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Abstract: One of the challenges of attributed graph rewgitgystems concerns the
implementation of attribute computations. Mosthaf £xisting systems adopt the standard
algebraic approach where graphs are attributedyusigma-algebras. However, for the
sake of efficiency considerations and conveniemsushese systems do not generally
implement the whole attribute computations but ra&g programs written in a
host language. In previous works we introducedRbeble Pushout Pullback (DPoPb)
framework which integrates attributed graph rewgtand computation on attributes in a
unified categorical approach. This paper discuisesDPoPb’s theoretical and practical
advantages when using inductive types and lambidaloa. We also present an
implementation of the DPoPb system in the Haskeljiiage which thoroughly covers the
semantics of this graph rewriting system.

Keywords: attributed graph rewriting, attribute computatioralgebraic graph
transformation, Haskell language.

1 Introduction

The last decade shows a great interest in graphitiryy in MDE [15] as a model
transformation technique. For these applicatidnis,important to use attributed graphs. There
are several works on attributed graph transformati(seee.g. [11][12][13][3][8]) mostly
based on the algebraic data types to implemenibatir computations. In the algebraic
approach, attributes are given as values withinespralgebras. Therefore, information is
directly integrated in the graph structure by éngah new “attribute node” for each value of an
algebraic sort. This approach is theoretically sidout shows some limits on the expressiveness of
attribute computation and is especially difficatiie completely implemented. Thus most of the
existing systems resting on the standard algelapjoach hardly respect the theoretical
foundation. Consequently, the attributed graphsriteng in these systems is validated
theoretically but not practically.

In [5] and [6] we introduced DPoPb, a unified camcpl model of attributed graph
transformations using inductive types for attributdues and lambda-terms for computations.
Keeping the same conceptual scheme as in the DR€raotions, the goal of DPoPb is to put
the attribute computation to work in a more unifomay by staying within the same theory for
implementing computations. We argue in this papet the inductive types and lambda-
calculus make attribute computations in DPoPb nexgressive than in the DPO-standard
model [1] and facilitate the implementation of ibifited graph rewriting system. This claim is
justified by an implementation of DPoPb engine iaskell [2] which conforms entirely the
theoretical model hence allows validating theosedtycand practically the DPoPb attributed
graphs rewriting.
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The paper is organized as follows. In Section 2amalyse the differences between the
theoretical solutions for attribute computations tire DPoPb and the standard algebraic
approach represented by the HLR framework [3]. ti8e@ discusses the implementation of
HLR and DPoPb graph rewriting systems. In Sectiowel sketch out the development of the
DPoPb prototype in Haskell to validate the theoettfoundation. Finally, in the last section
we discuss some current and future works to imptbgeDPoPb approach.

2 Attribute computations in the DPO and DPoPb approabes

In this section we compare the solutions for aitélcomputations in the HLR approach [3] with
the DPoPb’s one. We first outline attribution congions in each approach, and then we use
an example to show their differences.

2.1 Attribute Computation in HLR framework

HLR framework [3] is representative for the algébmpproach attributed graph rewriting. This
work is now very well-known so we just give an mdlof the approach for attribute computation.

In order to model attributed graphs with attributess nodes and edges, HLR extend the
classical notion of graphs to E-graphs. An E-gr&bthas two different kinds of nodes,
implementing the graph and data nodes, and thregs lof edges, the usual graph edges and
special edges used for the node and edge attiibWioE-graph morphisiig is defined then as
a classical graph morphism. UI8EIG = ($,0R,) be a data signature with attribute value sBgs
[7S. An attributed grap\G = (G,D) consists of an E-grapB together with a DSIG-algebia
such that /%, Ds = Vp whereV, is the set of data nodes of graphFor two attributed graphs
AG' = (G',DY andAG? = (GD?), an attributed graph morphigmAG' — AG’ is a paiff = (fs, fp)
with an E-graph morphisifig : G' — G?and an algebra homomorphiggn D* — D?such that the
square in Fig. 1 commutes for all/S’5, where the vertical arrows are inclusions.

