
Electronic Communications of the EASST
Volume 30 (2010)

International Colloquium on Graph and Model
Transformation On the occasion of the 65th birthday of

Hartmut Ehrig
(GraMoT 2010)

Specification and Verification of Model Transformations

Frank Hermann, Mathias Hülsbusch, Barbara König

20 pages

Guest Editors: Claudia Ermel, Hartmut Ehrig, Fernando Orejas, Gabriele Taentzer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Specification and Verification of Model Transformations ∗

Frank Hermann1, Mathias Hülsbusch2, Barbara König2

1 Institut für Softwaretechnik und Theoretische Informatik,
Technische Universität Berlin, Germany,
frank(at)cs.tu-berlin.de

2 Abteilung für Informatik und Angewandte Kognitionswissenschaft,
Universität Duisburg-Essen, Germany,

{mathias.huelsbusch,barbara koenig}(at)uni-due.de

Abstract: Model transformations are a key concept within model driven devel-
opment and there is an enormous need for suitable formal analysis techniques for
model transformations, in particular with respect to behavioural equivalence of
source models and their corresponding target models.

For this reason, we discuss the general challenges that arise for the specification
and verification of model transformations and present suitable formal techniques
that are based on graph transformation. In this context, triple graph grammars show
many benefits for the specification process, e.g. modelers can work on an intuitive
level of abstraction and there are formal results for syntactical correctness, com-
pleteness and efficient execution. In order to verify model transformations with
respect to behavioural equivalence we apply well-studied techniques based on the
double pushout approach with borrowed context, for which the model transforma-
tions specified by triple graph transformation rules are flattened to plain (in-situ)
graph transformation rules.

The potential and adequateness of the presented techniques are demonstrated by an
intuitive example, for which we show the correctness of the model transformation
with respect to bisimilarity of source and target models.

Keywords: Model transformation, behavioural equivalence, verification

1 Introduction

In the setting of model driven architecture (MDA), a system is implemented by first speci-
fying an abstract model, which is subsequently refined to executable code. This is done by
model transformations, which transform a source model into a more concrete target model. The
Object Mangaement Group has also introduced a standard for model transformations: QVT
(Query/View/Transformation). A special case is refactoring, where only the internal structure of
the model or system is changed and potentially optimized. Since refactorings are expected not
to modify the functional behaviour of the system, the notion of behaviour preservation is crucial:
how can we specify and verify that a model keeps its original behaviour after several refactoring

∗ Research supported by DFG project Behaviour-GT.

1 / 20 Volume 30 (2010)



Specification and Verification of Model Transformations

steps? The same question is often relevant for model transformations, in order to show that the
implementation matches the original specification.

In this paper we will summarize some results on the specification and verification of model
transformations. As underlying modelling framework we will use graph transformation, which is
well-suited to handle the graph-like structures usually arising in MDA and UML. However, many
existing model transformations in practice are directly encoded as e.g. XSLT-transformations.
As a first contribution of this paper we will discuss the main challenges of model transformations
and present the main benefits of using graph transformation with respect to technical results and
with respect to usability.

The main two aims of the paper are the following. First, we introduce recent results on
triple graph grammars, a formalism that allows to specify model transformations by construct-
ing source and target models simultaneously and recording correspondences. Second, we will
describe a technique for verifying that model transformations translate source models into bisim-
ilar target models, using a variation of the borrowed context technique. For this, we will derive
in-situ transformation rules from triple graph grammars. Both parts of the paper are based on the
same example: a model transformation translating network-like models with different types of
(bidirectional and unidirectional) links.

The structure of the paper is as follows. Section 2 describes the various challenges arising in
the area of model transformation. Sections 3 and 4 subsequently introduce triple graph grammars
for the specification of model transformations and describe several results obtained for triple
graph grammars (e.g., syntactical correctness and completeness). In Section 5 we describe how
to verify the example transformation using the borrowed context technique. Finally, we will
compare with related work in Section 6 and conclude (Section 7).

2 Challenges for Model Transformations

Model transformations appear in several contexts, e.g. in the various facets of model driven
architecture encompassing model refinement and interoperability of system components. The
involved languages can be closely related or they can be more heterogeneous, e.g. in the spe-
cial case of model refactoring the source language and the target language are the same. From
a general point of view, a model transformation MT : VLS V VLT between visual languages
transforms models from the source language VLS to models of the target language VLT . Main
challenges were described in [SK08] for model transformation approaches based on triple graph
grammars. Here, we extend this list and also the scope and describe general challenges for model
transformations.

There are two dimensions, which contain major challenges for model transformations being on
the one hand functional aspects and on the other hand non-functional aspects. The first dimension
of functional aspects concerns the reliability of the produced results. Depending on the concrete
application of a model transformation MT : VLS V VLT , the following properties may have to be
ensured.

1. Syntactical Correctness: For each model MS ∈VLS that is transformed by MT the resulting
model MT has to be syntactically correct, i.e. MT ∈ VLT .

Proc. GraMoT 2010 2 / 20



ECEASST

2. Semantical Correctness: The semantics of each model MS ∈ VLS that is transformed by
MT has to be preserved or reflected, respectively.

3. Completeness: The model transformation MT can be performed on each model MS ∈ VLS.
Additionally, it can be required that MT reaches all models MT ∈ VLT .

4. Functional Behaviour: For each source model MS the model transformation MT will al-
ways terminate and lead to the same resulting target model MT .

The second dimension of non-functional aspects of model transformations concerns usability
and applicability. Therefore, from the application point of view some of the following challenges
are also main requirements.

1. Efficiency: Model transformations should have polynomial space and time complexity.
Furthermore, there may be further time constraints that need to be respected, depending
on the application domain and the intended way of use.

2. Intuitive Specification: The specification of model transformations can be performed based
on patterns that describe how model fragments in a source model correspond to model
fragments in a target model. If the source (resp. target) language is a visual language then
the components of the model transformation can be visualized using the concrete syntax
of the visual language.

