈ṁ,m̄〉 of functionsṁ: Ġ→ Ḣ andm̄: Ḡ→ H̄ is amorphism
if it preserves sources, targets and sorts.

Star grammars are a special case of double pushout (DPO) graph transformation [EEPT06].
By [DHJM10, Theorem 2.8], they are equivalent to hyperedge replacement grammars [DHK97]
a well-understood context-free kind of graph grammars.

Definition 3 (Star) We assume that the node sorts containnonterminal sortṡΣv ⊆ Σ̇ so that the
terminal node sortsareΣ̇t = Σ̇\ Σ̇v.

Consider a (star-like) graphX, with one center nodecX of nonterminal sortx∈ Σ̇v, and with
some border nodes (of terminal sorts fromΣ̇t) so that the edges ofX connectcX to some of the
border nodes. ThenX is called anincomplete star named x. An incomplete star is called astar
if each border node is incident with at least one edge. An (incomplete) staris straight if every
border node is incident with at most one edge. LetX denote the class ofstars, G (X ) the graphs
with stars, andG those without stars (where all nodes are labeled byΣ̇t). We assume that nodes
of nonterminal sort are not adjacent to each other in any graph.

Definition 4 (Star Replacement) Anincomplete star ruleis writtenr = L ::= R, where theleft-
hand side L∈ X is a straight incomplete star and thereplacement(right-hand side) is a graph

5 / 13 Volume 29 (2010)



Meta Models versus Graph Grammars

C1

Prg : :=
start

C 1

Hy

C1

Hy : :=
hy

∗

C 1

CCls

Hy

C1

Cls : :=
cls

∗

C 1

Fea

C1

Fea : :=
var

C 1

V

C1

Fea : :=
meth

∗

?

C 1

M B

V Bdy

C1

Fea : :=
ovrd

C 1

M

B

Bdy

B1

Bdy : :=
bdy

∗

B 1

Exp

x1

Exp : :=
exp

x 1

A

Acc

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x 1

I

Inv

A1

Acc : :=
acc

?

A 1

Exp

V

I1

Inv : :=
call

I 1

∗

M

Exp

Figure 4: The rules of the star grammarPT

R∈ G (X ) that contains the border nodes ofL. An incomplete star rule is called astar rule if L
is a star.

The (incomplete) star ruler appliesto some graphG if there is a morphismm: L→G, yielding
a graphH that is constructed by adding the nodesṘ\ L̇ and edges̄R disjointly to G, and by
replacing, for every edge in̄R, every source or target nodev ∈ L̇ by the node ˙m(v), and by
removing the edges ¯m(L̄) and the node ˙m(cL).

We write G ⇒r H if such a star replacement exists,G ⇒R H if G ⇒r H for somer from a
finite setR of (incomplete) star rules, and denote the reflexive-transitive closure of this relation
by⇒∗

R
.

In the remainder of this section, we consider star rules only; incomplete star rules will only be
used as a part of contextual star rules inSection 4.

Example1 (Star Replacement)Figure 4shows a set of star rules. The center nodes of stars are
depicted as boxes enclosing the star name. Nodes with terminal symbols are drawn as circles
with their sort inscribed.

The replacements of some rules show examples of abbreviating notation for repetitions in
graphs and for optional subgraphs, which we will use frequently in starrules. Shaded boxes with
a “∗” in the top-right corner, like those in ruleshy, cls, meth, bdy, andcall, designatemultiple
subgraphsthat may occurn times,n> 0, in the graph, with the same connections to the rest. If
the shaded box has a “?” in its top-right corner (in rulesmeth andacc), its contained subgraph
may occur 1 or 0 times in the graph. Note that this notation is similar to the EBNF notation
of context-free string grammars. Likewise, it is just an abbreviating notation; one can always
replace rules with this notation by several plain star rules using auxiliary stars and recursion, as
long as shaded boxes do not include any of their rules’ border nodes.