D' fos  » D&’
Vol few o Vp?

Fig. 1. The algebra homomorphiggin the attributed graph morphismAG! — AG?

Given a data signature DSIG as depicted, attribgtaghs and attributed graph morphisms
form the categonAGraphsand graph rewrites can be realized by construttiegpushout of the
category using the double pushout or simple pusapptoach. In this section we consider the
double pushout approach in HLR. A transformatiole u L — K — R is given by three
attributed graphs (with variableK) L, andR and two morphisms K — L andr: K — Rwhich
have to be injective on the graph structure andhdsphic over theX-algebra. In order to
describe computations on the attributes, termsaauing variables are to be usetg, in the
graphR, an attributex + y can be found if in the grapthe variablex andy are present.

To show how to combine graph transformations withngutations on attributes in the HLR
framework, we rest on an example for computinguiieie ofn!. In this example, we use the
signatureNat which defines the operatarsro, succadd andmul on the sorNat We can define
two algebra®' andD? associated to the signatuMat to give two different semantics fotat
For the illustration purpose, in this example, veée D* andD? which are different only on the
carrier sets as shown in Fig. 2b. We can defina the attributed graph typ&G' = (G,D") to
represent the graphs which can be attributed bydhess from 0 to 6 and the attributed graph
type AG” = (G,D) to represent the graphs attributed by the vehaes 0 to 720.
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DSIG = Nat
sort : Nat

DSIG-algebra D'
D'var=1{0,1, 2,3, 4,5, 6}

opns: a
zero : - Nat zerop; = 0 /
succ : Nat- Nat succp; (0) = 1; sucey (1) = 2; ...
add : Nat Nat- Nat| |ad,,=...//defined by an conventional addtion table
mul : Nat Nat- Nat mulp, =...//defined by an conventional multiplication te

(a) Data signature and the algebra defining theaséins of the signature (b) Request Transformation to compute

Fig. 2. Calculatingn! by graph rewriting and attribute computations IrtRH

Given a valuen < 6, let us suppose we compute the valua!dby graph rewriting in the
system supporting the attributed graphs definedh whe aboveNat signature. We use the
graphG of type AG' composed of one node having the attribuféD'y,. The computation’s
result will be stored in the gragt of type AG? having also one node attributed b/ D%a.
Fig. 2b describes the needed transformation f@ta H. However, with the signatuidat we
cannot realize such a transformation because tltorial operator! is not defined.
Consequently, we must decompose the computation! @fito many transformation steps,
using the four rules represented in Fig. 3.

L K R

L K
(1) Rule i i (3) Rule % jEal i
- L. L K
n n v e vl
(2) Rule E i (4) Rule L,,Xi,,i ‘§ ﬁ

Fig. 3. Rules used for calculatingin HLR

The first rule is applied once on the initial graptprepare the list of number analyzimg
Rule 2 is for delegating the computationrefl! to a new node. This rule is applied until
number 2 is reached. When the rule 2 is completazhain of nodes is created with the final
node in still self-referred. To stop the delegatittve rule 3 is applied once to obtain a simple
chain of number fronm to 2. Rule 4 now is applicable: it takes the nuralsf the last two
nodes and multiplies them, then stores the resuhé first of these two nodes, and deletes the
very last one. Applying rule 4 as long as possiblebtain the result represented by only one
node left, containing the computed resultitrWe can see that the computatiombfn this
example with HLR system requires four transformatisles an®n-3 steps.

For each application of a rule, the attributes @pp L must be updated to produce the
graphR. In the literature, two main different approachase been defined in order to specify
attribute-value changes: relabeling attribute-noddg[26] and reconnecting attribute-value
nodes [12][8]. In the relabeling issue, no builtdiata types on labels are encoded and
programs are in general based on rule scheme ddbelith terms over algebras. On the
opposite, in the reconnecting mode, a new edgddedieach time the graph must reference a
new attribute value. The example in Fig. 2b issiitated with reconnecting scheme.