3. Maintainability: Extensions and modifications of a model transformation should be easy.
Side effects of local changes should be handled and analyzed automatically.

4. Expressiveness: Specifications of model transformations should be expressive enough. For
instance, special control conditions have to be available in order to handle more complex
models, which, e.g., contain substructures with a partial ordering or hierarchies.

5. Bidirectional model transformations: The specification of a model transformation should
provide the basis for both, a model transformation from the source to the target language
and a model transformation in the inverse direction.

In the following section we present suitable techniques for the specification of model transfor-
mations based on graph transformation. These techniques provide validated and verified capa-
bilities for a wide range of the challenges listed above.

3 Specification of Model Transformations by Triple Graph Gram-
mars

A promising and well studied approach for the specification of model transformations is based
on triple graph transformation [Sch94]. This section presents its main concepts and Sec. 4 shows
its advantages from the formal and from the application point of view. The most important ad-
vantage of triple graph transformation is the combination of both, its intuitive way of specifying

3 / 20 Volume 30 (2010)



Specification and Verification of Model Transformations

model transformations and its formal basis, for which correctness and completeness results are
available.

Triple graphs combine three graphs - one for the source model, one for the target model and
one in between, together with connecting graph morphisms for the specification of the correspon-
dences between the elements in the source and the target model. This extension of plain graphs
improves the definition of model transformations. Source models are parsed and their corre-
sponding target models are completed without the need of deleting the source model in between.
The correspondences between both models are used to guide the transformation process.

Definition 1 (Category TripleGraphs) Three graphs GS, GC, and GT , called source, connec-
tion, and target graph, together with two graph morphisms sG : GC→GS and tG : GC→GT form
a triple graph G = (GS←sG−− GC −tG−→ GT ). G is called empty, if GS, GC, and GT are empty graphs.

A triple graph morphism m = (mS,mC,mT ) : G → H between two triple graphs
G = (GS←sG−− GC −tG−→ GT ) and H = (HS←sH−− HC −tH−→ HT ) consists of three graph morphisms
mS : GS→ HS, mC : GC → HC and mT : GT → HT such that mS ◦ sG = sH ◦mC and mT ◦ tG =
tH ◦mC. It is injective, if morphisms mS, mC and mT are injective. Triple graphs and triple graph
morphisms form the category TripleGraphs. Given a triple graph TG, called type graph, the cat-
egory TripleGraphsTG of typed triple graphs is given by the slice category TripleGraphs\TG.

D C

DC

Y

TGS TGC TGT

X

tgt src

XY

tgt src

U

node

UC

Figure 1: Triple Type Graph TG = (T GS← T GC→ T GT )

In the examples of this paper we consider a model transformation MT : BidiDiLang V
UniDiLang between communication structure models. The language BidiDiLang contains mod-
els with bidirectional and unidirectional links and these models are transformed to models with
unidirectional connections only in the language UniDiLang. Each pair of corresponding source
and target models is given by a triple graph typed over the triple type graph TG in Fig. 1, which
extensively uses the concept of labeled nodes, i.e. loops of different edge types. This allows us
in Sec. 5.2 to merge different node types in a compact type graph in order to verify the semanti-
cal correctness of the model transformation. For this purpose, we transform the triple rules into
suitable in-situ rules and analyze them with respect to the rules of the mixed semantics, i.e. a
semantics for models that simultaneously contain source and target elements.

Proc. GraMoT 2010 4 / 20



ECEASST

In order to improve the intuition of triple graphs typed over TG we present the graphs visually.
The source, correspondence and target components of the triple graphs are separated by rectan-
gles. The fill colours additionally improve this separation. Elements in the source model are
light red while they are blue in the correspondence and yellow in the target model. Furthermore,
the node types “X”, “D” (directed link), “U” (undirected link), “Y”, “C” (connection) as well
as “XY”, “DC” and “UC” for the correspondence component will internally be represented by
loops at the different nodes and we simplify the presentation by putting the label inside the node
rectangle resp. hexagon.

TGS

XY

DC

TGC TGT

X Y

D

U

tgt
node C

tgt

UC

src src

Figure 2: Visualization of the Triple Type Graph TG

XYX Y

XYX Y

U C

node

node

src

tgt

UC C

src

tgt

UC

D

srctgt

DC C

GS GC GT

src tgt

Figure 3: Triple Graph G with source model GS and target model GT

Example 1 (Triple graph) The triple graph in Fig. 3 is typed over TG and shows an integrated
model consisting of a source model GS (left) and a target model GT (right), which are connected
via the correspondence nodes in the correspondence graph GC. The source model specifies a
node with label “X” having a message “m”, a self-referring directed link “D” and an outgoing
undirected link “U”. Similarly the target model contains two nodes, but labelled with “Y”, and
instead of one undirected link between both nodes there are two connections “C” defining pos-
sibilities for communication in both directions. The corresponding elements of both models are

5 / 20 Volume 30 (2010)



Specification and Verification of Model Transformations

related by graph morphisms (indicated by dashed lines) from the correspondence graph (light
blue) to the source and target componencts, respectively.

A triple graph grammar generates a language of triple graphs, i.e. a language of integrated
models consisting of models of the source and the target language and a correspondence struc-
ture in between. The triple rules of a triple graph grammar specify the synchronous creation
of elements in the source component and its corresponding elements in the target component.
Therefore, triple rules are non-deleting. The triple rules of a triple graph grammar are the basis
for deriving the operational rules of the model transformation from models of one language into
the other.

Definition 2 (Triple Graph Transformation and Triple Graph Grammar) A triple rule
tr = L−tr→ R is an injective triple graph morphisms tr from a triple graph L (left hand side) to
a triple graph R (right hand side). A triple graph grammar TGG = (TG,S,TR) consists of a triple
graph TG (type graph), a triple graph S (start graph) and triple rules TR - both typed over TG.

