
Electronic Communications of the EASST
Volume 32 (2010)

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs 2010)

Visual Modeling of Controlled EMF Model Transformation
using HENSHIN

Enrico Biermann, Claudia Ermel, Johann Schmidt and Angeline Warning

13 pages

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Visual Modeling of Controlled EMF Model Transformation
using HENSHIN

Enrico Biermann, Claudia Ermel, Johann Schmidt and Angeline Warning

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

henshin@tfs.cs.tu-berlin.de

Abstract: The tool HENSHIN is an Eclipse plug-in supporting visual modeling and
execution of rule-based EMF model transformations. This paper describes the re-
cent extensions of HENSHIN by control structures for controlled rule applications.
The control structures comprise well-known imperative structures like sequences
and conditions on rule applications. Moreover, application conditions for individ-
ual rules may now be arbitrarily nested and combined by logical connectors. We
present the extension of the visual EMF model transformation environment HEN-
SHIN to edit and perform controlled EMF model transformations along an example
modeling a reactive Web service-based application (personal mobility manager).

Keywords: EMF, model transformation tool, graph transformation, Henshin

1 Introduction

Transformations are key modeling artefacts in model driven development. In graph transforma-
tion approaches and tools, rules express basic transformation steps. The application of rules may
be controlled implicitly like in AGG [AGG09], i.e. by a fixed strategy such as ”apply rules in
arbitrary order as long as possible” and by providing negative application conditions for rules.
Alternatively, control strategies may be defined explicitly like in Fujaba [FNTZ00], where an
activity diagram (story diagram) defines loops or conditions on rule applications. Explicit con-
trol structures raise the expressiveness of transformation systems since they provide means to
regulate the transformation process without having to introduce helper structures into the rules.

In this paper, we lift implicit and explicit control structures from graph transformation to EMF
model transformation and introduce an extension of our recently developed tool HENSHIN1 by
visual editors for control structures. HENSHIN is an Eclipse plug-in supporting visual modeling
and execution of EMF model transformations, i.e. transformations of models conforming to a
meta-model given in the EMF Ecore format2. The transformation approach we use in our tool
is based on graph transformation concepts which are lifted to EMF model transformation by also
taking containment relations in meta-models into account [ABJ+10].

Applying EMF model transformation rules in HENSHIN changes a model in-place, i.e. the
model is modified directly. Note that we speak of EMF model transformation in a general sense,

1 http://www.eclipse.org/modeling/emft/henshin/, originating from EMF TIGER [EMT09, BEK+06, BEL+10]
2 Note that we use the terms meta-model and model in this paper, which are called EMF model and model instance
in the EMF documentation, respectively.

1 / 13 Volume 32 (2010)

mailto:henshin@tfs.cs.tu-berlin.de

Visual Modeling of Controlled EMF Model Transformation using HENSHIN

comprising not only source-to-target model-to-model transformations but also model refactor-
ings or simulation of the system’s behavior3. The HENSHIN transformation engine provides
classes that can freely be integrated into existing Java projects relying on EMF.

Figure 1 shows the basic GUI of our HENSHIN tool before the extensions presented in this
paper. The tree view 1 allows the modeler to import EMF EPackages containing the basic
meta-model(s) defining the domain of the transformation. The initial model is edited in a visual
editor 2 . In the rule editor 3 , transformation rules can be created by editing a rule’s left-
hand side (LHS, the pre-condition) and right-hand side (RHS, the post-condition). The rule in
Figure 1 defines an operation which adds a Request object and links it to existing Departure
and a Destination objects. The property view 4 shows additional information for selected
objects. Note that all information edited using the editors in 2 , 3 and 4 can also be obtained
via the tree view 1 .

Figure 1: HENSHIN GUI with visual editors for graphs and rules.

The rule shown in 3 can now be applied to the current model in 2 leading to the transformed
graph shown in Figure 2, where a Request object has now been created and linked to the
Departure object named ”Berlin” and the Destination object named ”Potsdam”. The
layout of newly added object is computed automatically but may be adjusted by the user.

Currently there exist two implementations of the transformation engine. One is written in
Java while the other translates the transformation rules to AGG [AGG09]. This is useful for
3 like in our running example, the simulation of a personal mobility manager based on a web service.

Proc. GraBaTs 2010 2 / 13

ECEASST

Figure 2: Transformed graph after applying rule RequestRouteMap

validation of consistent EMF model transformations which behave like algebraic graph transfor-
mations [BET08], e.g. to show functional behavior and correctness.

In this paper we describe the recent extension of HENSHIN supporting the use of the control
structures (called HENSHIN transformation units), e.g. constructs for non-deterministic rule
choices, rule sequences or conditional rule applications. Those constructs may be nested to
define more complex control structures. Passing of model elements as parameters from one
unit to another is also possible. Apart from control units defined over sets of rules, we now
also support the graphical definition of application conditions for individual rules. These are
application conditions in the sense of [HP09] allowing for arbitrary nesting. Several application
conditions can be combined by logical connectors.

