
Electronic Communications of the EASST
Volume 29 (2010)

Proceedings of the
Ninth International Workshop on

Graph Transformation and
Visual Modeling Techniques

(GT-VMT 2010)

Efficient Analysis of Permutation Equivalence of
Graph Derivations Based on Petri Nets

Frank Hermann , Andrea Corradini , Hartmut Ehrig , Barbara König

14 pages

Guest Editors: Jochen Küster, Emilio Tuosto
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Abstract: In the framework of graph transformation systems with Negative Ap-
plication Conditions (NACs) the classical notion of switch equivalence of deriva-
tions is extended to permutation equivalence, because there are intuitively equiva-
lent derivations which are not switch-equivalent if NACs are considered. By def-
inition, two derivations are permutation-equivalent, if they respect the NACs and
disregarding the NACs they are switch equivalent. A direct analysis of permutation
equivalence is very complex in general, thus we propose a much more efficient anal-
ysis technique. For this purpose, we construct a Place/Transition Petri net, called
dependency net, which encodes the dependencies among rule applications of the
derivation, including the inhibiting effects of the NACs.

The analysis of permutation equivalence is important for analysing simulation runs
within development environments for systems modelled by graph transformation.
The application of the technique is demonstrated by a graph transformation system
within the context of workflow modelling. We show the effectiveness of the ap-
proach by comparing the minimal costs of a direct analysis with the costs of the
efficient analysis applied to a derivation of our example system.

Keywords: graph transformation, Petri nets, process analysis, adhesive categories

1 Introduction

Given a workflow of a system, it is often interesting to know whether the workflow can be im-
proved, by executing the tasks in a different order, which might be more convenient for the
user or preferable from an efficiency point of view. If the workflow is modelled by a Petri net,
representing a deterministic process, these questions can be fairly easily answered: processes
incorporate a notion of concurrency that can be exploited to rearrange the tasks, while still re-
specting causality.

In this paper we consider workflow models with two further dimensions, which consider-
ably complicate the problem: first, we work in the general setting of (weak) adhesive categories
[LS05, EEPT06] where we can model systems with an evolving topology, such as (attributed)
graph transformation systems, in contrast to systems with a static structure. For the sake of con-
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Analysis of Permutation Equivalence

ciseness, the definitions and results in this paper are presented for graph transformation systems,
and we refer to the companion technical report [HCEK10] for the general notions based on adhe-
sive categories. As a second dimension, we take into account Negative Application Conditions
(NACs) that are used to ensure the “absence” of forbidden structures when executing a transfor-
mation step: NACs significantly improve the specification formalisms based on transformation
rules leading to more compact and concise models as well as increased usability and as a matter
of fact they are widely used in non-trivial applications. The presence of NACs leads to more
complex interdependencies of tasks.

For this reason, we introduce a notion of permutation equivalence on derivations with NACs,
which is coarser and more adequate than the switch equivalence in the double-pushout (DPO)
approach including NACs. As defined in [Her09] two derivations are called permutation-
equivalent, if they respect the NACs and disregarding the NACs they are switch-equivalent.
Using the notion of switch equivalence with NACs directly does not lead to all permutation-
equivalent derivations of a given derivation in general. The main remaining problem is how to
derive the complete set of all permutation-equivalent derivations to a given one. For this purpose,
we construct a subobject transformation system (STS) via a standard colimit construction and
from this STS we construct a dependency net, given by a standard P/T Petri net, which includes
a complete account of the inhibiting effects of the NACs. The main result shows that complete
firing sequences of this net are one-to-one with derivations that are permutation-equivalent to the
given derivation, allowing us to derive the complete set of permutation-equivalent derivations.
Finally, for a given derivation of a simple example system with NACs, we perform a detailed
complexity analysis of the cost of identifying all permutation equivalent derivations using the
reduction to a Petri net and its reachability graph, and compare it with a lower bound of the costs
for a direct analysis, i.e. for computing all shift-equivalent derivations first, and then filtering out
the ones which do not respect the NACs. We obtain a significant improvement in speed, which
shows that the proposed technique can be efficient for many applications which involve the gen-
eration of permutation-equivalent derivations. Furthermore, the constructed P/T Petri net can be
used to derive specific permutations without generating the complete set first. In the context of
workflow analysis, both goals are of central interest for the modelling of a system.

