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Abstract: We present a new abstract machine for interaction nets and demonstrate
that an implementation based on the ideas is significantly more efficient than existing
interaction net evaluators. The machine, which is founded on a chemical abstract
machine formulation of interaction nets, is a simplification of a previous abstract
machine for interaction nets. This machine, together with an implementation, is
at the heart of current work on using interaction nets as a new foundation as an
intermediate language for compiler technology.
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1 Introduction

Interaction nets [Laf90] are a graphical model of computation. It is possible to program with
interaction nets [HMS09, Mac05] and they also serve as an intermediate language for imple-
menting other programming languages. Some examples are encodings of A-calculus, and simple
functional programming languages (amongst others, see for instance [AG98, GAL92, Mac98]).

One reason why they have been very successful at implementing other programming lan-
guages is that a compilation must explain all the components of a computation. What is rare, is
that the compilation can give something back, and this has been observed with the encodings on
the A-calculus where new strategies for reduction have been found. One of the reasons for this
is because interaction nets naturally capture sharing, indeed one has to work hard to simulate
reduction strategies where duplication of work takes place.

In [FM99] a calculus was given which provided a foundation for the operational understanding
of interaction nets. This calculus led to the development of an abstract machine [Pin00], which
in turn led to a very efficient implementation of interaction nets.

Recently, there have been new developments in the foundations for a calculus of interaction
nets. The purpose of this paper is to outline these ideas which led to the main contribution of
the paper which is an abstract machine founded on the new calculus. This in turn has led to the
development of new implementations of interaction nets which are the most efficient that we are
aware of to date.

One of the main hopes of this work is that it provides a new foundation for a research pro-
gramme to build implementations of programming languages through interaction nets: an im-
provement in the implementation technology for nets will have an impact on all the compilers
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developed.
The main contributions of this paper are:

e We define a new term calculus of interaction nets. The novelty is that the notion of substi-
tution is simplified in that it just replaces a name.

o We simplify and improve Pinto’s abstract machine [PinOO] by using this calculus. The
main improvement is due to the fact that we no longer need to maintain lists of names, and
consequently the transition rules become significantly more simple.

e We have built a prototype implementation based on the ideas. We demonstrate that we
get a factor of ten improvement over previous implementations, and this implementation
is thus the most efficient evaluator to date.

Overview. The rest of this paper is structured as follows. In the next section we review what
we need about interaction nets. In Section 3 we give our new calculus. Section 4 gives the
abstract machine, and gives studied properties of it. We conclude the paper in Section 5.

2 Interaction nets

Here we review the basic notions of interaction nets. We refer the reader to [Laf90] for a more
detailed presentation. Interaction nets are specified by the following data:

o A set X of symbols. Elements of X serve as agent (node) labels. Each symbol has an
associated arity ar that determines the number of its auxiliary ports. If ar(a) = n for
a € X, then o has n+1 ports: n auxiliary ports and a distinguished one called the principal

port.

Zy Tn

o A net built on X is an undirected graph with agents at the vertices. The edges of the net
connect agents together at the ports such that there is only one edge at every port. A port
which is not connected is called a free port. A set of free ports is called an interface.

e Two agents (¢, ) € X x X connected via their principal ports form an active pair (analo-
gous to a redex). An interaction rule ((o,) — N) € %, replaces the pair (¢, 3) by the
net N. All the free ports are preserved during reduction, and there is at most one rule for
each pair of agents. The following diagram illustrates the idea, where N is any net built
from X.

|
| N |
() (| =
= T eI TTT
Ty Ym Ty

Tn Y1 Y Tn Y1 Ym
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Rules: Example of reductions:
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Figure 1: An example of a system of interaction nets

We use the relation — for the one step reduction and —* for its transitive and reflexive closure.
Interaction nets have the following property [Laf90]:

Proposition 1 (Strong Confluence) Let N be a net. If N — N; and N — N, with N| # N,
then there is a net N3 such that N — N3 and N, — Nj.

Figure 1 shows a classical example of an interaction net system that encodes the addition
operation. We can represent numbers using the agents S to represent the successor function
(n+— n+1) and Z to represent the number 0. The left of the figure contains the two addition rules
which we leave the reader to relate to the standard equational term rewriting system definition
of addition. The right of the figure gives an example reduction sequence which shows how a net
representing 0+ 1 is reduced to 1 using the given rules.