Given a triple rule tr = (trS, trC, trT ) : L→ R, a triple graph G and an injective triple graph
morphism m = (mS,mC,mT ) : L→ G, called triple match m, a triple graph transformation step
(TGT-step) G =

tr,m
==⇒ H from G to a triple graph H is given by a pushout in TripleGraphs. The

triple graph language L of TGG is defined by L = {G | ∃ triple graph transformation S⇒∗ G}.

L = (LS

tr �� mS
��

LC
sLoo

mC
��

tL // T L)

mT
��

R = (RS RC
sR

oo
tR

// RT )

Triple Rule

L

m
��

tr // R

n
��

(PO)

G t
// H

Transformation Step

Model transformations based on triple graph transformation are performed by taking the
source model and extending it to an integrated model, where all its corresponding elements
in the correspondence and target component are completed. Thereafter, this integrated model
is restricted to its target component, which is the result of the model transformation. For this
reason, triple graph transformation rules are non-deleting. This implies that the first step in the
DPO graph transformation approach [EEPT06] can be omitted, because the creation of elements
is performed in the second step.

Example 2 (Triple Graph Grammar) The triple graph grammar TGG = (TG, /0,TR) for the
model transformation MT : BidiDiLang V UniDiLang contains the triple type graph in Fig. 2,
the empty start graph and the rules TR in Fig. 4. Each rule specifies a pattern that describes
how particular fragments of the communication structure models shall be related. We present the
rules in compact notation, i.e. the left and the right hand side of a rule are shown in one triple
graph and the additional elements that occur in the right hand side only are marked by green line
colour and a double plus sign.

The rule “nodeX2nodeY” synchronously creates an “X” node in the source model and its cor-
responding “Y” node in the target model. Thus, in this case the left hand side of this rule is
the empty triple graph, because all elements are created. The rule “directed2connection” creates
directed links “D” between two “X” nodes in the source component and their corresponding

Proc. GraMoT 2010 6 / 20



ECEASST

connection “C” between the related “Y” nodes in the target component. Finally, the rule “undi-
rected2connection” creates an undirected link “U” in the source component and relates it with
two connections “C” for the communication in both directions between the “Y” nodes that are
already related to the “X” nodes in the source component.

nodeX2nodeY

++ ++ ++

XYX Y

directed2connection

++ ++

XYX Y

XYX Y

D C

src

tgt

src

tgt

DC

++ ++

undirected2connection

++ ++++

++

++

XYX Y

XYX Y

U C

node

node

src

tgt

UC

++

++++

++

++
C

src

tgt
++

++ ++

UC

++

Figure 4: Triple Rules of the Triple Graph Grammar TGG

Based on the triple rules of a triple graph grammar, the operational source and forward rules for
model transformations from models of the source language to models of the target language are
derived automatically [Sch94, KW07, EEE+07]. The source rules will be used to parse the given
source model of a forward model transformation, which guides the forward transformation, in
which the forward rules are applied. Since triple rules have a symmetric character, the backward
rules for backward model transformations from models of the target to models of the source
language can be derived as well.

Definition 3 (Derived Source and Forward Rule) Given a triple rule tr = (trS, trC, trT ) : L→ R
the source rule trS : LS → RS is derived by extending the graph morphism trS : LS → RS with
empty graphs and empty morphisms for the remaining correspondence and target components,
i.e. LC

S = LT
S = RC

S = RT
S = /0. The forward rule trF = (trS

F , trC
F , trT

F ) is derived by taking tr and
redefining the following components: LS

F = RS, trS
F = id, and sLF = trS ◦ sL.

L = (LS

tr �� trS ��

LC
sLoo

trC
��

tL // LT )
trT

��
R = (RS RC

sR
oo

tR
// RT )

Triple Rule tr

LS = (LS

trS �� trS ��

/0oo

��

// /0)

��
RS = (RS /0oo // /0)

Source Rule trS

LF = (RS

trF �� id ��

LC
trS ◦ sLoo

trC
��

tL // LT )
trT

��
RF = (RS RC

sR
oo

tR
// RT )

Forward Rule trF

Example 3 (Derived Rules) The derived forward rules and one derived source rule of the triple

7 / 20 Volume 30 (2010)



Specification and Verification of Model Transformations

nodeX2nodeYF

++ ++
XYX Y

directed2connectionF

++

XYX Y

XYX Y

D C

src

tgt

DC

++

undirected2connectionF

++++
++

XYX Y

XYX Y

U C

src

tgt

UC

++

++

++
C

src

tgt
++

++ ++

UC

++

src
node

node

tgt

nodeX2nodeYS

++
X

(source rule) (forward rule)

(forward rule) (forward rule)

Figure 5: Some Derived Source and Forward Rules

graph grammar TGG in Fig. 4 are shown in Fig. 5. The source rule “nodeX2nodeYS” cre-
ates a single “X” node and will be used to parse all nodes with label “X” in a given source
model of a model transformation. Based on the found matches the corresponding forward rule
“nodeX2nodeYF” will be applied and it will insert a “Y” node in the target component for each
detected ”X“ node. Similarly, the other two forward rules specify the completion of the cor-
respondence and target structure for communication links in the source component. Directed
“D” links are transformed to directed “C” connections between the already translated and corre-
sponding “Y” nodes. For undirected “U” links we create two connections in both directions to
complete the integrated model fragment.

As introduced in [EEE+07, EHS09] model transformations can be defined based on source
consistent forward transformations G0 =⇒∗ Gn via (tr1,F , . . . , trn,F), short G0 =

tr∗F=⇒ Gn. Source
consistency intuitively means that the source model in G0 can be parsed and all its elements
are translated exactly once into corresponding fragments in the resulting target model. More

precisely, source consistency of G0 =
tr∗F=⇒ Gn requires that there is a source sequence ∅ =

tr∗S=⇒ G0

such that the sequence ∅ =
tr∗S=⇒ G0 =

tr∗F=⇒ Gn is match consistent, i.e. the S-component of each
match mi,F of tri,F(i = 1..n) is uniquely determined by the comatch ni,S of tri,S, where tri,S and
tri,F are source and forward rules of the same triple rules tri. Altogether the forward sequence

G0 =
tr∗F=⇒ Gn is controlled by the corresponding source sequence ∅ =

tr∗S=⇒ G0, which is unique in
the case of match consistency.