The structure of the paper is as follows. Sec. 2 reviews the main concepts of permutation
equivalence for graph transformation systems. The construction of the dependency net is pre-
sented in Sec. 3 and in our main result it is shown to be sound and complete for computing the
set of permutation-equivalent derivations. Sec. 4 validates the efficiency of the analysis based on
an extended version of the running example. Finally, Sec. 5 sums up the main results, discusses
related work, and points out aspects of future work.

2 Permutation Equivalence

In this section we review the standard switch equivalence and the recently introduced permuta-
tion equivalence [Her09] for graph transformation systems based on the double pushout (DPO)
approach. The running example of this paper illustrates that there are derivations which are
intuitively equivalent and also permutation-equivalent but not switch-equivalent.
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Definition 1 (Graph Transformation System with NACs) A rule p = (Lp ←l− Kp −r→ Rp) is
a pair of injective graph morphisms. A Negative Application Condition (NAC) for a rule
p is an injective graph morphism n : Lp ↪→ N, having the left-hand side of p as source.
A rule with NACs is a pair 〈p,N〉 where p is a rule and N = {ni : Lp ↪→ Ni}i∈I is a fi-
nite set of NACs for p. A match of a rule p in a graph G is an injective graph mor-
phism1 m : Lp ↪→ G; match m satisfies the NAC n : Lp ↪→ N for p, written m |= n, if there
is no arrow g : N → G such that g ◦ n = m.2 We say that there is a direct derivation
G =

p,m
=⇒ H from an object G to H using a rule with NACs 〈p,N〉

and a match m : Lp→G, if there are two pushouts (1) and (2) in
Graphs, as depicted. A derivation respects the NACs, if m |= n
for each NAC (n : Lp ↪→N)∈N. A typed graph transformation

N
/

III

$$III
Lp

noo

m �� (1)

Kp

��

r //loo

(2)

Rp

��
G D //oo H

system (GTS) with NACs is a tuple G = 〈Q,πN〉 where Q is a set of rule names, and πN

maps each name q ∈ Q to a rule with NACs πN(q) =
〈
π(q),Nq

〉
in the category GraphsTG

of graphs typed over a given type graph TG. A derivation (respecting NACs) of G is a sequence

G0 =
q1,m1===⇒ G1 · · ·=

qn,mn===⇒ Gn, where q1, . . . ,qn ∈Q and di = Gi−1 =
π(qi),mi====⇒ Gi are direct derivations

(respecting NACs) for i∈ 1, . . . ,n. Sometimes we denote a derivation as a sequence d = d1; . . . ;dn

of direct derivations.
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Figure 1: Part of attributed transformation system GS∗, modeling mobile adhoc networks

Example 1 (Graph Transformation System with NACs) Fig. 1 shows a part of an attributed
graph grammar for modelling a workflow system in mobile adhoc networks, where persons can
be assigned to teams and tasks and they can change their location implying that their mobile
communication devices may need to reconnect to new access points. In order to simplify the
further constructions we will use the reduced version of this grammar in Fig. 2. The type graph
TG shows that nodes in the system represent either persons or tasks: a task is active if it has a

1 In the general case NAC-morphisms (n : L→ N) and matches are not required to be injective. For the general case,
our technique can be extended by the results in [HE08].
2 Intuitively, the image of Lp in G cannot be extended to an image of the “forbidden context” N.
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continueTask        (short: “cont“)

L

:worksOn

1:Person

3:started

K

1:Person

R

1:Person

2:Task

NAC2

:worksOn

1:Person

2:Task

3:started

2:Task

3:started

2:Task

R

:worksOn

1:Person

2:Task

K

1:Person

2:Task

L

1:Person

2:Task

NAC1

:worksOn

:Person

2:Task

1:Person

stopTask        (short: “stop“)