2.1 The calculus for interaction nets

In this section we review the calculus for interaction nets proposed by Ferndndez and Mackie [FM99].
We begin by introducing a number of syntactic categories:

Names Let .4 be a set of names ranged over by x,y,z,x1,x2,.... We write X, ¥, ... for sequences
of names. We assume 4" and X are disjoint.

Terms are built from X and .4 using the grammar: ¢ ::=x | a(r,...,t,), where ty,...,t, are
terms, o € X and ar(a) = n. If ar(a) = 0, then we omit brackets and write just o. We use
t,s,u,...torange over terms and 7, 5, it, . . . over sequences of terms.

Equations have the form: ¢ =y, where ¢ and s are terms. Equations are elements of computa-
tion. Givenf =t,...,ty and § = s, ..., 85, we write f = § to denote the listt| = sq,...,f =
sk- Weuse A, ®, ... to range over multisets of equations.

Configurations have the form: (7 | A ), where 7 is a sequence of terms representing the
interface of the net and A is a sequence of equations. All names occur at most twice in
a configuration. We use C,C,, ... to range over configurations. Configurations that differ
only on names are considered equivalent.
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Interaction rules have the form:  o(t,...,2,) x B(s1,...,5¢), where a(¢1, ...,t,) and B (s1, ..., Sk)
are terms. This notation for rules was introduced by Lafont [Laf90] and we refer to it as
Lafont’s style. All names occur exactly twice in a rule, and there should be at most one rule
between any pair of agents in #Z. % is closed under symmetry, thus if a(7) x B(5) € Z
then B(5) x a(f) € Z.

Definition 1 (Bound names) If a name x occurs twice in a term ¢, then we say x is bound. We
extend this notion to equations, sequences of terms, and multiset of equations.

The calculus consists of three reduction rules which reduce (valid) configurations.

Indirection:
(| x=t,u=s,A)— (| ult/x] =s,A) where x occurs in u,
Collect:
(f|x=1t,A)—.(f[t/x] | A) where x occurs in 7,
Interaction:
(T]a@)=BR),A) —x(T|0=5n=dA)
where a(5) X B(ii) € % and § and i@ are the result of replacing each occurrence of a
bound name x for a(5) w B (i) by a fresh name x! respectively.

Example 1  The example rules in Figure 1 can be represented using Lafont’s style ! as:
add(S(x),y) x S(add(x,y)), add(x,x) X Z
The example net in Figure | can be represented using the configuration:
(a| add(a,z)=5(2))

and the following is a possible reduction sequence using the calculus rules above:

(a| add(a,z)=5(2)) —x (a|la=3s),z=y,z2=addx,y))
—e (S() | z=Y,2=addx.,y))
— (S(X) | z=add(¥,z))
— < S(x’) ’ X :x’/,Z:x” >
—e (S(X') [ z=x")
—e (S(2) )

3 Refining the calculus

The calculus given in the previous section has nice properties and provides a simple static and
dynamic semantics for interaction nets. However, the calculus introduces extra computational
steps to reduce a given net to normal form. For example, the example net in Figure 1 reduces
in two steps using the graphical setting while the same net reduces in six steps using the textual
calculus (see Example 1). In this section, we answer the following question in the positive: can
we optimise the calculus to obtain more efficient computations? The result of this question is
our lightweight calculus which will form the basis of the lightweight abstract machine.

I see [Laf90, HMSO08] for a more detailed description of Lafont’s style syntax
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Interaction rules. The notation of Lafont’s style generates (redundant) equations which will
be reduced by the Indirection rule. In particular, if an auxiliary port of an interacting agent in
a rule is connected to another auxiliary port, the application of an Interaction rule will generate
an equation with a variable x on one side of the equation. Since all variables appear twice in a
rule, x will eventually be eliminated using the Indirection rule. For example, this can be traced in
Example | where the equation z =’ is generated in the configuration after applying the first rule
add(s(x),y) x S(add(x,y)). In other words, the application of an Interaction rule to an active
pair (o, B) where o (f1,x,12) X B(s1) € Z will generate a configuration where an Indirection rule
is applicable.