Definition 5 (Star Grammar) Γ= 〈G (X ),X ,R,Z〉 is astar grammarwith astart star Z∈X .
Thelanguageof Γ is obtained by exhaustive star replacement with its rules, starting from the start
star:L (Γ) = {G∈ G | Z ⇒∗

R
G}.

Proc. GT-VMT 2010 6 / 13



ECEASST

Example2 (Star Grammar for Program Skeletons)Figure 4shows the star rules generating the
program skeletons that underlie program graphs. The rules define a star grammarPT, with the
left-hand side of the first rule indicating the start star (namedPrg). Terminal node sorts are
abbreviations of the class names inFigure 2, e.g.,C instead ofClass. Terminal edge sorts are
omitted completely. They can be easily inferred from the sorts of the incident nodes. Ruleexp,
which already is a shorthand for two rules, indicated by the two alternative replacements, uses
x as border node sort wherex stands forB, A, or I. Note that this is again just an abbreviating
notation.

Consider rulesovrd, acc, andcall, which generate method overriding, variable access, and
method invocations. The overridden method, the accessed variable, and the invoked method,
respectively, are distinguished by drawing them as filled circles with thick lines. In the skeleton
rules, they are created anew. In a correct program graph according to Section 2, these distin-
guished nodes have to be identified (“merged”) with the corresponding nodes that have been
created elsewhere by rulesvar andmeth, and represent their declarations. However, identifica-
tion of nodes cannot be represented by star grammars, but requires contextual star grammars as
defined in the next section.

PT generates graphs that are closely related to program graphs. Given any graphG∈ L (PT),
let GT denote the graph obtained fromG by removing all filled nodes and dashed edges fromG.
Let L T(PT) := {GT | G ∈ L (PT)} denote the class of all such graphs. The following fact
directly follows from the structure of rules inPT:

Fact 2 L T(PT) is a language of trees.

Obviously, grammarPT creates a single root class, and for each class an arbitrary number of
subclasses. Each class gets arbitrarily many variables, method declarations, and bodies that con-
sist of an arbitrary number of expressions that are either variable accesses or method invocations,
consistent with the class diagram inFigure 2. Apparently,L T(PT) is the language of all trees
that fit the class diagram when considering just its composition associations and additionally
requiring the conditions1–3 in Definition 1. Based onFact 1we can infer:

Fact 3 The spanning treēP of each program graph P∈P (cf.Fact 1) is a member ofL T(PT).

Let L M(PT) denote the language of all graphs that can be obtained from a member ofL (PT)
by merging each filled node with a corresponding declaration node. LetP∈ P be an arbitrary
program graph. Its spanning treēP is equal to graphGT of some graphG ∈ L (PT) because
of Fact 3. P can be obtained by identifying the filled nodes ofG with appropriate declaration
nodes, i.e.,P∈ L M(PT). On the other hand, it is obvious that each identification of filled nodes
with declaration nodes fits the class diagram and conditions1–3 in Definition 1. Therefore, each
graphG∈ L M(PT) satisfying conditions4–7, too, is a program graph. We can summarize:

Fact 4 The set of all graphs G∈ L M(PT) that satisfy conditions4–7 in Definition 1is equal
to P.

Star grammars are context-free in the sense defined by Courcelle [Cou87]. This suggests that

7 / 13 Volume 29 (2010)



Meta Models versus Graph Grammars

their generative power is limited. Indeed, we have the following

Fact 5 There is no star grammarΓ with L (Γ) = P.

Proof Sketch Consider the rulecall in Figure 4. (The situation is similar for rulesovrd andacc.)
This rule generates a new node for a method (drawn filled, and with thick lines). However, for
generating a program graph, the rule should insert a call to a method that already exists in the
host graph, and may be called in the expression. Due to the restricted formof star rules, the
method had to be on the border of the rule. Since expressions may call every method in the
graph, the star rule must have all these methods as its border nodes so thatone of them can be
selected. However, the number of callable methods depends on the size of the program, and is
unbounded. Thus a finite set of star rules does not suffice to define alllegal method calls.