2.2 Attribute computation in the DPoPb approach

The DPoPb framework relies on the classical DPQagmh for the structural part and uses
type theory with inductive types for attribute cantgttions. The precise definition of attributed
graphs in the DPoPb approach can be found in [4][5Below we will give the essential
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information necessary to explain how attributesiamglemented and computed in the DPoPb
framework.

2.2.1 DPoPb Attributed Graphs and Attributed Graph Morphisms

In the DPoPb approach, an attributed graph is ddfiwith two parts: a graph structure

composed of labeled nodes and edges and a setriblitels associated to edges or nodes.
DPoPb uses type theory to code attributed graphse ftypes to describe the structure of

graphs and general inductive types to define ga@stand computations.

A morphism between two attributed grapBsand H is a 3-level structure morphism
f: G — H defined by two components: the first component sijgscthe structural part of the
morphism and the second one represents the attnilamt of the morphism.

— The structural part, denotégl a graph morphism froi® to H, is the first level.
— The attribute part has two levels.
+ A relational level, denotef. It includes the multirelatioR between the attributes of
andG. For each attributk of typeB of the vertexs of G, a partition of the se®;,; of the
H’s attributes necessary to compiteEach element of the partition (a subseRgf;)
together withb defines a tree, and the set of all treedrof called the forest of the
morphism.

* To each tree described above is associated a catigputfunction represented by a
lambda-ternt in a way such that if the leaves of a tree areath#butesay,..., a, of the
typesA,, ..., A, respectively and its root is the attribltef typeB, then the type of the
termisA;— ... — A, — B. The conditions to be satisfied is th@,..., a,) =b.

Usually the equality is the ordinary reduction-lthsequality of lambda-terms. Two

morphismd, g: G — H are considered as equal if all components oreedll$ are equal.

Fig. 4 shows an example of the DPoPb formalisnresmting attributed graph and
attributed graph morphisms. In this example, weehadoreskR composed of three treds, T,
and T3 in which T, = ({7,8}, 15, &x y . x +y), T= ({"Good"}, 4, is . length s)and
T3 = ({*Good”,”Luck’}, “GoodLuck”, 1sls2.sl ++ s2).

——J : structural part morphism

- - = =) : multirelation

lamda-term computation function

o] : an attribute 06, i O[0..N]
h :an attribute oH, j 0[0..M]
R ={T}, i [0..N]: aforest
Ti = ({hj}, @i, function) a tree oR.

Fig. 4 An attributed morphism having a computafmmest composed of three trees

The above definition of morphisms in DPoPb requisesne comments on the reverse
direction for the attribute relations and the roigartitions and associated trees in the attribute
part of the morphism.

In our framework which uses the double pushout@ggir to rewrite graphs, the arrows for
attribute parts are reversed with respect to tmewar of the structural parts. This reversal
permits us to have a pseudo-pullback (pushout &l dategory) to organize the computations
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with attributes. The main idea of changing the magon of the arrows for the functions is to
allow that the attributes in grajihcan be stored in the graghand then the attributes in graph
R can easily “go and pick up” any value of attrilsute the graphK. Because grapK is the
intersection of graphls andR, it contains only the common attributesLloindR. To preserve
information, we may need several computation fmgi converging to the same target.
The use of multirelations follows naturally frometlsame assumptions. We assume that all
lambda-terms (containing, probably, free variablesd defined in the same context that
remains fixed (in principle, the context may beinité). Thanks to this mechanism, several
attributes in grapl. can be computed into one attribute in gr&prand several attributes in
graphR can share the same value of attributas.in

2.2.2 Attributes computations in DPoPb

Now we take the same example presented in SectantBe computation of! to illustrate the
attribute computation in DPoPb. InDPoPb to caleutatve need only one rule shown in Fig.5.