In order to eliminate the generation of redundant equations we introduce an alternative nota-
tion to represent interaction rules. We represent rules using the syntax: lhs — rhs where lhs
consists of an equation between the two interacting agents and rhs is a list of equations which
represent the right-hand side net. All rules o/(7) x B(§) in Lafont’s style can be written using our
notation:

o(fj)=PB(s1) —hHh=Fs=35 where 7], 5] are meta-variables for terms.
As a concrete example, the rule add(S(x),y) X S(add(x,y)) can be represented as
add(ty,n) = S(u1) — 11 = S(x),1 =y,u; = add(x,y)

moreover we can simplify rules by replacing equals for equals. The above rule can be simplified
to:

add(ll,lz) = S(Lt]) — 1 = S(x),m = add(x,tz)

Therefore we obtain a more efficient computation by using the notation of term rewriting sys-
tems.

Definition 2 (Lightweight interaction rules) A lightweight rule r € %, is of the form:
(X(l], ...,l‘n) = [3(5‘1, ...,Sk) — A

where o, 3 € X, ar(at) = n,ar(B) =k, and 11, ...,1,,51,...,5; are meta-variables for terms. Each
meta-variable occurs exactly twice in a rule: once on the /hs and once on the rhs. The set
), contains at most one rule between any pair of agents; %), is closed under symmetry — if
o(f) =B(5) — A€ Hy then B(5) = a(f) — A € H.

Indirection rules. Let us now examine the Indirection rule of the calculus which eliminates
bound variables by means of variable substitution. The application of this rule will search
through the list of terms to locate a term which contains an occurrence of a particular variable.
In order to reduce the searching costs, Pinto’s abstract machine [Pin00], which is based on this
calculus, attaches a list of variables to the head of every term. This again introduces management
overheads, hence the increase in the number of operations required to perform rewirings.

Taking into consideration that every change of connection does not affect interactions directly,
it turns out that we do not have to perform all substitutions eagerly. Therefore we decompose
the Indirection rule into: communication rules that will replace just a name, and substitution rule
that will perform other substitutions.

5/12 Volume 29 (2010)
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Definition 3 (Lightweight reduction rules) We define Lightweight reduction rules as follows:

Communication:
(flx=t,x=u,A) 25 (F|t=uA),

Substitution:
(f|x=t,u=s,A) Sub, (7| ult/x] =s,A) where u is not a name and x occurs in u,

Collect:
(f|x=1tA) <o, (f[t/x] | A) where x occurs in 7,
Interaction: )
(7| a(i)=BB),A) (7] €,A)
where a(35) = B(il) — O € %y and @' is the result of replacing each occurrence of

a bound name x for ® by a fresh name x' and replacing each occurrence of §,i by 7,5
respectively.

. . b [ int . [
We use just — instead of —=, == % &, when there is no ambiguity. We define C; |} C;
by C; —* C; where C; is in normal form. From now on, we use 7,S,U, ... for non-variable

terms.
Example 2 Rules in Figure 1 can be represented as follows:

add(xi,x) = S(y) — x1=S(w),y=add(w,x)
add(xl,xz) =7 — X=X

and the following computation can be performed:

int

(a| add(a,z)=5(2)) —l> (a|a=sW),z=add(w,2z))
5 (s(w) | z=add(W,2))
it; (s(w) | w'=2)
= (s(2) )

3.1 Properties of lightweight reduction rules

In this section, we present some properties of the lightweight reduction rules. First, we show that
we can postpone the application of Collect rules as in Abramsky’s Computational interpretations
of linear logic [Abr93].

i !
Lemmal IfC, LB Gy then €y 25 S5 .

Proof. Let C = (7| x=tu=yy=vA) <" (ft/x] | u=yy=vA) < (ft/x] | u=

vA)=Cy. Then, Cy <5 (7 | x=t,u=v,A) <% C,. O
Lemma2 IfC; <% . 2% ¢, then C; 2% . <2 ¢, .
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Lemma3 [fC; % . ™. ¢ then ¢ ™ . <L ¢, O

By Lemma 1, 2, 3, the following holds.

Lemma 4 If C, || C, then there is a configuration C such that C; —* C ol Cy and Cy is
reduced to C without the application of any Collect rule. O

Next, we examine whether or not we can postpone the application of Substitution rules. Note
that applying the Substitution rule to an equation does not generate any other equations which
require the application of an Interaction rule. Therefore the following properties hold.

sub com com  sub

Lemmas$S [fCi — - — CythenC; — - — (). L]
Lemma 6 IfC1ibwﬂCQIhenClﬂ»-ib»czorcli-ﬂcz. ]

By Lemma 4, 5 and 6 the following theorem holds.