3:started

3:started

:worksOn

:started

TG

Person

Task

Type Graph

Figure 2: Reduced transformation system GS as running example

“:started” loop, and it can be assigned to a person with a “:worksOn” edge. Rule “stopTask”
cancels the assignment of a task to a person; rule “continueTask” instead assigns the task, and
it has two NACs to ensure that the task is not assigned to a person already. Fig. 3 shows two
derivations respecting NACs of GS. In derivation d the only task is first continued by “1:Person”,
and then, after being stopped, by “2:Person”. In d′ the roles of the two Persons are inverted.
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Figure 3: Derivation d (respecting NACs) of GS and permutation-equivalent derivation d′

The classical theory of the DPO approach (without NACs) introduces an equivalence among
derivations which relates derivations that differ only in the order in which independent direct
derivations are performed (see [Kre86, BCH+06]). The switch equivalence is based on the notion
of sequential independence and on the Local Church-Rosser theorem. This is briefly summarised
in the next definition.

Definition 2 (Switch Equivalence on Derivations) Let d1 = G0 =
p1,m1===⇒ G1 and d2 =

G1 =
p2,m2===⇒ G2 be two direct derivations. Then they are se-

quentially independent if there exist arrows i : R1 → D2 and
j : L2→D1 such that l′2◦ i = m′1 and r′1◦ j = m2 (see the diagram
on the right, which shows part of the derivation diagrams). If d1

K1

��

// R1

m′1

//

��// i ""

L2

m2
��

����j
||

K2

��

oo

D1 r′1 // G1 D2l′2oo

and d2 are sequentially independent, then according to the Local Church Rosser Theorem (Thm.
5.12 in [EEPT06]) they can be “switched” obtaining direct derivations d′2 = G0 =

p2,m2===⇒ G′1 and
d′1 = G′1 =

p1,m1===⇒ G2, which apply the two rules in the opposite order.
Now, let d = (d1; . . . ;dk; dk+1; . . . ;dn) be a derivation, where dk and dk+1 are two sequentially

independent direct derivations, and let d′ be obtained from d by switching them according to
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the Local Church Rosser Theorem. Then, d′ is a switching of d, written d sw∼ d′. The switch
equivalence, denoted

sw
≈, is the smallest equivalence on derivations containing both sw∼ and the

relation ∼= for isomorphic derivations.

Corresponding notions of parallel and sequential independence have been proposed for graph
transformation systems with NACs [HHT96, LEO06]. However, the derived notion of switch
equivalence does not identify all intuitively equivalent derivations. The reason is that, in presence
of NACs, there might be an equivalent permutation of the direct derivations that cannot be derived
by switch equivalence. Looking at d in Fig. 3 there is no pair of consecutive direct derivations
which is sequentially independent if NACs are considered. However, the derivation d′ should
be considered as equivalent. There are also examples in which even the switching of blocks
of several steps would not lead to all permutation-equivalent derivations. This brings us to the
following, quite natural notion of permutation equivalence of derivations respecting NACs, first
proposed in [Her09]. Note that for permutation-equivalent derivations d

π

≈ d′ the sequence of
rules used in d′ is a permutation of those used in d.

Definition 3 (Permutation Equivalence of Derivations) Two derivations d and d′ respecting
NACs are permutation equivalent, written d

π

≈ d′ if, disregarding the NACs, they are switch
equivalent as for Def. 2.

3 Dependency Net of a Derivation

In order to efficiently analyse permutation equivalence of derivations we introduce the construc-
tion of the dependency net of a given derivation with NACs. This Place/Transition Petri net
purely encodes the dependencies between the derivation steps. The reachability graph of this net
with initial marking determines the class of derivations which are permutation-equivalent to a
given one.

The construction of the dependency net is based on the construction of the subobject trans-
formation sytem (STS) of a given derivation d according to [CHS08] and its extension to NACs
in [Her09]. Subobjects of a graph G form the category of subobjects Sub(G), which contains
subgraphs of G3 as objects and injective graph morphisms m : G1 → G2 between subgraphs as
morphisms, where m is required to respect the injective embeddings of G1 and G2 to G. We will
write G1∩G2 for the componentwise intersection and G1∪G2 for the componentwise union of
subgraphs of G, where items are identified with respect to the injective embeddings of G1 and
G2 into G.
In order to construct the STS for a derivation d =
(d1; . . . ;dn) we compute the colimit T of the se-
quence of DPO diagrams, where all morphisms are
injective. Thus, all objects and morphisms of this di-
agram are in the category Sub(T ). The NACs of the
rules do not occur in this diagram.