Fig. 5. Calculatingn! by graph rewriting and attribute computation indb®B

The numbern for whichn! will be computed is specified as an attribute gietyNat
associated to the unique structural node of thplgrtaThe computation afi! is realized by a
graph rewrite which preserves the structure gr&ohwe just discuss here the computation to
perform on attributes. The attribute part of therphisml: K — L specified at two levels: a
relation connecting the attribubéatin L to the attributéNatin K and a lambda-term associated
to this relation to define the computation functi@alized during the graph rewriting. To
simplify programs of Fig. 5, we replaced the lamitelan by the definition of a functiofact
which computes the factorial value for its paramgtéOn the right-hand, the attribute part of
the morphismr: K — R specified with a relation connecting the attribdiat in R to the
attributeNat in K and and function that allow copy the value bfatin K to Natin R. Given
an initial graphG with a concrete value af, the lambda-term of will be applied ton to
produce the resul!. This computation is performed by tRereduction mechanism which
substitutes the effective value mfor the formal variable in the term. So the computation of
n! in this example with DPoPb system requires only aesformation rule and one realizing
step.

As seen in the illustrating example of this segctioncertain cases, the systems based on
2 -algebras cannot represent directly complex contipms on attributes if the operators used
in the computation are not defined in the suppgrtiralgebras. In such cases, users have to
decompose the computation into several rules és.dlustrated in Fig. 2).

In DPoPb, computations are based on lambda-calc{28$, a formal model for
computations. Let us recall that in this system cawe express computations with lambda-terms
which allow representing the terms),(the function abstractionsig . ) and the function
applications {(s). Lambda-terms then can be evaluated by the sienplepowerfuB-reduction
mechanism based on substitutions. This reductiatharésm is semantically defined and can be
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easily implemented by a computer program. Thankkitogeneric model of computation, the
DPoPb approach can allow a more natural and stfarglard way to represent complex
computations defined only by abstraction and apfitia of functions (e.g. as shown in Fig. 5).

3 Implementation of HLR and DPoPb

In this section, we compare the potential impleratoms of HLR and DPoPb with respect to
their computational models. First we analyse tlguested effort to implement exactly the
foundation models of each approach. Then we disttiessolutions used by some significant
systems to implement the HLR framework, as welloas solution for implementing the
DPoPb framework. Discussions show the distancedmtvwhe implementation and the formal
model in each approach and some important sidetsffaised in the tools resting on HLR.

3.1 Underlying mechanism for the transformation enge

In the HLR approach [3], attribute values are dedirby separate data nodes which are
elements of some algebras. When attributed grapthgyeph morphisms are considered over
>-algebras, operations and constants defining thebeh must be always present and thus
previously defined. Of course, this is practicathpossible because it is very cumbersome to
implement large graphs and unattainable for irdirgtaphs. In a tool implementation this
problem could be solved by including the attribvaduies of the algebra graph that are directly
reachable from the structural part of the grapmsequently, most of the systems based on the
approach HLR use an object-oriented programmingguage to implement attribute
computations. Concretely, pre-conditions, post-@mrs and actions are mainly expressed in
an object-oriented programming language: Java f8GA1] and Fujaba [21], C++ for GReAT
[20], and Python for AToM[10]. Besides this popular solution, actions cliagghe models
are sometimes coupled to the rule selection praaeds VIATRA [17] which supports ASMs
or in VMTS [18][19] where UML-like models are manipted owing to stereotyped activity
diagrams, XSLT and (Imperative) OCL.

Let's consider a system using an external langt@agepress actions as well as conditions
on attributes, for instance AGG tool. In AGG, graire attributed by Java objects which can
be instances of Java classes from libraries lik€ @Dfrom user-defined classes. The main
difference with the formal system is the use ofalalasses and expressions instead of
algebraic specifications and terms. Thanks to simtegoperability with the host language, the
obtained system is a general purpose graph tranafmn tool covering a large variety of
applications including graph transformation. Howevelasses of the underlying object-
oriented language whose semantics is not coveredhbyformal foundation belong to
applications as well.