* *
sub col

Theorem 1 [fC| || C; then there is a configuration C such that C, —* C — - — C, and
C| is reduced to C by applying only Communication and Interaction rules. O

This theorem shows that all Interaction rules can be performed without applying Substitution

rules. We define C; ;. C; by C; —* C; where C; is a {'—m>, £} —normal form.

4 Lightweight abstract machine

In this section we define the Lightweight abstract machine which is based on the lightweight
rewriting rules.

Definition 4 (Machine configuration) A configuration of our abstract machine state is given by
aS5-tuple (I'| ¢ | 7| ® | A) where

I is an environment which maps a variable to a term. We use [] as an empty map and the
following notation:

B t (Z is.x)
I —t](z) = { I'(z) (otherwise)

¢ is a connection map. When ¢ (x) is undefined, we use the following notation:

undefined (z=x)

Olx = L](z) = { 0(z) (otherwise)

f is a sequence of terms

® is a sequence of error codes that are not executable

7/12 Volume 29 (2010)
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A is a sequence of equations which we also regard as codes. We write “—” for an empty
sequence of codes.

In Figure 2 we give the semantics of the machine as a set of transitional rules of the form:
(C|¢|7|®|A)= (I"|¢'|7|@O |A"). The functions interaction(S = 7') and error(S =T
are defined as follows:

A (when (| S=T) " (| Ar)),

interaction(S=7T) = { (otherwise)
—  (otherwise

error(S=T)=¢ (when (| S=T) =5 (| Ar)),
S=T (otherwise)

For readability purposes we present the transitions in a table format. For example, the entry:

’ ‘ ‘ Before ‘ After ‘

I1.0 | Connections | ¢ [x <« L] | ¢ [x« L]
Env. 'x— 1] | T x—U]

Code x=U, A A

corresponds to:

(C=L]¢ ke |7 - [x=U,A) = (T x—= U] ¢ [x= L][T| - |A)

4.1 Correctness

In order to show the correctness of our abstract machine, we first define a decompilation function
from configurations to terms. Several lemmas follow before the correctness theorem.

Definition 5 (Decompilation) We define a translation |. |, from an environment I into a mul-
tiset of equations as follows:

e & empty,
I_F[XHIUMV d;f X =1, I_Fjenv-

The function |. .., translates a connection map ¢ into a multiset of equations as follows:

def
L0 con = empty,
def

W’[)“_’y”con = x:yaw)Jcon'

We write just |.] instead of |.|en, |- ]con When there is no ambiguity.

The machine will stop when there is no executable code. These cases arise not only when the
code sequence is empty, but also when names are included in both the domains of I" and ¢. We
define the latter case as inconsistent:

Proc. GT-VMT 2010 8/12
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Before After ‘
I Error (] error(U=T),0
Code U=T, A interaction(U =T), A
1.0 Connections ¢ [x— 1] O [x— 1]
Env. I'x— 1] I' x— U]
Code x=U, A A
Il.c Connections ¢ [x <y ¢ [x— L]y L]
Env. [x— 1]y~ 1] ['x— L]y~ U]
Code x=U, A A
Il.e Connections ¢ [x— 1] ¢ [x— 1]
Env. ['x—T)| x— 1]
Code x=U, A T=U,A
II.— Code U=xA x=U, A \
MI.0.0 | Connections | ¢ [x < L][y < L] POlx <y
Env. [x— L]y— L] x— L]y— 1]
Code x=yA A
MI.0_c | Connections | ¢ [x — L][y — w] O x = w|y— 1]
Env. ['x— L]y— 1] I'x— L]y~ 1]
Code x=y, A A
MI.0_e | Connections | ¢ [x < L][y<— L] O [x— L]y 1]
Env. I'x— L][y—U] I' x— U]y 1]
Code x=y A A
Ill.c.0 | Connections | ¢ [x < z][y < L] O xe Ly~ 7
Env. [x— 1]y~ 1] I'x— L]y~ 1]
Code x=y A A
MI.cc | Connections | ¢ [x<—z][y—w] | ¢ [x— L]y L]z w]
Env. [x— 1]y~ 1] I'x— 1]y~ 1]
Code x=yA A
II.c.e | Connections | ¢ x—zl][y— L] | ¢ [x— L]y L]z 1]
Env. Ix—Ll)y—U] | T[x— L]y L][lz— U]
Code x=yA A
MI.e 0 | Connections | ¢ [x < L][y<— L] ¢ [x— L]y~ 1]
Env. [x—T]y— 1] I'x— L)[y—T]
Code x=y A A
Ml.ec | Connections | ¢ x— L][y—w] | ¢ [x— L]y L][we L]
Env. IFx—T|y—1] | T~ Ly~ L]w—T]
Code x=y A A
Ml.e.e | Connections | ¢ [x L]y« L] O [x— L]y < 1]
Env. ['x—T]y—U] I'x— L][y— 1]
Code x=y, A T=U,A