Definition 4 (Model Transformation based on Forward Rules) A model transformation se-
quence (GS, G0 =

tr∗F=⇒ Gn,GT ) consists of a source graph GS, a target graph GT , and a source

Proc. GraMoT 2010 8 / 20



ECEASST

consistent forward TGT-sequence G0 =
tr∗F=⇒ Gn with GS = projS(G0) and GT = projT (Gn),

where “pro jX ” is the projection to the X-component of a triple graph for X ∈ {S,C,T}. A
model transformation MT : VLS0 V VLT 0 is defined by all model transformation sequences

(GS,G0 =
tr∗F=⇒ Gn,GT ) with GS ∈ VLS0 and GT ∈ VLT 0.

Considering the source model in Fig. 3 we can construct the following source consistent
forward transformation: with GS = GS: (GS← /0→ /0) = G0 =

nodeX2nodeYF ,m1==========⇒G1 =
nodeX2nodeYF ,m2==========⇒

G2 =
directed2connectionF ,m3=============⇒ G3 =

undirected2connectionF ,m4==============⇒ G4 = (GS ← GC → GT ) and we derive the
integrated model G = G4 and the target model GT = GT as shown in Fig. 3.

4 Results for Model Transformations Based on Triple Graph Gram-
mars

There are already many important results for model transformations based on triple graph trans-
formation and in this section we compare the available results with respect to the listed challenges
in Sec. 2.

Model transformations based on source consistent forward sequences are syntactically correct
and complete with respect to the triple patterns [EEHP09], i.e. with respect to the language
VL = {G | /0 =⇒∗ G in TGG} containing the integrated models generated by the triple rules. More
precisely, each model transformation translates a source model into a target model, such that the
integrated model that contains both models can be created by applications of the triple rules to
the empty start graph. This means that both models can be synchronously created according to
the triple patterns. Vice versa, a model transformation can be performed on each source model
that is part of an integrated model in the generated triple language VL.

For the more formal view on these results we explicitly define the language of translatable
source models VLS and of reachable target models VLT by VLS = {GS | (GS←GC→GT )∈ VL}
and VLT = {GT | (GS← GC → GT ) ∈ VL}. As shown in [EHS09] and extended in [HEOG10,
HEGO10] model transformations based on TGGs using the control condition source consistency
are syntactically correct and complete.

Theorem 1 (Syntactical Correctness) Each model transformation sequence given by

(GS,G0 =
tr∗F=⇒ Gn,GT ), which is based on a source consistent forward transformation sequence

G0 =
tr∗F=⇒ Gn with G0 = (GS ← /0→ /0) and Gn = (GS ← GC → GT ) is syntactically correct, i.e.

Gn ∈V L.

Theorem 2 (Completeness) For each GS ∈ V LS there exists a model GT ∈ V LT with a model

transformation sequence (GS,G0 =
tr∗F=⇒ Gn,GT ) where G0 =

tr∗F=⇒ Gn is source consistent with G0 =
(GS← /0→ /0) and Gn = (GS← GC→ GT ).

Functional behaviour of model transformations ensures unique results for any given source
model. A powerful as well as efficient technique for analyzing functional behaviour of model
transformations based on TGGs is presented in [HEOG10, HEGO10] based on the generation

9 / 20 Volume 30 (2010)



Specification and Verification of Model Transformations

of translation attributes and using the critical pair analysis engine of the tool AGG [AGG09].
The presented example in this paper already shows functional behaviour for the forward trans-
formation. However, for the backward direction the behaviour is not functional. Consider, e.g.,
two “Y” nodes that are connected by two connections “C” in opposite direction. They can be
transformed to one unidirectional link or to two directed links.

Concerning the non-functional properties of model transformations in the second list of chal-
lenges in Sec. 2 triple graph transformations show a very promising basis providing already
most of the requested properties while the existing results above are preserved. In order to de-
fine expressive model transformations, the concept of negative application conditions (NACs)
is commonly used and allows the modeler to specify complex model transformations [EHS09].
We are currently working on the extension of model transformations based on TGGs to the more
general nested applications [HP09], which provide the expressive power of first order logic on
graphs. Furthermore, as shown in [EEE+07], information preserving bidirectional model trans-
formations can be characterized by source consistent forward transformations based on triple
graph grammars. Moreover, the efficiency of executing source consistent model transformations
is improved in [EEHP09] by defining an on-the-fly construction, for which termination is ensured
if the source rules are creating, i.e. each triple rule creates at least one element in the source com-
ponent. As a second optimization, suitable conditions for parallel independence were defined in
[EEHP09] in order to perform partial order reductions. The efficiency is further improved in
[HEGO10] using translation attributes and a sufficient condition for avoiding backtracking com-
pletely. Finally, model transformations based on triple graph transformations are flexible in the
sense that new rules can be added without changing the existing rules whenever new structures
are introduced into the visual language.

Coming back to the first list of challenges in Sec. 2 we prove in Sec. 5.2 the semantical
correctness of the model transformation presented in this paper and we show how this approach
can be generalized to other model transformations as well.

Summing up, triple graph grammars are an adequate and promising basis for model trans-
formations and the existing results show its intuitive, expressive, formally well-founded and
efficient character.

5 Verification of Model Transformations

5.1 The Borrowed Context Technique

In the following we will describe how to verify model transformations, by treating the case
study introduced above. The approach we are using here has been described in more detail in
[HKR+10b, HKR+10a] for a different case study. We will here omit the technical details and
refer the interested reader to [HKR+10a].