A guiding principle of DPoPb is to propose a closlationship between the formal ground
and its underlying engine. The lambda-calculus wiigrmalizes the algorithmic notion of a
function is proposed as a model of attribute comipons. Existing graph nodes describing
attributes thus can be reused and updated thanksntma-terms implementing the attribute
computations. Lambda-terms can be easily expreissadfunctional programming which is
based also on lambda-calculus. Such an implementpteserves the semantics of the formal
model, and provides static strong typing, polym@pth higher-order functions and lazy
evaluation for the graph rewriting system. For iempénting the DPoPb prototype, we chose
the Haskell language and benefit all of these atdggs of the lambda-calculus paradigm.
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3.2 Types declarations of attributed graphs

In HLR graph transformation tools, an attributefen declared as a variable in a conventional
programming language. For instance, in AGG, aribate is implemented by a Java variable
which can be assigned to any value conforming <ayipe. Because users can use any Java
acceptable expressions to compute attributes’ vlleeJava type system defines the type system
of the graph rewriting. This issue is not spedficAGG; it exists also in other known graph
transformation systems such as Fujaba, GReAT, AToR strongly typed language such as Java
is considered useful to reinforce the securityrofpams by preventing programmers from making
freely mistakes. In fact, this statement is noe tiru certain cases. For example, a class in Java is
perhaps a wrong subtype of its superclass. Irr ¢odee a subtype, the methods of the subclass
must satisfy the superclass' specifications. T&tion cannot be checked at compile-time, so it is
possible to create a subclass that is not a sufifgpeHence the type system used by the graph
transformation scheme where each attribute hase,reatype and a value can be unsecure.

For instance, let us consider the two followingssksinteger and Myinteger in Java.
MyIntegerlooks like anintegerby adding an attribute which specifies a nafa the valuer:

public class Integer {
private int v ;
public Integer (int v) {...}
public bool ean equals (Integer i) {...}

}

public class Mylnteger {
private int v ;
private String s ;
public MyInteger (int v, String s) {...}
public bool ean equals (MyInteger i) {...}

Mylntegeris not a subtype dhteger. To insure subtyping, we need tidyIntegermust
have a stronger specification thameger This is not the case because the type of the
parameter of thequalsmethod ofMylntegershould be at most as strict as in the supertype.
Using the Java'xtendsrelation between aimteger and MylIntegeris also not appropriate
with respect to subtyping. This is mainly becaugeta or Java class defines at the same time
attributes (state) and methods (behaviour). Subetasire not subtypes. Consequently, an
Integer object cannot be dynamically substituted byginteger one during the rewriting
process.

In contrast to these systems, the DPoPb can awml kinds of problem on the type
system. In Haskell, a safe polymorphic type systesupported by a powerful type inference
algorithm. A type specification is separated frasmmethods (functions). A class specifies the
operations that the types must support. It's a tategor types. A type is said to be an instance
of a class if it supports these operations. Faamse, here is the (incompletéy class from
the Standard Prelude defining the (equals) and= (different) functions.

class Eq a where -- ais an instance of Eq
(==), (/=) :: a->a -> Bool -- if ainplements == and /=
X l=y = not (x ==vy)

data Mylnteger = Mylnteger {v :: Integer, s :: String}

i nstance Eq Myl nteger where
(MyInteger vl sl) == (Mylnteger v2 s2) = (vl == v2) && (sl == s2)

This code defineMylntegeras a data type which wraps laeger presenting the value
and aString srepresenting the name of the value. This typbés ttonsidered as an instance
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of Eqg. The three definitions (class, data type and imt&nare completely separated and there
is no rule about how they are grouped.

We think that this separation is more secure tltdumah attribute declarations in an object-
oriented host language because well-typed lambdastare always well-behaved with respect
to reduction. In addition, all the types associatgith a function definition can be checked at
compile-time, and inferred automatically. To takefull advantage of the typed lambda-
calculus, an attractive perspective of DPoPb @efine type checking rules between the types
of the computation functions and the types of tiebaites of the attributed graph.