Figure 2: Transitions (I' | ¢ [7|® |A) =

("¢ |7] @A)

9/12
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Definition 6 (Consistency of a machine state) A state (I'| ¢ |7 | ® | A) is consistent iff

e (7| [T],[9],0,A) is a configuration, thus every name occurs at most twice,

e for every x € ./, x is not included in both domains of I" and ¢.
The following lemma shows that consistency is preserved during transitions:
Lemma 7 Let M| be a consistent state. If M| =—> M, then M, is also consistent. O

Let M| and M, be two abstract machine states. We define M, || M, by M| =* M, where M, is
a —> —normal form.

Lemma 8 Let M) be a consistent state, f My |} (T'| ¢ | 7| ® | A), then A is empty.

Proof. There exists a transition which can be applied to an equation r = s whenever (I' | ¢ | 7 |
® |t =s,A) is consistent. O

Lemma 9 Let M; be a consistent state (I'1 | ¢1 |7 Oy |Ay). M) = (I | ¢2 |70z | A),
then one of the following holds:

o (7] [I],[91),01,A1) = (7| [I2],[¢2],02,A2),

o (F]I01],[91].01,A1) ™5 (7| [T2),162).02,40),
o (F||[1],[61],01,A1) =5 (7| (T2, [92],02,49),
o (7] [T1),[91),01,A1) =5 S5 (T | (2], [92],02,42). O

Theorem 2 Let (7 | A) be a configuration. If ([| | [] | 7| — | A) terminates at (T | ¢ |7]|© |A"),
then A’ is empty and (T | A) Ui (7| |T],[0],0).

Proof. By Lemma 8, A’ is empty. Since (I'| ¢ |7 | ® | —) is consistent by Lemma 7, [I"| and
|¢ | cannot contain equations that are reducible using the Communication rule. Therefore, by
Lemma 9, (7 | A) Ui (7| |T],1¢],0). O

Definition 7 We define the operation update as follows:
e update(I'| p[x =] |7|© | —) =update(T[x/y] | ¢ [7[x/y] [©] —),
e update(I'xr—s]|[]|7]©[ —) =update(T[s/x] || | 7ls/x] |©] ),
e update([] [ [ [7[©]|—) =T,

Each execution of update corresponds to an application of either Substitution or Collect rules.
Therefore, we can show the following property:

N

Theorem 3 (Correctness) Let (1 | A) be a configuration. If ([| |[] 7] —]A) I (
| @ ) where

® | A'), then A is empty and there is a reduction path such that (| A) || (i
update(I'| ¢ |7]©®| —) =i

Proc. GT-VMT 2010 10/12
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| AMINE | Light [ AMINE/Light

25511 14.07 | 0.09 156.33
26411 50.02 | 0.14 357.29
25611 11993 | 0.23 521.43
A 36 4.14 | 0.18 23.00
A 37 40.15 | 0.71 57.04
A 38 612.19 | 1.70 360.11

Table 1: The execution times in seconds on Linux PC (2.6GHz, Pentium 4, 512MByte)

Example 3 The computation of ( r | Add(r, Z) = S(Z) ) is given below:

(117~ | add(: 2) = 5(2))
— (10171~ | r = 5(x), 2= Add(x,2)) 0
— ([r— @] [ || ~| 2=add(x,2)) (1.0)
— ([ 8@ 7] -] x=2) M
— (I 8@k 2| 171 =] -) (I.0)
update([rr— S(o)llx = 2] | r| — | -)
— update([r— 5(2)] | | 7]~ | =) = 5(2)

4.2 Benchmark results

We compare the lightweight version with Pinto’s implementation (AMINE). Both are written in
C language. Table 1 shows execution times in seconds of our implementation and AMINE. The
final column gives the ratio between the two. The first three input programs are applications
of church numerals where n = A f.Ax.f"x and T = Ax.x. The encodings of these terms into
interaction nets are given in [Mac98]. The next programs compute the Ackermann function. The
following rules are the interaction net encoding of the Ackermann function:

Pred(Z) x Z, Dup(Z,2) X Z,
Pred(r) ® S(x), Dup(S(a),5(b)) x s(nupw b))
A(r,s(r)) x 2, Al(Pred(n(s(Z),r)),r) X

A(AL(S(x),r),r) x S(x), Al(Dup(Pred(a(rl,r)), (y7r1)),r) x S(y),
and A 3 6 means computation of ( r | A(S(S(S(5(s(s(2)))))),r) =S(S(S(2))) ).