4 Contextual Star Grammars

The adaptive star grammars defined in [DHJ+06] overcome the deficiencies illustrated in the
proof sketch forFact 5by allowing the left-hand sides of star rules to adapt to as many border
nodes as needed. A further extension, by positive and negative application conditions, extended
their power, however with rather complicated rules [Hof10]. In this paper, we therefore consider
a different extension of star rules with which program graphs can be completely defined in a
simple way. We allow that the application of a star rule depends on itscontextin the host graph.
Somepositivecontext may be required whereas other,negative, context is forbidden if the rule
shall apply. Nodes of the positive context may be used by the replacementgraph of the rule.

Definition 6 (Contextual Star Rule) Acontextual star rule rhas the formr = P/N ≀L ::= R,
whereL ::= R is an incomplete star rule, and thepositive contexts Pas well as thenegative
contexts Nare (decidable) sets of graphs that contain the border nodes ofL as subgraph. (Note
thatr is a star rule ifL is a star and the setsP andN are empty.)

The contextual star ruler appliesto some graphG if there is a morphismm: L → G that can
be extended to a morphismC → G for at least one positive contextC ∈ P (if P 6= /0) and that
cannot be extended to a morphismC→ G for any negative contextC∈ N, yielding a graphH by
applying the incomplete star ruleL ::= R to G with morphismm.

Then we writeG
c

=⇒r H, G
c

=⇒R H if G
c

=⇒r H for somer from a finite setR of contextual
star rules, and denote the reflexive-transitive closure of this relation by

c
=⇒

∗

R .

Definition 7 (Contextual Star Grammar)Γ = 〈G (X ),X ,R,Z〉 is acontextual star grammar
(CSG) with astart star Z∈ X and a finite setR of contextual star rules. Thelanguageof Γ
is obtained by exhaustive application of its rules, starting from the start star: L (Γ) = {G∈ G |

Z
c

=⇒
∗

R ′ G}.

In the following, we will either enumerate context graphs of the setsP andN of positive and
negative contexts, respectively, or we will specify them by path expressions similar to the PRO-
GRES language [Sch97]. Even more powerful specifications of context graphs are conceivable,
e.g., by hyperedge replacement systems, as proposed in [HR10], or by star grammars. But this

Proc. GT-VMT 2010 8 / 13



ECEASST

M2

C1

Fea : :=
ovrd

C 1

M

B

Bdy

P= C C M
+

1 2

N = C B M1 2

V2

A1

Acc : :=
acc

?

A 1

Exp

V

P1 = A x B C V
+ +

1 2

P2 = A x B M V
+

1 2

M2

I1

Inv : :=
call

I 1

∗

M

Exp

Figure 5: The contextual star rules of the grammarPG

is not necessary for specifying program graphs.

Example3 (Contextual Star Grammar for Program Graphs)The CSG for program graphs con-
tains the star rulesstart, hy, cls, var, meth, bdy, andexp of PT in Figure 4, and the contextual
rules inFigure 5. In these rules, specifications of positive and negative contexts are drawn below
their incomplete star rules. Small numbers indicate the correspondence between context nodes
and border nodes.

So filled nodes in rulesovrd, acc, andcall of PT are turned into context nodes inPG. Path
expressions encode conditions4–7 in Definition 1. A small “+” above an edge represents any
path of length> 1. In ruleovrd, the path expression of the positive contextP encodes condition4,
i.e., the method declaration must be inherited by the current class, while the negative context
encodes condition5, i.e., the current class must not have a second body for the same method
declaration. Ruleacc does not have a negative context, but two positive contexts. Ruleacc may
be applied either with contextP1 or with contextP2. P1 andP2 encode conditions6 and7, i.e.,
access to a visible attribute variable and to a visible parameter, respectively.The node labeledx
represents a node of any sort. Rulecall has empty positive and negative contexts and is applicable
if its incomplete star rule applies. However, it still is a contextual star rule because its left-hand
side requires the existence of anM-node in the context.