Lk

��

Kkoo //

��

Rk

��
G0

++WWWWWWWWWWWWWWWW . . .oo // Gk−1

##HHHH
Dkoo //

��

Gk

}}{{{{
. . .oo // Gn

tthhhhhhhhhhhhhh

T

3 More formally, a subgraph is given by an equivalence class of injective graph morphisms to G, such that the image
of all morphism is equal.
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Definition 4 (STS of a derivation) A subobject transformation system S = 〈T,Q,π〉 consists
of a super object T , a set of rule names Q, and a function π , which maps a name q ∈ Q to a rule,
i.e., to a triple π(q) =

〈
Lq,Kq,Rq

〉
of subobjects of T such that Kq = Lq∩Rq.

Now, let G = 〈Q,π〉 be a graph transformation system, and let d = (G0 =
q1,m1===⇒ . . . =

qn,mn===⇒ Gn)
be a derivation of G. The STS generated from d is defined as STS(d) = 〈T,P, π̂〉, where T
is the colimit object of the diagram underlying the derivation d, P = {k | dk = (Gk−1 =

qk,mk==⇒
Gk) is a step of d}, and π̂(k) = 〈Lk,Kk,Rk〉, where qk = (Lk← Kk→ Rk).

For the rest of the paper, we consider only derivations such that the colimit T is a finite object,
i.e. Sub(T ) is a finite lattice. This is guaranteed if each rule of G has finite left- and right-hand
sides, and if the start object of the derivation is finite. The generation of an STS with NACs from
a given derivation works as in Definition 4, but additionally each rule will be equipped with a list
of NACs, i.e., those obtained as “instances” of the original NACs in the colimit object T . Note
that one original NAC can have several instances, but also not a single one.

Definition 5 (Instantiated NACs) Let d = d1; . . . ;dk; . . . ;dn be a derivation respecting NACs
and let T be the colimit object of the derivation. Let 〈p,N〉 be the rule with NACs used in direct
derivation dk and let NACS(p) = {n : Lp ↪→ N | n ∈ N}. The set of all instantiated NACs in T of
the NACs of a rule p is given by NACST (p) = {N −tN−→ T in Sub(T ) | n ∈ N, s.t. tN ◦ n = tL} for
Lp −tL→ T in Sub(T ).

Definition 6 (STS of a Derivation with NACs) Let G be a GTS with NACs and let d be a
derivation of G respecting NACs. The STS with NACs generated by d is given by STSN(d) =
〈T,P, π̂N〉, where T and P are as in Def. 4, π̂N(k) = 〈π̂(k),Nk〉, π̂(k) is as in Def. 4, and Nk is an
arbitrary but fixed linearisation of the instantiated NACs NACST (pk) as in Def. 5, where pk is
the rule of G used in dk.
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Figure 4: Derived Subobject Transformation System STSN(d)
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Example 2 (Derived STS STSN(d)) For the derivation d in Ex. 1 we derive the STS as shown
in Fig. 4. The super object T is derived by taking the first graph of the derivation and adding
the items, which are created during the transformation, i.e. the two edges of type “worksOn”.
The derivation d involves the rules “continueTask” and “stopTask” and thus, the derived STS
contains the rule occurrences “1, cont1”, “2, stop1”, “3, cont2” and “4, stop2”, where the
NACs of the rule “continueTask” are instantiated.

The following relations between the rules of an STS with NACs specify the possible depen-
dencies among them: the first four relations are discussed in [CHS08], while the last two are
introduced in [Her09]. In our case the STS with NACs is generated from a derivation d accord-
ing to Def. 6.