Before we can even state what behaviour preservation actually means in our setting, it is
necessary to introduce an operational semantics, given by graph transformation rules, for both
the source and the target model. This operational semantics will equip source as well as target
models with labelled transition systems, where transitions correspond to the application of graph
transformation rules and are of the form G1

α⇒ G2. Note that α is the transition label, which
is obtained from the applied production p via a given map-function, i.e., α = map(p). The

Proc. GraMoT 2010 10 / 20



ECEASST

map-function, assigning a global label to every rule, is necessary since we compare different
operational rules. Now, behaviour preservation in our setting means that the source model and
the corresponding target model are bisimilar (with respect to the labelled transitions).

We will use the borrowed context technique [EK06, RKE08], which refines a labelled transi-
tion system (or even unlabelled reaction rules) in such a way that the resulting bisimilarity is a
congruence (see also [LM00]). By a congruence we mean a relation over graphs that is preserved
by contextualization, i.e., by gluing with a given environment graph over a specified interface.
This is a mild generalization of standard graph rewriting in that we consider “open” graphs,
equipped with a suitable interface.

Note that in this section we will not work directly with triple graph grammars, however in the
conclusion we will discuss some preliminary ideas on the verification of model transformation
based directly on triple graph grammars. Instead here we use in-situ transformation rules, where
the in-situ rules are derived from the triple rules of Sec. 3, in order to be able to exploit the
existing congruence results. The derivation of equivalent in-situ transformation rules has been
done manually, it is however quite straightforward in this case. We are not using the usual
forward transformation rules since they would be larger and quite unwieldy for our purposes.

The basic idea behind the borrowed context technique is to describe the possible interactions
of a part of the model with the environment, i.e., with the remaining yet unspecified rest of the
model. In addition to existing labels, we add the following information to a transition: what
is the (minimal) context that a graph with interface needs to evolve? More concretely we have
transitions of the form

(J→ G)
α,(J→F←K)

=⇒ (K→ H)

where the components have the following meaning: (J→G) is the original graph with interface
J (given by an injective morphism from J to G) which evolves into a graph H with interface
K. The label is composed of two entities: the original label α = map(p) stemming from the
operational rule p and furthermore two injective morphisms (J → F ← K) detailing what is
borrowed from the environment. The graph F represents the additional graph structure, whereas
J,K are the two interfaces (of G and H) which are mapped to F via graph morphisms.

We will now introduce the necessary definitions.

Definition 5 (context, cospan) A graph with interface is a graph morphism J→ G.
A context (also called cospan) consists of two injective graph morphisms J → F ← K. The

composition of two cospans is performed by taking the pushout.

K
}}{{{

{{
!!CCC

CC

J //

11

F
!!CCC

CC PO E
}}{{{

{{
Moo

mmD

Definition 6 (Rewriting with Borrowed Contexts) Given a graph with interface J → G and a
production p : L← I→ R, we say that J→G reduces to K→H with transition label J→ F←K
if there are graphs D, G+, C and additional morphisms such that the diagram below commutes

11 / 20 Volume 30 (2010)



Specification and Verification of Model Transformations

and the squares are either pushouts (PO) or pullbacks (PB) with injective morphisms. In this
case a rewriting step with borrowed context exists and is written as follows:

(J→ G)
map(p),(J→F←K)

=⇒ (K→ H)

(in words: J→ G reduces to K→ H with transition labels map(p) and J→ F ← K).

D //

�� PO

L
�� PO

Ioo //

�� PO

R
��

G //

PO
G+

PB

Coo // H

J

OO

// F

OO

Koo

OO ??

After these preliminaries, we can now define the notion of bisimilation and bisimilarity with
borrowed context labels. Note that under certain conditions and for closed systems this notion
specializes to standard bisimilarity, which ignores the borrowed context label. This will be ex-
plained later in more detail.

Definition 7 (Bisimulation, Bisimilarity) Let P be a set of productions. Let R be a symmetric
relation consisting of pairs of graphs with interfaces of the form (J→ G,J→ G′), also written
(J→ G)R (J→ G′).

The relation R is a bisimulation if whenever we have (J → G)R (J → G′) and a transition

(J→ G)
α,(J→F←K)

=⇒ (K→ H) can be derived from P , then there exists a morphism K→ H ′ and

a transition (J→ G′)
α,(J→F←K)

=⇒ (K→ H ′) such that (K→ H)R (K→ H ′).
We write (J → G) ∼ (J → G′) whenever there exists a bisimulation R that relates the two

morphisms. The relation ∼ is called bisimilarity.

We have shown that (strong) bisimilarity defined in transition systems with borrowed context
labels is a congruence. This holds also if we enrich the labels with α = map(p) as described
above. This extended congruence result was shown to be correct in [HKR+10a].

Theorem 3 (Bisimilarity is a Congruence [EK06, HKR+10a]) Bisimilarity ∼ is a congruence,
i.e., it is preserved by embedding into contexts as specified in Def. 5.

5.2 Using the Borrowed Context Technique for the Verification of Model Trans-
formations

For an in-situ model transformation within the same language, applications of the borrowed
context technique are quite immediate: show for every transformation rule that the left-hand and
right-hand sides L,R with interface I are bisimilar with respect to the operational rules. Then the
source model must be bisimilar to the target model by the congruence result. This idea has been
exploited in [RLK+08] for showing behaviour preservation of refactorings.

To set up the entire machinery, we first need the operational semantics of the two languages
under consideration (BiDiLang and UniDiLang). In Fig. 6 and Fig. 7 we describe the dynamic
evolution of a system: in both cases messages can be created and deleted at arbitary moments in

Proc. GraMoT 2010 12 / 20



ECEASST

← → ← →

← → ← →

Figure 6: BiDiLang, rules of the operational semantics

← → ← →

← →

Figure 7: UniDiLang, rules of the operational semantics

time. Furthermore, in language BiDiLang the node labelled D describes a directed connection
over which messages can be passed in only one direction, whereas the node labelled U describes
an undirected connection allowing a movement in any direction (note that the two edges leaving
the U-node have the same label and are hence undistinguishable). In the second language (Uni-
DiLang) we have only one type of connection, working similarly to the directed connection in
the first language.