In Figure 6, some steps in the derivation of the program graph inFigure 1are shown. The
first graph represents the class hierarchy of the program graph. The grey bubbles in these graphs
abstract from parts of the derived graph that are nor relevant for the derivation steps shown. The
ruleovrd can be applied to this graph, where we draw the context node filled, with thicklines, and
underlay the path leading to it in grey. We use the same drawing convention for the remaining
derivation steps usingbdy, call, acc, and againacc.

The following fact is a direct implication ofFact 4:

Fact 6 L (PG) = P.

Star grammars can be easily transformed into equivalent hyperedge replacement gram-
mars [DHJM10, Theorem 2.8] and vice versa by interpreting stars as hyperedges with nontermi-
nal labels. Hence, parsers for hyperedge replacement grammars like the DIAGEN parser [Min02]

9 / 13 Volume 29 (2010)



Meta Models versus Graph Grammars

C

Any

C
Cell

B M
set

C
ReCell

V
cts

V
n

Fea V
backup

c
=⇒
ovrd

C

Any

C
Cell

B M
set

C
ReCell

V
cts

V
n

B V
backup

Bdy

c
=⇒
bdy

C

Any

C
Cell

B M
set

C
ReCell

V
cts

V
n

B V
backup

I A

Inv Acc

c
=⇒
call

C

Any

C
Cell

B M
set

C
ReCell

V
cts

V
n

B V
backup

I A

A

Inv

Acc

c
=⇒
acc

C

Any

C
Cell

B M
set

C
ReCell

V
cts

V
n

B V
backup

I A

A Acc

c
=⇒
acc

C

Any

C
Cell

B M
set

C
ReCell

V
cts

V
n

B V
backup

I A

A A

Acc

Figure 6: Deriving the program graph of Figure1 with PG

can be used to parse star grammars. The same parser with only slight extensions can also be
used for parsing CSGs. This parser is outlined below.

The parser works on CSGs like aCocke-Younger-Kasami(CYK) parser for string grammars.
The CSG has to be inChomsky normalform(CNF) so that each production rule is either terminal
or nonterminal. The right-hand side of a terminal rule is a terminal graph with only one edge, the
right-hand side of a non-terminal rule is the union of two stars. Similar to string grammars, each
CSG that does not produce the empty graph can be transformed into CNF. Given a terminal graph
G, the parser creates a derivation forG, if it exists, in two phases. The first phase completely
ignores contexts of contextual star rules and creates candidates for derivations. The second phase
searches for a derivation by checking these candidates, this time considering contexts.

In the first phase, the parser builds upn setsL1,L2, . . . ,Ln wheren is the number of edges in
G. Each setLi eventually contains all stars that can be derived to any subgraph ofG that contains
exactlyi edges. SetL1 is built by first finding each embedding of the right-hand side of each ter-
minal rule and adding the star of the corresponding left-hand side toL1. If the corresponding rule
is a contextual star rule with an incomplete star as left-hand side, only the (complete) star within
the incomplete star is added toL1. The remaining sets are then constructed using nonterminal
rules. A nonterminal rule is reversely applied by searching for appropriate starss ands′ in sets
Si andSj , respectively. If a nonterminal rule (without considering contexts) is applicable, i.e., if
the rule’s right-hand side is isomorphic to the union ofs ands′, a new star corresponding to the
rule’s left-hand side is added to a setSk. Note thatk = i + j since each star in a setSi can be
derived to a subgraph ofG with exactlyi edges. Each instance of the start starZ in Sn represents
a derivation candidate forG.

Proc. GT-VMT 2010 10 / 13



ECEASST

The second parser phase checks these derivation candidates by testing for each application of
a contextual star rule whether required context has already been created and forbidden context
has not (yet) been created earlier in the derivation. The parser stops when it finds the first valid
derivation, or when it has checked the last derivation candidate withoutsuccess.

5 Discussion

In the previous sections we have used two different techniques to describe program graphs. We
have shown that the specification of program graphs by CSGs is indeed equivalent to their defi-
nition using a model together with OCL constraints. Moreover, both approaches allow for auto-
matic checking whether a given graph is a valid program graph. Both specifications are actually
even more closely related as the following discussion shows.