Definition 7 (Relations on Rules) Let q1 and q2 be two rules in an STS with NACs S =
(T,P,πN) with πN(q j) = (

〈
L j,K j,R j

〉
,N j) for j ∈ {1,2} and N j = (N j[i])i=1..n j . The relations

on rules are defined on P as follows:

Name Notation Condition
Read Causality q1 <rc q2 R1∩K2 * K1

Write Causality q1 <wc q2 R1∩L2 * K1∪K2

Deactivation q1 <d q2 K1∩L2 * K2

Independence q1 ♦ q2 (L1∪R1)∩ (L2∪R2) ⊆ K1∩K2

Weak NAC Enabling q1<wen[i]q2 1≤ i≤ |N2| ∧ L1∩N2[i] * K1∪L2

Weak NAC Disabling q1<wdn[i]q2 1≤ i≤ |N1| ∧ N1[i]∩R2 * L1∪K2

Read causality specifies that rule q1 produces an item that is read by q2, but not deleted by
q2 and in the case of write causality we have that q2 also deletes such an item. Deactivation
occurs when rule q2 deletes an item that is read by q1, but not created and two rule occurrences
are independent if they overlap only on items that are neither produced nor deleted by one of the
rules. Rule q1 weakly enables the rule q2 at i if q1 deletes a forbidden part q2, i.e. an item of
the i-th NAC of q2 that is not contained in L2. The rule q2 weakly disables q1 at i if q2 produces
a piece of the i-th NAC of q1. It is worth stressing that the relations introduced above are not
transitive in general.

Example 3 (Relations on Rules) The rules of STSN(d) in Fig. 4 are related by the following
dependencies. For write causality we have “cont1 <wc stop1” and “cont2 <wc stop2”. Weak
enabling/disabling are shown in the table below, while read causality and deactivation are empty.

Weak Enabling Weak Disabling
stop1<wen[1]cont1 stop2<wen[2]cont1 cont1<wdn[1]cont1 cont2<wdn[2]cont2
stop1<wen[1]cont2 stop2<wen[2]cont2 cont2<wdn[1]cont1 cont1<wdn[2]cont2

Based on the STS of a derivation, we now present the construction of its “dependency net”,
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given by a P/T Petri net which specifies only the dependencies between the derivation steps.
All details about the internal structure of the graphs and the transformation rules are excluded,
allowing us to improve the efficiency of the analysis of permutation equivalence.

Definition 8 (Dependency Net DNet of a derivation) Let d = (d1; . . . ;dn) be a derivation re-
specting NACs of a GTS with NACs, let STSN(d) = (T,P, π̂) be the generated STS with NACs
and let s = seq(d) = 〈q1, . . . ,qn 〉= 〈1, . . . ,n〉 denote the sequence of rule names in P according
to the steps in d. The dependency net of d is given by the marked Petri net DNet(d) = 〈N,M〉,
N = 〈PL,TR, pre, post〉, constructed by the steps in Fig. 5, where the steps are performed in the
order they appear in the table.

3. For all q ∊ P with q ≮wdn[i] q, i ∊ ℕ

2. For all q,q ’ ∊ P, q <x q ’, x ∈ {rc,wc,d }

1. For each q ∊ P

STS(d) = (T,P,¼) DNet(d) = ((PL,TR,pre,post),M)

a) N[i] of q

b) For all q ’ ∊ P: q ’ <wen[i] q

c) For all q ’ ∊ P: q <wdn[i] q ’

3. For all q ∊ P with q ≮wdn[i] q, i ∊ ℕ

2. For all q,q ’ ∊ P, q <x q ’, x ∈ {rc,wc,d }

1. For each q ∊ P

STS(d) = (T,P,¼) DNet(d) = ((PL,TR,pre,post),M)

a) N[i] of q

b) For all q ’ ∊ P: q ’ <wen[i] q

c) For all q ’ ∊ P: q <wdn[i] q ’

p(q<xq ’) q ’
+ ++

q p(q<xq ’) q ’
+ ++

q

p(q,N[i]) q
+ +p(q,N[i]) q
+ +

p(q,N[i])q ’
+

p(q,N[i])q ’
+

q ’
+ +

p(q,N[i]) q ’
+ +

p(q,N[i])