Now, as announced above, in order to reuse the congruence result we are applying in-situ
transformation rules (given in Fig. 8) which are similar to the triple graph grammar rules given
in Sec. 3.

← →

← → ← →

Figure 8: Rules for the in-situ model transformation

13 / 20 Volume 30 (2010)



Specification and Verification of Model Transformations

Note that these in-situ rules will lead to “mixed” (or hybrid) models which incorporate com-
ponents of both the source and the target model. Hence we need a joint type graph (see Fig. 9)
that contains node and edge types of both languages.

X

C

U Y

D

m
src
tgt

node

Figure 9: Combined Type Graph TGST for mixed Models

Furthermore, since we generate mixed models but still want to exploit the congruence result,
it is necessary to have an operational semantics also for those models, which has to satisfy the
following conditions: (i) the mixed rules are not applicable to a pure source or target model; (ii)
it is possible to show bisimilarity of left-hand and right-hand sides of all transformation rules.
Finally, observe that our final aim is to show bisimilarity of closed graphs, i.e., of graphs with
empty interface of the form /0→ G. If the operational rules of the source and target languages
have connected left-hand sides then such a graph will either borrow nothing or borrow the whole
left-hand side. It can be shown that if all left-hand sides are connected, the notion of bisimilarity
induced by borrowed contexts coincides with the standard one.

Hence here we use the mixed operational semantics given in Fig. 10. The rules mainly describe
message passing in mixed models, where a message is, for instance, passed from an X-node to a
Y -node over various types of connectors.

We are now ready to give the main result of this section, which states the correctness of the
model transformation under consideration. This theorem holds in general whenever the mixed
semantics satisfies Conditions (i) and (ii) above.

Theorem 4 The three rules of the in-situ model transformation given in Fig. 8 form a bisimu-
lation relation R, where each rule L← I→ R is split into a pair (I→ L, I→ R) of the relation.
Since bisimilarity is a congruence and borrowed context bisimilarity coincides with standard
bisimilarity on source and target models, this implies that whenever a graph GB of the source
language is transformed into a graph GU of the target language via the model transformation,
then GB is bisimilar to GU .

Note that in the proof we make heavy use of the up-to-context technique, which allows us to
somewhat relax the requirements for bisimulation proofs given in Def. 7. More specifically, it
is enough if K→ H and K→ H ′ are in relation R after the removal of identical contexts. Note
also that in more complex scenarios the bisimulation R might contain additional pairs that are
not model transformation rules (see [HKR+10a]).

In this fairly easy scenario one can obtain the rules of the mixed semantics by applying the
transformation rules to the (original) operational semantics of the source or target languages. In
the general case, it is however currently not clear to us, how to obtain a correct set of mixed

Proc. GraMoT 2010 14 / 20



ECEASST

← → ← → ← →

← → ← → ← →

← → ← → ← →

Figure 10: Additional rules of the mixed semantics

semantic rules. For small examples, the following heuristics usually gives good results:

1. Let S be the set containing all original rules of the the source and target operational se-
mantics.

2. Choose any tranformation rule r.

3. Apply all rules in S to the left-hand side (respectively right-hand side) of r using the bor-
rowed context technique. This gives us several borrowed context rewriting steps.

4. If there is a matching answer with a rule in S for the right-hand side (respectively left-hand
side) of transformation rule r, then do nothing.

5. If there is no such matching answer, create a new “mixed” rule, providing such a valid
answer. Add this new rule to S and proceed with step 2.

6. If every partial map of every rule in S has been tested on all left-hand and right-hand sides
of the transformation rules, S is the mixed semantics we are looking for.

Using this heuristics one might even create a smaller set of rules for the mixed semantics than
by applying the transformation rules to the rules for the operational semantics in every possible
way (see [HKR+10a]).

6 Related Work

There are several other approaches based on triple graph transformation, e.g. using constraint-
patterns [OGLE09]. While these patterns can lead to a more compact specification, there are

15 / 20 Volume 30 (2010)



Specification and Verification of Model Transformations

fewer results for several of the listed challenges, e.g. the handling of termination and therefore
completeness is more complex and not ensured in general.

As mentioned before, there are already suitable techniques for the analysis of functional be-
haviour of model transformations based on plain graph transformation systems [EEL+05]. How-
ever, plain graph transformation systems do not show some of the important benefits of triple
graph transformation, as, for instance, completeness and the general notion of syntactical cor-
rectness with respect to the triple patterns specified by the intuitive triple rules. Furthermore,
plain graph transformation systems are unidirectional while triple graph transformation systems
automatically provide bidirectional model transformations.

The work closest to ours for showing the semantical correctness of model transformations in
the sense of showing behaviour preservation for a transformation between models of different
types is [GGL+06]. They present a mechanised proof of semantics preservation for a transfor-
mation of automata to PLC-code, based on TGG rules. This proof faced some problems since it
was not trivial to present graph transformation within Isabelle/HOL.

As opposed to model transformation between different source and target models, there has
been more work on showing behaviour preservation in refactoring. The methods presented in
[KCKB05, PC07, NK06, GSMD03] address behaviour preservation in model refactoring, but
are in general limited to checking a certain number of models. The employment of a congruence
result is also proposed in [BHE08] which uses the process algebra CSP as a semantic domain.
In [BEH07] it is shown how to exploit confluence results for graph transformation systems in
order to show correctness of refactorings. A number of approaches to showing correctness of
refactorings also focus on preserving specific aspects instead of the full semantics (see [MT04]).