The CSG for program graphs consists of (plain) star rules and contextual star rules. As de-
scribed byFact 2, the tree structure (made from composition links) of program graphs can be
constructed by (plain) star rules. Plain star grammars, however, fail forlinks refersTo andcall,
i.e., those program graph edges that represent references to objectsthat are located “far away”
in the program structure. Contextual star rules are needed to add those edges; the far away ob-
jects are represented by the rules’ context nodes (Figure 5). The positive and negative contexts of
those rules play the same role like the OCL constraints for conditions4–7 in Figure 3. These con-
straints actually can be considered as an OCL implementation of the rules’ context conditions.
E.g., constraintmethodImplementedOnce for condition5 in Definition 1prohibits a second body
of the same method within the same class; this exactly corresponds to the negative contextN of
rule ovrd (Figure 5). The path expressionsP, P1, andP2 of rulesovrd andacc, respectively, re-
alize conditions4, 6, and7. Their OCL realizations make use of the derived attributesvisible
whose recursive definition exactly reflects the iteration operator “+” in thepath expressions.

The contextual star grammarPG (Figure 4and5) for program graphs has been created by
hand. The discussion, however, has revealed a close relation betweenOCL constraints and pos-
itive as well as negative contexts on the one hand, and between class diagram and contextual
star rules without those contexts on the other hand. This close relation may lead to a procedure
for translating CSGs and meta models with OCL constraints into each other at least in a semi-
automatic way. This line of research is also motivated by work of Ehrig et al. [EKT09]. They
create graph transformation rules with graph constraints from meta models withOCL constraints.
The graph transformation system is then used to automatically generate model instances of the
meta model. However, they only consider very restricted OCL constraints that are not sufficient
for the specification of program graphs, and their generated layered graph transformation rules
are rather complicated, and are less suited for parsing.

6 Conclusions

We have extended star rules by positive and negative context. These contextual star grammars al-
low to define program graphs precisely, without sacrificing parseability.Program graphs, which
represent certain aspects of object-oriented programs, can also be defined by a class diagram
together with OCL constraints in a model-based style. However, this approach is less suited

11 / 13 Volume 29 (2010)



Meta Models versus Graph Grammars

for inductive proofs or for automatic instance generation than the proposed grammar-based ap-
proach. A comparison of both specification approaches, however, has shown close relations be-
tween both specification approaches which may allow for a semi-automatic translation process
between both specification approaches. This will be subject of future work.

Too many kinds of graph grammars are related to contextual star grammars to mention all of
them. So we restrict our discussion to those that aim at similar applications. Contextual star rules
re-usepath expressionsfirst devised by M. Nagl [Nag79], which have later been implemented
in the PROGRESgraph transformation language [Sch97]. Using context conditions and exam-
ining their relation to logical graph properties and constraints is not new either. A. Habel and
K.-H. Pennemann have shown that nested graph conditions are equivalent to first-order graph
formulas [HP09]. These conditions are still too weak to specify program graphs, as theyonly
allow to require or forbid the existence of subgraphs of bounded size. Only in [HR10], A. Habel
and H. Radke devised nested graph conditions with variables that allow to express the conditions
of CSGs (and more). However, rules and grammars using such conditionsare not yet consid-
ered in that paper. Context-embedding rules [Min02] extend hyperedge replacement grammars
by rules that add a single edge to an arbitrary graph pattern. They are used to define and parse
diagram languages, but are not powerful enough to define models like program graphs. Graph
reduction grammars [BPR10] have been proposed to define and check the shape of data struc-
tures with pointers. While the form of their rules is not restricted, reduction with them is required
to be terminating and confluent, so that random application of rules providesa backtracking-free
parsing algorithm. It is still open whether graph reduction grammars sufficeto define program
graphs.

The nested patterns [HJG08] recently introduced to GRGEN [GBG+06], an efficient graph
rewrite tool, allow to express nested graph conditions with variables that aredefined by hyper-
edge replacement systems, and can thus be used to implement contextual stargrammars (like
that for program graphs) in the future.