p(q) q
+ +

+
+

p(q) q
+ +

+
+

^

Figure 5: Construction of the Dependency Net

Fig. 5 shows the steps of the construction of the dependency net. The steps are given as visual-
ized rules, where gray line colour and plus-signs mark the inserted elements. In the first step they
are created without context, but e.g. in step two the new place “p(q <x q′)” is inserted between
the already existing transitions q and q′. The tokens of the marked Petri net are represented by
bullets that are connected to their places by arcs. The first step creates a transition for each rule
and the transition is connected to a marked place for ensuring that it cannot fire twice. In step 2,
between each pair of transitions in each of the relations <rc, <wc and <d , a new place is created
in order to enforce the corresponding dependency. The rest of the construction is concerned with
places which correspond to NACs and can contain several tokens in general. Each token in such
a place represents the absence of a piece of the NAC; therefore if the place is empty, the NAC
is complete. In this case, by step (3a) the transition cannot fire. Consistently with this intuition,
if q′<wen[i]q, i.e. transition q′ consumes part of the NAC N[i] of q, then by step (3b) q′ produces
a token in the place corresponding to N[i]. Symmetrically, if q<wdn[i]q′, i.e. q′ produces part of
NAC N[i] of q, then by step (3c) q′ consumes a token from the place corresponding to N[i]. No-
tice that each item of a NAC is either already in the start graph of the derivation or produced by a
single rule. Furthermore, if a rule generates a part of one of its NACs, say N[i] (q<wdn[i]q), then
by the acyclicity of STSN(d) the NAC N[i] cannot be completed before the firing of q: therefore
we ignore it in the third step of the construction of the dependency net.

A more formal definition of the construction, which explicitly defines the sets PL,TR, the pre
and post mappings as well as the marking M ∈ PL⊕, is given by Def. 12 in [HCEK10]. Note
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that the constructed net in general is not a safe one, because the places for the NACs can contain
several tokens. Nevertheless it is a bounded P/T net, where the bound to the number of tokens is
given by the maximum, taken over places representing NACs, of the number of rules that either
weakly disable or weakly enable the specific NAC.

1=cont1 3=cont2

2=stop1 4=stop2

p(1<wc 2)

p(3)

p(1,N[2])

p(1) p(2)

p(3<wc 4)
p(3,N[1])

p(4)

Figure 6: Dependency Net DNet(d) as Petri Net

Example 4 (Dependency Net) Consider the derivation d from Ex. 1 and its derived STS in
Ex. 2. The marked Petri net shown in Fig. 6 is the dependency net DNet(d) according to Def. 8.
The places encoding the write causality relation are “p(1 <wc 2)” and “p(3 <wc 4)”. For the
NAC-dependencies we have the places “p(1,N[2])” for the second instantiated NAC in the first
derivation step of d and “p(3,N[1])” for the third derivation step and its first instantiated NAC.
The other two instantiated NACs are not considered, because the corresponding rules are weakly
self-disabling (q<wdn[i]q). At the beginning the transitions cont1 and cont2 are enabled. The
firing sequences according to the derivations d and d′ in Fig. 3 can be executed and they are
the only firing sequences of this net. Thus, the net specifies exactly the derivations which are
permutation-equivalent to d.

We now show by Thm. 1 below that we can exploit the constructed Petri net DNet(d) for a
derivation d to characterise all derivations that are permutation-equivalent to d, by analysing the
firing behaviour of DNet(d). Note that according to Def. 8 each sequence s of rule names in
the STS STSN(d) can be interpreted as a sequence of transitions in the derived marked Petri net
DNet(d), and vice versa. This correspondence allows us to transfer the results of the analysis
back to the STS. More precisely, we can generate the set of all permutation-equivalent sequences
by constructing the reachability graph of DNet(d), which therefore can be considered as a com-
pact representation of this equivalence class.

Recall that a transition complete firing sequence of a Petri net is a firing sequence where each
transition of the net occurs at least once; notice also that in a dependency net according to Def. 8,
each transition can fire at most once by construction. This means in our case each transition
fires exactly once. The following Thm. 1 presents a sound and complete analysis of permutation
equivalence by complete firing sequences in the corresponding dependency net.

Theorem 1 (Analysis of Permutation Equivalence of Derivations) Let d be a derivation re-
specting NACs of a GTS with NACs, and let DNet(d) be its dependency net. Then a derivation d′

is permutation equivalent to d (d′
π

≈ d) if and only if the sequence of names sd′ , which contains
all the direct derivations of d in the order they are actually fired in d′, is a transition complete
firing sequence of the marked P/T Petri net DNet(d).