7 Conclusion

In order to provide validated model transformations, which are a major component in model
driven architecture (MDA), there is a strong need for formal analysis and verification. We have
shown that triple graph transformation is an adequate technique providing both, an intuitive
way of specification and a formal basis for which several analysis techniques as well promising
execution algorithms are available. The two lists of challenges for model transformations in
Sec. 2 contain many different and important aspects and, depending on the concrete model
transformation, there may be some of them that cannot be achieved.

Even though, the presented approach in Sec. 3 based on triple graph transformation shows
many capabilities and many of the listed challenges can be achieved or handled adequately,
respectively. The available results discussed in Sec. 4 include for instance syntactical correctness
and completeness and the specification of model transformations is performed in an intuitive and
elegant way. While the general analysis of functional behaviour of a model transformation will
be a part of future work we have exemplarily shown how the specified model transformation
can be analyzed with respect to behaviour preservation and therefore, with respect to semantical
correctness.

For this purpose we transformed in Sec. 5 the model transformation based on a triple graph
grammar into an in-situ model transformation based on plain graph grammars. In a next step
we introduced a proof technique for showing that a transformation preserves the behaviour of a

Proc. GraMoT 2010 16 / 20



ECEASST

model. A similar method was introduced by us in [HKR+10b, HKR+10a] for a different model
transformation. In [HKR+10b, HKR+10a] it was even necessary to work with weak, saturated
bisimilarity with negative application conditions due to the higher complexity of the case study.
However, the general idea can just as well be presented and understood with the simpler case
study presented in this paper.

Currently we have not yet mechanized the technique, but we have started to work on an imple-
mentation. One drawback is the fact that it is necessary to find a suitable mixed semantics, which
might become quite large and unwieldy. Hence we are currently working on a more straightfor-
ward approach that combines triple graph grammars with borrowed contexts, by asking that each
borrowed context step of the source model must be answered by a borrowed context step of the
target model (and vice versa) in such a way that the labels can be translated into each other via
the model transformation rules. However there are some remaining technical difficulties (e.g.,
what happens if the label can only be partially translated?) yet to be solved. For both approaches
it is not yet clear to which extent they will scale. We believe that additional proof techniques will
be necessary to treat more realistic examples.

Note however that the in-situ transformation rules are not without merits: in the case of system
migration, where we migrate piece by piece of an evolving system from one version to another,
we might well have such mixed intermediate states which have to be handled. Think of a het-
erogeneous LAN, where one wants to replace the mail server, the firewall and the file server.
The complete system must be in working order all the time, but in many cases the exchange of
the components will not happen synchronously. In such a setting we want to show that also the
hybrid models preserve the behaviour and the migration does not disrupt the correct working of
the system.

Acknowledgements: We would like to thank Arend Rensink, Maria Semenyak, Christian
Soltenborn and Heike Wehrheim for joint work on a case study, which gave us the ideas on
which we based Sec. 5.

Bibliography

[AGG09] TFS-group, TU Berlin. AGG. 2009. http://tfs.cs.tu-berlin.de/agg.

[BEH07] L. Baresi, K. Ehrig, R. Heckel. Verification of Model Transformations: A Case
Study with BPEL. In Proc. of TGC ’07 (Trustworthy Global Computing). Pp. 183–
199. Springer, 2007. LNCS 4661.

[BHE08] D. Bisztray, R. Heckel, H. Ehrig. Verification of Architectural Refactorings by Rule
Extraction. In FASE ’08. LNCS 4961, pp. 347–361. Springer, 2008.

[EEE+07] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, G. Taentzer. Information Preserving
Bidirectional Model Transformations. In Dwyer and Lopes (eds.), Fundamental
Approaches to Software Engineering. LNCS 4422, pp. 72–86. Springer, 2007.
http://tfs.cs.tu-berlin.de/publikationen/Papers07/EEE+07.pdf

17 / 20 Volume 30 (2010)

http://tfs.cs.tu-berlin.de/agg
http://tfs.cs.tu-berlin.de/publikationen/Papers07/EEE+07.pdf


Specification and Verification of Model Transformations

[EEHP09] H. Ehrig, C. Ermel, F. Hermann, U. Prange. On-the-Fly Construction, Correctness
and Completeness of Model Transformationsbased on Triple Graph Grammars:
Long Version. In Schürr and Selic (eds.), ACM/IEEE 12th International Conference
on Model Driven Engineering Languages and Systems (MODELS’09). lncs 5795,
pp. 241–255. Springer, 2009. To appear.
http://tfs.cs.tu-berlin.de/publikationen/Papers09/EEHP09.pdf

[EEL+05] H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró, S. Varró-Gyapay. Termination
Criteria for Model Transformation. In Wermelinger and Margaria-Steffen (eds.),
Proc. Fundamental Approaches to Software Engineering (FASE). Lecture Notes in
Computer Science 2984, pp. 214–228. Springer Verlag, 2005.
http://tfs.cs.tu-berlin.de/publikationen/Papers05/EEL+05.pdf

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theor. Comp. Science. Springer Verlag,
2006.
http://www.springer.com/3-540-31187-4

[EHS09] H. Ehrig, F. Hermann, C. Sartorius. Completeness and Correctness of Model Trans-
formations based on Triple Graph Grammars with Negative Application Condi-
tions. ECEASST 18, 2009.
http://eceasst.cs.tu-berlin.de/index.php/eceasst/issue/view/27

[EK06] H. Ehrig, B. König. Deriving Bisimulation Congruences in the DPO Approach to
Graph Rewriting with Borrowed Contexts. Mathematical Structures in Computer
Science 16(6):1133–1163, 2006.

[GGL+06] H. Giese, S. Glesner, J. Leitner, W. Schäfer, R. Wagner. Towards Verified Model
Transformations. In 3rd International Workshop on Model Development, Validation
and Verification (MoDeVa). Pp. 78–93. Le Commissariat á l’Energie Atomique -
CEA, Genova, Italy, 2006.

[GSMD03] P. V. Gorp, H. Stenten, T. Mens, S. Demeyer. Towards automating source-consistent
UML refactorings. In UML 2003. LNCS 2863, pp. 144–158. Springer, 2003.