3.3 Attributes computations

3.3.1 Loading compiled codes

As previously stated, several transformation systesty upon an underlying language for the
specification of textual constraints and attribupelates. These definitions have to be compiled
and provided to the graph transformation machinetie form of a dynamic library, which is
loaded at runtime. Within the transformation eneiment, it is quite easy to propose a special
attribute editor that pops up when a graph obgskiected for attribution. However, the user
cannot directly access to the code of the funatieaing with these attributes. As the function
is considered as a black box, round trips betwlerhbst language and the graph rewriting
tool are necessary to finalize the computation cdelech round trip is translated by a
compilation process in the host language.

In DPoPD, the use of a unified formalism basedype theory for manipulating attributes
enables a reliable environment so that both strakcand attribute manipulations are handled
in the same framework. TH&reduction mechanism used to evaluate lambda-teansbe
easily implemented. Implementation which allows piding and dynamically evaluating
attribute computations is then possible. In Sectdorwe will show how this capability is
instantiated for the DPoPb’s implementation.

3.3.2 Lazy evaluation

Another relevant feature for attribute computatidgasabout lazy evaluation. Using this
technique, no expression is evaluated until itsiwds needed and no shared expression is
evaluated more than once. Lazy functions, als@daibn-strict, only evaluate their arguments
when needed. On the opposite, C functions and dathods are strict and evaluate their
arguments in an eager mode. Lazy evaluation makpsskible for functions to manipule
infinite data structures. This interesting featemables us to describe an object without being
tied to one particular application of that object.

For comparison purposes, let us consider an igfiligt of integers starting from a given
value. Such a lazy list can be represented in daaprocess [23] which returns objects either
forever, or until no more are lé&ft

public interface Process {
public Ooject nextEl ement () throws NoSuchEl enent;
}

1 Java codes are extracted from [23]
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public class NunfronProcess inplenents Process {
private int upto;
publ i ¢ NunfronProcess (int n) {
this.upto = n;
}

public Object nextEl ement () {
return new Integer (this.upto ++);
}

}
In Haskell language, for the same constructionsiwely define:

nunFromn = n : nunFrom (n + 1)

Extracting a finite list fromNumFromProcessmplies to manage exception handlings
because we don't have a method to explicitly testtlie presence of the next element. This
test is assumed by throwingNoSuchElemengéxception when th@extElementmethod is
invoked. For instance, the Java following cl&ssgleProcesgomputes @rocessproducing
only one object:

public class SingleProcess inplenents Process {
private Cbject item
public SingleProcess ((bject item {
this.item=item

}
public Object nextEl enent () throws NoSuchEl enent {
if (item==null) throw new NoSuchEl enment ();
el se {
Ohj ect tenp = item
item= null;
return tenp;

}
}

In addition, theProcesanterface defines a lazy list that is consumethsssas it is produced
and a shared expression is evaluated more than lbpcevious elements need to be saved, then
the programmer must add classes to store compateésvin a structured data type.

In comparison, this mechanism is intrinsically suped by Haskell thanks to lazy
evaluation. The following Haskell functidrextract withtakea list containing the successives
values of the factorial computations, starting frbhuntil nl. This is done by first building the
infinite list natsand then applying thfact function to the obtainedatslist. With the same
technique, we build the infinite ligacts of factorials. In this code, themap function is a
higher-order function which goes through every @ptrof a list and applies a function given
by its first argument: + in the caseradtsandfact for the list of factorials.

f n=take n facts facts = 1: map (fact) nats
nats = 1: map (+1) nats fact 0 = 1
fact n =n * fact (n -1)

With respect to functional programming languagesjaJlacks some conciseness. Some
libraries have been proposed to implement the éa®juation mechanism for object-oriented
environments. For instance Lambda4J [24] providey lists and associated operations. More
recently, LazyJ [23] extends Java's type systern laity types. Besides expressiveness, a major
challenge with lazy evaluation concerns sharingmaation results. In all relevant functional
language implementations, terms are represented graph. In the future, we would like to
establish mappings between rewriting such termgendting terms in an attributed graph.
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4 The DPoPb prototype

To validate the theoretical model DPoPb, we haweldged a prototype in Haskell language.
In the first time, the goal of this prototype isdonstruct the basic DPoPb categorical concepts
for attributed graphs rewriting when focusing oa tmplementation of attribute computation.
Fig. 6 displays the architecture of our prototype.