Proof (Sketch). Let d be a derivation with NACs, STSN(d) be its derived STS and DNet(d) be the
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constructed dependency net. We can interpret a transition complete firing sequence s of DNet(d)
within the STS STSN(d) and show that it corresponds to a valid derivation in STSN(d). This
allows us to use Thm. 1 in [Her09] showing that the derivation derived from s is permutation-
equivalent to d. Vice versa, given a derivation d′, which is permutation-equivalent to d, we can
show that the corresponding sequence sd′ is a transition complete firing sequence in DNet(d).
For a complete proof see Cor. 1 in [HCEK10].

4 On the Cost of Analysis

Besides soundness and completeness of the analysis as presented in Thm. 1 we now focus on
its efficiency. Therefore, we extend the previous example and compare the analysis efforts of
the new technique with those of a direct analysis of the derivation. This comparison shows a
significant advantage of the technique and the effect is not limited to specific examples. The
benefit is high for transformation sequences, where many steps overlap on matches and include
dependencies because of NACs. Clearly, if NACs are not involved permutation equivalence is
equal to switch equivalence and in this case the reachability graph of the Petri net specifies all
switch-equivalent derivations.

q1=cont1',     i ∈ {0,1,2,3,4}

L

w1:worksOn

1:Person

4:started

K

1:Person

R

1:Person

3:Task

N1[2i+1]

w(2i+1):worksOn

1:Person

3:Task

4:started

3:Task

4:started

3:Task

N1[2i+2]

w(2i+2):worksOn

2:Person

3:Task

1:Person

4:started 4:started

T ’

w1:worksOn

1:Person

3:Task

4:started

2:Person

w2:worksOn
w3:worksOn

w5:worksOn

w7:worksOn

w9:worksOn

w4:worksOn

w6:worksOn

w8:worksOn

w10:worksOn

Figure 7: Part of the Derived STS STSN(d̃)

Example 5 (Extended Derivation) We extend the derivation d of Ex. 1 to a derivation d̃, which
specifies that the two persons are working on the same task, but they continue and stop their work
five times, i.e. d̃ = (d;d;d;d;d) is a derivation with 20 steps. The derived STS STS(d̃) contains
20 rule occurrences and Fig. 7 shows its super object T ′ and the rule occurrence “cont1’ ” for the
first step of d̃. This rule occurrence has 10 NACs, one for each possible edge of type “worksOn”
in T ′. These NACs are visualised in the figure by two NACs with a parameter i ranging from
zero to four. The derivation consists of 10 blocks of the form “contx; stopx”. Each permutation-
equivalent derivation of d̃ has to preserve these blocks, otherwise a NAC would not be fulfilled or
the causality relation would be violated. Thus there are 10! = 3.628.800 permutation-equivalent
derivations.

Based on the dependency net DNet(d̃) we can construct the reachability graph RG(DNet(d̃))
for this marked Petri net with 20 transitions and 120 places. Each path in this graph spec-
ifies a permutation-equivalent derivation. An upper bound for the effort eff of constructing
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Figure 8: Comparison of the Amount of Equivalent Sequences

RG(DNet(d̃)) is given by: eff < 9 · n, where n is n = 20 · 10! = 72.576.000, which is the num-
ber of derivation steps in the set of all permutation-equivalent derivations. The details of these
and the following numbers are given in [HCEK10]. A direct generation of the permutation-
equivalent derivations based on Def. 3 (brute force method) starts with a computation of the
complete set of switch-equivalent derivations disregarding the NACs and thereafter the invalid
ones are filtered out. This would lead to F = 654.729.075 times as many derivations as the
number of permutation-equivalent derivations, because the blocks “cont(x);stop(x)” are split
and many steps “cont(x)” can be shifted backwards. Thus, the lower bound for the brute force
effort EFF is given by F ·n≤ EFF. In comparison we have for the effort eff of constructing the
reachability graph of the dependency net:

eff < 1,4×10−8EFF.