The results that we have obtained are better than previous implementation results, and allow
substantially larger classes of functions to be executed very efficiently. Depending on the archi-
tecture used, these results will vary slightly. We however invite the reader to try some of these
examples by downloading our implementation: http://www.interaction-nets.org/.

5 Conclusion

The aim of this paper is to report on current work on the foundations of the implementations
of interaction nets. Specifically, we have presented a new implementation that is the most effi-
cient to date. In the work where interaction nets are considered as an intermediate language for
compilation, this work gives a speedup by a factor of ten or more.
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Implementation work for interaction nets is currently being investigated very actively, and
although this step is a considerable one, we believe that there is still much more to do. Our im-
plementations are still very much prototype in nature, and no program optimisations have been
included here. Future work will be directed towards developing stable and efficient implementa-
tions for both sequential and parallel architectures.

Bibliography

[Abr93]

[AGY8]

[FM99]

[GAL92]

[HMSO08]

[HMSO09]

[Laf90]

[Mac98]

[Mac05]

[Pin00]

S. Abramsky. Computational Interpretations of Linear Logic. Theoretical Computer
Science 111:3-57, 1993.

A. Asperti, S. Guerrini. The Optimal Implementation of Functional Programming
Languages. Cambridge Tracts in Theoretical Computer Science 45. Cambridge Uni-
versity Press, 1998.

M. Fernandez, 1. Mackie. A Calculus for Interaction Nets. In Nadathur (ed.), Pro-
ceedings of the International Conference on Principles and Practice of Declarative
Programming (PPDP’99). LNCS 1702, pp. 170-187. Springer-Verlag, 1999.
ftp://lix.polytechnique.fr/pub/mackie/papers/calin.ps.gz

G. Gonthier, M. Abadi, J.-J. Lévy. The Geometry of Optimal Lambda Reduction. In
Proceedings of the 19th ACM Symposium on Principles of Programming Languages
(POPL’92). Pp. 15-26. ACM Press, Jan. 1992.

A. Hassan, I. Mackie, S. Sato. Interaction nets: programming language design and
implementation. ECEASST 10, 2008.

A. Hassan, I. Mackie, S. Sato. Compilation of Interaction Nets. Electron. Notes Theor.
Comput. Sci. 253(4):73-90, 2009.
doi:http://dx.doi.org/10.1016/j.entcs.2009.10.018

Y. Lafont. Interaction Nets. In Seventeenth Annual Symposium on Principles of Pro-
gramming Languages. Pp. 95-108. ACM Press, San Francisco, California, 1990.

I. Mackie. YALE: Yet Another Lambda Evaluator Based on Interaction Nets. In Pro-
ceedings of the 3rd ACM SIGPLAN International Conference on Functional Program-
ming (ICFP’98). Pp. 117-128. ACM Press, September 1998.
ftp://lix.polytechnique.fr/pub/mackie/papers/yalyal.ps.gz

I. Mackie. Towards a Programming Language for Interaction Nets. Electronic Notes
in Theoretical Computer Science 127(5):133-151, May 2005.

J. S. Pinto. Sequential and Concurrent Abstract Machines for Interaction Nets. In
Tiuryn (ed.), Proceedings of Foundations of Software Science and Computation Struc-
tures (FOSSACS). Lecture Notes in Computer Science 1784, pp. 267-282. Springer-
Verlag, 2000.

Proc. GT-VMT 2010 12/12


ftp: //lix.polytechnique.fr/pub/mackie/papers/calin.ps.gz
http://dx.doi.org/http://dx.doi.org/10.1016/j.entcs.2009.10.018
ftp: //lix.polytechnique.fr/pub/mackie/papers/yalyal.ps.gz

	Introduction
	Interaction nets
	The calculus for interaction nets

	Refining the calculus
	Properties of lightweight reduction rules

	Lightweight abstract machine
	Correctness
	Benchmark results

	Conclusion