,,,,,,,,,,,,,,,,,,,,, DPoPb-InOut ResultGraph <. DPoPb-Engine
3‘ T e
S ‘ Getlnput ‘ ‘ PrintOutput ‘ Construct ComputeAttribute
; CatAttGraph
[ Transtormation,_. B TS > AttGraph | L
i Rule ‘ i Construct |
A v \ 4
‘ wxHaskell ‘ ‘ graphviz ‘ CatGraph ghc API
Datasb‘:lii in the ‘ DPoPb MOdU|e‘ ‘ Reused Model in Haskell‘ ——p Reuse Relation > Data Flow

Fig. 6. Architecture of the DPoPb prototype

DPoPb prototype is a general purpose graph regrgystem composed of two modules
DPoPb-InOutand DPoPb-Engine The moduleDPoPb-InOutprovides an interface for the
prototype. It allows users to specify transformatioles and initial graphs (via the sub-module
Getlnpu} as well as visualize the result of the transfdroma (by the sub-module
PrintOutpu). At the current stage of development, we bastherHaskell predefined modules
wxHaskell and graphviz (defined in the Hackage Database [16]) for theplgiGal user
interface and the graph visualization respectively.

The DPoPb-Enginemodule is the kernel of our prototype. It contaiw® sub-modules:
ConstructCatAttGraph and ComputeAttribute The sub-module ConstructCatAttGraph
implements the main concepts of DPoPb including dblmits of the category of DPoPb
attributed graphsQatAttGrapl) as well as the graph rewriting based on the ambralouble
pushout. The sub-modu@omputeAttributesupplies the utilities functions concerning atité
computations during the rewriting.g. the composition the attribute part of attribugrdph
morphims which is needed in the construction Q@dtAttGraph pushout; the dynamic
evaluation  of lamda-expressions representing ateib computations). In
ConstructCatAttGraph when constructing the structural part of the rod we reused
CatGraph the implementation of Schneider [7] defining tadimits of the category of graphs.
We also reuse some functions in the API of Glasskaskell Compiler to support the
dynamic specification and evaluation of attribubenputations.

Our main contributions in the development of thetptype concern solutions for the
following theoretical and technical questions: htawimplement the theoretical concepts of
DPoPb, how to evaluate users-defined attribute coatipns at runtime and how to update
graphs during the rewriting process.

4.1 Implementing the theoretical concepts of DPoPb

The mathematical model in [4] provided a formalnieavork for the category of attributed
graphs CatAttGraph but it is not straightforward to map those categdrconcepts into

computational constructs. Thus, we had to define tnstructive data structures and
algorithms for storing graphs and graphs morphisifias; constructing the coproduct,
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coequalizer, pushout complement and pushout otaitegoryCatAttGraph The difficulty of
this task resides in defining the attribute parttieé graphs and graphs morphisms in the
construction of each colimit such that its categgrproperties are satisfied.

4.2 Evaluating users-defined attribute computations atuntime

We want to allow users to define their graphs togewith attribute computations as non-
compiled functions (written in Haskell for exampl&he challenge here is that at runtime the
rewrite engine must enable the generation of Haslales of user-defined functions and
integrate these codes into the engine in ordevatuate them in the rewrite process. Thus we
need to support the meta-programming at runtimesupgport this flexibility, we relied on the
Glasgow Haskell Compiler (GHC) which proposes tbeassary API functions to compile and
evaluate Haskell functions. We used Haskell moduig 0.3.2 [16] wrapping those GHC
functions to invoke the GHC compiler at runtime.