Acknowledgements: We thank the reviewers for their constructive criticism that helped to
improve our paper.

Bibliography

[BPR10] A. Bakewell, D. Plump, C. Runciman. Specifying Pointer Structures by Graph Re-
duction.Mathematical Structures in Computer Science, 2010. To appear.

[CEM+06] A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, G. Rozenberg (eds.). 3rd Int’l
Conference on Graph Transformation (ICGT’06). Lecture Notes in Computer Sci-
ence 4178. Springer, 2006.

[Cou87] B. Courcelle. An Axiomatic Definition of Context-free Rewriting andits Applica-
tion to NLC rewriting.Theoretical Computer Science55:141–181, 1987.

[DHJ+06] F. Drewes, B. Hoffmann, D. Janssens, M. Minas, N. V. Eetvelde.Adaptive Star
Grammars. Pp. 77–91 in [CEM+06].

Proc. GT-VMT 2010 12 / 13



ECEASST

[DHJM10] F. Drewes, B. Hoffmann, D. Janssens, M. Minas. Adaptive Star Grammars and Their
Languages.Theoretical Computer Science, 2010. Accepted for publication.

[DHK97] F. Drewes, A. Habel, H.-J. Kreowski. Hyperedge Replacement Graph Grammars.
Chapter 2 in [Roz97].

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer.Fundamentals of Algebraic Graph Trans-
formation. EATCS Monographs on Theoretical Computer Science. Springer, 2006.

[EKT09] K. Ehrig, J. M. Küster, G. Taentzer. Generating instance models from meta models.
Software and System Modeling8(4):479–500, 2009.

[ER97] J. Engelfriet, G. Rozenberg. Node Replacement Graph Grammars. Chapter 1 in
[Roz97].

[GBG+06] R. Geiß, G. V. Batz, D. Grund, S. Hack, A. Szalkowski. GrGen: A Fast SPO-Based
Graph Rewriting Tool. Pp. 383–397 in [CEM+06]. URL: http://www.grgen.net.

[HJG08] B. Hoffmann, E. Jakumeit, R. Geiß. Graph Rewrite Rules with Structural Recursion.
In Mosbah and Habel (eds.),2nd Intl. Workshop on Graph Computational Models
(GCM 2008). Pp. 5–16. 2008.

[Hof10] B. Hoffmann. Conditional Adaptive Star Grammars.Electr. Comm. of the EASST,
2010. To appear.

[HP09] A. Habel, K.-H. Pennemann. Correctness of high-level transformation systems rela-
tive to nested conditions.Mathematical Structures in Computer Science19(2):245–
296, 2009.

[HR10] A. Habel, H. Radke. Expressiveness of graph conditions withvariables. In Ehrig
and Ermel (eds.),International Colloquium on Graph and Model Transformation
(GraMoT’10). 2010. To appear in Electr. Comm. of the EASST.

[MEDJ05] T. Mens, N. V. Eetvelde, S. Demeyer, D. Janssens. Formalizing refactorings with
graph transformations.Journal on Software Maintenance and Evolution: Research
and Practice17(4):247–276, 2005.

[Min02] M. Minas. Concepts and Realization of a Diagram Editor GeneratorBased on Hy-
pergraph Transformation.Science of Computer Programming44(2):157–180, 2002.

[Nag79] M. Nagl. Graph-Grammatiken: Theorie, Anwendungen, Implementierungen.
Vieweg-Verlag, Braunschweig, 1979. In German.

[Obj06] Object Management Group. Specification of the Object Constraint Language.
http://www.omg.org/spec/OCL/2.0/, 2006.

[Roz97] G. Rozenberg (ed.).Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. I: Foundations. World Scientific, Singapore, 1997.

[Sch97] A. Scḧurr. Programmed Graph Replacement Systems. Chapter 7 in [Roz97].

13 / 13 Volume 29 (2010)

http://www.grgen.net
http://www.omg.org/spec/OCL/2.0/

	Introduction
	Graphs Representing Object-Oriented Programs
	Star Grammars
	Contextual Star Grammars
	Discussion
	Conclusions