Fig. 8 shows how the different amounts of equivalent sequences develop for 2 up to 10 blocks
of “continue;stop” steps. Both analyses are fairly brute-force, since we did not integrate reduc-
tions, such as symmetry or partial-order reduction. However, the figures show that a definite gain
in efficiency can be obtained, which we expect similarly also with additional reductions, which
are mainly orthogonal to the reduction technique studied in this paper.

Of course, the effort for constructing the Petri net has also to be taken into account, but it
does not significantly change the result. In general, the construction of the STS STS(d) with its
relations is shown to be of polynomial time complexity with respect to the length of the derivation
d [Her09]. Furthermore, the construction of the dependency net is linear with respect to STSN(d)
equipped with the derived relations and for this example contains only 120 places. Note that still
all steps in d̃ are sequentially dependent with NACs and therefore, no direct switching is possible.

5 Conclusion

In the framework of adhesive high-level replacement (HLR) systems there are many instantia-
tions, such as graph transformation systems scaling up to typed attributed graph transformation
systems with node type inheritance, and Petri net transformation systems - in particular for the

11 / 14 Volume 29 (2010)



Analysis of Permutation Equivalence

modelling of workflows of reconfigurable mobile adhoc networks [EHP+07, HEP07]. Each of
them has its specific features, which support the modelling of systems in the concrete applica-
tion domain. Negative Application Conditions (NACs) are an important control structure for
these techniques and they are widely used for applications. However, the analysis of processes
of such systems, i.e. the study of equivalence of derivations in the presence of NACs going be-
yond switch equivalence including NACs as studied in [HHT96, LEO06], was introduced only
recently in [Her09]. This new notion of equivalence, called permutation equivalence, is stud-
ied in this paper. More precisely, we study the problem how to obtain, in an efficient way, all
derivations d′ which are permutation-equivalent to a given derivation d.

In order to provide a sound, complete and efficient analysis technique for permutation equiv-
alence we have shown how the dependency net for the derivation can be constructed, which
purely specifies the dependencies between the transformation steps including the inhibiting ef-
fects of the NACs. Based on the reachability graph of the dependency net we derive all valid
permutations of the derivation steps of a given derivation d, i.e. the order of the applied rules
together with the new matches. The derived derivations are exactly the permutation-equivalent
derivations of d. While the example in this paper was kept compact, the overall approach can
be applied to adhesive HLR systems in general, if suitable side conditions are fulfilled [HE08],
which is the case for e.g. typed attributed graph transformation systems.

The efficiency of the Petri net approach is based on two advantages. First of all, the constructed
Petri net only specifies the dependencies among the steps of the derivation, ignoring the concrete
structure of the involved graphs: This advantage is independent of the presence of NACs. The
second advantage is that NACs are respected during the generation of the permutation-equivalent
sequences. Thus, the number of generated sequences during the analysis is reduced significantly
if NACs are involved, as shown by the presented example.

Some of the problems addressed in this paper are similar to those considered in the process
semantics [KK04] and unfolding [Bal00, BKS04] of Petri nets with inhibitor arcs, and actually
we could have used some sort of inhibitor arcs to model the inhibiting effect of NACs in the
dependency net of a derivation. However, we would have needed some kind of “generalised”
inhibitor nets, where a transition is connected to several (inhibiting) places and can fire if at least
one of them is unmarked. To avoid the burden of introducing yet another model of nets, we
preferred to stick to a direct encoding of the process of a derivation into a standard marked P/T
nets, leaving as a topic for future research the possible use of different models of nets for our
dependency net.

Future work will encompass the extension of the presented technique to general application
conditions in the form of nested application conditions [HP05, HP09], for which we already have
concrete ideas. Further improvements of efficiency could be obtained by observing the occurring
symmetries in the P/T Petri net, and applying symmetry reduction techniques on it. Additionally,
the space complexity of the analysis could be reduced by unfolding the net and then representing
all permutation-equivalent derivations in a more compact, partially ordered structure. We already
implemented the construction of a dependency net from a given graph transformation derivation
with NACs based on a recently developed graph transformation engine in Mathematica called
AGT (Algebraic Graph Transformation) [BHE09].
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