4.3 Updating graphs during the rewriting

The double pushout rewriting process necessitatepdate of the transformation rules when the
content of an initial graph is given. Using an imgtize language, such an update is not difficult.
However, the update implemented in an imperatinguage is undefined semantically and then
out of control. Haskell is a pure functional langedhat does not allow side-effects. Hence we
must ensure that computations with side-effectdtferupdate of attributes during the rewrite
process will be encapsulated to respect the fumattistyle of the program. For this purpose, we
base on monads [14]. We defined a monad transfof@tate transform@rthat enables hiding
underlying machinery for updating graphs during B#0Pb process. The main interest here is
that we can allow the update operations duringréverite term process without losing the
advantages of the functional paradigm and the Hiagke system.

We now show in Fig. 7 some screenshots of our fyjo¢o

=

M DPoPB, _ wl= [E]%] -
I | Morphisme K-L | K | Marphisme K-R. i R ‘
B oraphi = [=1/E3
node J =dge ‘ atiribut ‘ exit |
| Morphism K-~ =R
|attribute L Attribute K ' I .
n m

Relation n-=m

Fix) ||fac: n=4if n 0 then 1 else n*(fact (n-1))

Fig. 7. DPoPb prototype’s screenshots

In the left-hand are the widgets used to receipatgincluding the transformation rules and
the initial graph. Actually we do not implementalgorithm to find a match, so the initial graph
G is took as an instance of grapldefined with concrete attributes’ values. The &dfiorphism
K - L shows how the attribute part of the morphism isifieel with the attribute relations and
the computation functions. The input informatiorl e encoded in the internal data structure
and manipulated by the DPoPb engine module to manshe pushout complement grapland
the pushout graphl. To visualize DPoPb graphs, currently we rely ba GraphViz system
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[28]. The DPoPb internal data structures are trarstated to the graph descriptions in the DOT
language (by using the Haskell modghlaphviz[16]) which can be displayed with GraphViz as
shown in the right-hand of the figure. On the rigide of this part, we display the graph
representing the rulds—K - R. The attributes of L andp of R are connected to the attribuite

of K by the function factorial and the function identiespectively. The graph on the left side
shows the pushout complemd&htand the pushoud constructed by applying the rule-K —R

on the concrete grapB. Since the value dB's attribute is 3, the value @’s attribute is 6 -
factorial of 3. The value dfi’s attribute is the copy dd's attribute, thus it is also 6.

5 Conclusion

In the HLR framework, attributed graph structuree given by algebras over a specific
signature where the structure part and the atwipart are separated from each other. If this
solution is theoretically acceptable, it is notyefficient and cannot be easily implemented
for a general purpose graph transformation sys@wnsequently, users have to program and
compile computation functions separately within @mpanion programming tool before
integrating their functions into transformationesll

Contrary to HLR approach, our approach proposeasgiesformalism that integrates the
rewrite of structural parts of graphs with attrdutomputations. This solution rests on
category theory and type theory thus doesn’t emtakemantic gap between the theoretical
model and its implementation. This advantage ha&s walidated by an ongoing—developed
prototype of the DPoPb system implemented in thekelhlanguage.

We have identified two directions for future resbas. The first one concerns proving
properties of transformations. As we want keepiragd of evaluation or verification of the
correctness of attributes’ computations during tin@nsformation, we plan to import
transformations supported by our DPoPb tool inte tkabelle/HOL proof assistant via
Haskabelle [26] in order to specify and prove ralgvproperties the transformations have to
satisfy. Another direction deals with reasoningpragrams transformations. It relies on the
use of functional programming languages for prognamy applications based on rewriting
attributed graphs. As these languages promote & rabstract style of programming and
support higher-level constructions, we have in ngmdplification of programs transformation
and to cope with them as functional programs.
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