[HEGO10] F. Hermann, H. Ehrig, U. Golas, F. Orejas. Efficient Analysis and Execution of
Correct and Complete Model Transformations Based on Triple Graph Grammars.
Technical report, TU Berlin, Fak. IV, 2010. To appear, available online: http://tfs.
cs.tu-berlin.de/publikationen/Papers10/HEGO10b.pdf.

[HEOG10] F. Hermann, H. Ehrig, F. Orejas, U. Golas. Formal Analysis of Functional Be-
haviour of Model Transformations Based on Triple Graph Grammars. In Proc.
Int. Conf. on Graph Transformation. 2010. accepted, online available at http:
//tfs.cs.tu-berlin.de/publikationen/Papers10/HEOG10.pdf).

[HKR+10a] M. Hülsbusch, B. König, A. Rensink, M. Semenyak, C. Soltenborn, H. Wehrheim.
Full Semantics Preservation in Model Transformation – A Comparison of Proof

Proc. GraMoT 2010 18 / 20

http://tfs.cs.tu-berlin.de/publikationen/Papers09/EEHP09.pdf
http://tfs.cs.tu-berlin.de/publikationen/Papers05/EEL+05.pdf
http://www.springer.com/3-540-31187-4
http://eceasst.cs.tu-berlin.de/index.php/eceasst/issue/view/27
http://tfs.cs.tu-berlin.de/publikationen/Papers10/HEGO10b.pdf
http://tfs.cs.tu-berlin.de/publikationen/Papers10/HEGO10b.pdf
http://tfs.cs.tu-berlin.de/publikationen/Papers10/HEOG10.pdf
http://tfs.cs.tu-berlin.de/publikationen/Papers10/HEOG10.pdf


ECEASST

Techniques. Technical report TR-CTIT-10-09, Centre for Telematics and Informa-
tion Technology, University of Twente, 2010.

[HKR+10b] M. Hülsbusch, B. König, A. Rensink, M. Semenyak, C. Soltenborn, H. Wehrheim.
Showing Full Semantics Preservation in Model Transformation – A Comparison
of Techniques. In Proc. of iFM ’10 (Integrated Formal Methods). Springer, 2010.
LNCS, to appear.

[HP09] A. Habel, K.-H. Pennemann. Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science
19(2):245–296, 2009.

[KCKB05] M. van Kempen, M. Chaudron, D. Kourie, A. Boake. Towards proving preservation
of behaviour of refactoring of UML models. In SAICSIT ’05. Pp. 252–259. 2005.

[KW07] E. Kindler, R. Wagner. Triple Graph Grammars: Concepts, Extensions, Imple-
mentations, and Application Scenarios. Technical report TR-ri-07-284, Universität
Paderborn, 2007.

[LM00] J. J. Leifer, R. Milner. Deriving Bisimulation Congruences for Reactive Systems.
In Proc. of CONCUR 2000. Pp. 243–258. Springer, 2000. LNCS 1877.

[MT04] T. Mens, T. Tourwé. A Survey of Software Refactoring. IEEE Trans. Software Eng.
30(2):126–139, 2004.

[NK06] A. Narayanan, G. Karsai. Towards Verifying Model Transformations. In GT-
VMT ’06. ENTCS 211, pp. 185–194. 2006.

[OGLE09] F. Orejas, E. Guerra, J. de Lara, H. Ehrig. Correctness, Completeness and Termina-
tion of Pattern-Based Model-to-Model Transformation. In Kurz et al. (eds.), Proc.
of the 3rd Int. Conf. on Algebra and Coalgebra in Computer Science (CALCO’09).
Lecture Notes in Computer Science 5728, pp. 383–397. Springer, 2009.

[PC07] J. Pérez, Y. Crespo. Exploring a Method to Detect Behaviour-Preserving Evolution
Using Graph Transformation. In Third International ERCIM Workshop on Software
Evolution. Pp. 114–122. 2007.

[RKE08] G. Rangel, B. König, H. Ehrig. Deriving Bisimulation Congruences in the Pres-
ence of Negative Application Conditions. In Amadio (ed.), Proc. Foundations of
Software Science and Computational Structures (FOSSACS’08). Lecture Notes in
Computer Science 4962, pp. 413–427. Springer Verlag, 2008.
doi:10.1007/978-3-540-78499-9
http://www.springerlink.com/content/e950520638346408/

[RLK+08] G. Rangel, L. Lambers, B. König, H. Ehrig, P. Baldan. Behavior Preservation in
Model Refactoring using DPO Transformations with Borrowed Contexts. In Proc.
International Conference on Graph Transformation (ICGT’08). Lecture Notes in
Computer Science 5214. Springer Verlag, Heidelberg, 2008.

19 / 20 Volume 30 (2010)

http://dx.doi.org/10.1007/978-3-540-78499-9
http://www.springerlink.com/content/e950520638346408/


Specification and Verification of Model Transformations

[Sch94] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In Tin-
hofer (ed.), WG94 20th Int. Workshop on Graph-Theoretic Concepts in Computer
Science. Lecture Notes in Computer Science 903, pp. 151–163. Springer Verlag,
Heidelberg, 1994.

[SK08] A. Schürr, F. Klar. 15 Years of Triple Graph Grammars. In Proc. Int. Conf. on
Graph Transformation (ICGT 2008). Pp. 411–425. 2008.
doi:10.1007/978-3-540-87405-8 28

Proc. GraMoT 2010 20 / 20

http://dx.doi.org/10.1007/978-3-540-87405-8_28

	Introduction
	Challenges for Model Transformations
	Specification of Model Transformations by Triple Graph Grammars
	Results for Model Transformations Based on Triple Graph Grammars
	Verification of Model Transformations
	The Borrowed Context Technique
	Using the Borrowed Context Technique for the Verification of Model Transformations

	Related Work
	Conclusion