The paper is structured as follows: in Section 2, the basic concepts of graph and EMF trans-
formation are reviewed. Section 3 presents our running example, the simulation of a personal
mobility manager based on a web service. Modeling this example, we made extensive use of
transformation units and application conditions which are introduced in Section 4 and Section 5,
respectively. Section 6 provides an overview of related approaches and tools in comparison to
our tool, and Section 7 concludes the paper with an outlook to future work.

2 EMF Model Transformation based on Graph Transformation

In this section, we introduce the main notions of modeling by algebraic graph transforma-
tion [EEPT06] (Subsection 2.1) and relate these notions to EMF modeling terms (Subsection 2.2).

2.1 Typed Attributed Graphs and Graph Transformation

A domain-specific visual language (DSVL) is modeled by a type graph defining the underlying
visual alphabet, i.e. the symbols (node types) and edge types which are available. Sentences or
diagrams of the DSVL are given by graphs typed over (i.e. conforming to) the type graph. Node
types may be attributed by attribute types.

The main idea of graph transformation is the rule-based modification of graphs where each
application of a graph transformation rule leads to a new transformed graph. The core of a graph
transformation rule (LHS r−→ RHS) is a pair of graphs (LHS,RHS), called left-hand side and
right-hand side, and an injective (partial) graph morphism r : LHS→ RHS. A graph morphism

3 / 13 Volume 32 (2010)

Visual Modeling of Controlled EMF Model Transformation using HENSHIN

consists of structure-preserving mappings from nodes in LHS to nodes in RHS, such that for an
edge from node n1 to node n2 in LHS which is preserved by the rule, we have a corresponding
edge from node r(n1) to r(n2) in RHS. In our approach, all graph morphisms are injective, i.e.
they do not merge elements. Applying the rule (LHS r−→ RHS) means to find a match of LHS
in the source graph and to replace this matched part in the source graph by the corresponding
RHS, thus transforming the source graph into the target graph (this step is called a direct graph
transformation). Intuitively, the application of rule r to graph G via a match m from LHS to G
deletes the image m(LHS) from G and replaces it by a copy of the right-hand side m∗(RHS).
Note that a rule may only be applied if the so-called gluing condition is satisfied, i.e. the deletion
step must not leave dangling edges.

Definition 1 (Graph Transformation) Let (LHS r−→ RHS) be a typed graph transformation rule
and G a typed graph with a typed graph morphism LHS m−→ G, called match.
A direct graph transformation G

r,m
=⇒ H from G to a typed graph H

via rule r, match m, and co-match m∗ is shown in the diagram to the
right. A sequence G0⇒ G1⇒ ..⇒ Gn of direct graph transforma-
tions is called graph transformation, denoted as G0

∗⇒ Gn.

LHS
r //

m
��

RHS

m∗

��
G // H

A rule may be extended by input parameters, i.e. variables used to compute new attribute
values for nodes in the right-hand side. When the rule is applied, the input parameters have to be
bound to concrete values (either by the match or by user input).

2.2 Typed Attributed Graphs versus EMF Modeling

The Eclipse Modeling Framework EMF [EMF08] is a modeling and code generation facility for
building tools and other applications based on a structured data model. Based on a meta-model,
EMF provides tools and runtime support to produce a set of Java classes for the meta-model, a set
of adapter classes that enable viewing and command-based editing of models conforming to the
meta-model, and a basic (tree-based) editor. EMF provides the foundation for interoperability
with other EMF-based tools, e.g. OCL checkers.

The conceptual similarities of modeling based on typed, attributed graphs and object-based
modeling as performed by EMF are shown in Table 1.

Table 1: Mapping EMF notions to graph terminology

EMF notion Graph term

EMF model Type graph with attribution, inheritance, multiplicities. Edges can be
marked as containments.

Instance model Typed, attributed graph with containment edges
Class Node in type graph
Object Node in typed graph
Association Edge in type graph (with possible multiplicities or containment mark)
Reference Edge in typed graph that satisfies multiplicity and containment constraints.

Proc. GraBaTs 2010 4 / 13

ECEASST

Classes in an EMF model (i.e. the meta-model) correspond to nodes in a type graph. Asso-
ciations between classes can be seen as edges in a type graph. Generalizations and multiplicity
constraints of association ends can also be defined in the type graph. Objects as instantiations
of classes of an EMF model are comparable to nodes in a graph which is typed by a type graph.
Objects can be linked to each other by setting reference values. Such references correspond to
edges in a typed attributed graph.

3 Example: Personal Mobility Manager

As running example, we specify and simulate the operational behavior of a Personal Mobility
Manager (PMM), a reactive service-based application designed to satisfy requirements related to
individual user mobility [LMEP08]. The aim of the system is to help the user finding an adequate
route from a departure place to a destination and to propose an adequate means of transportation
(either car or bike) by taking the current traffic intensity into account. We model the control flow
of messages that are exchanged between the user, the PMM and corresponding Web service. To
keep things simple, we do not model the actual web service here but simulate its responses by
suitable variable assignments.

The modeling domain is specified as meta-model, shown in Figure 3. We have model elements
for a user, his departure and destination locations, the means of transport, and requests sent to
web service. A Route element contains a route given as response by the mobility web service,
and a JamStatus element contains the response returned by the web service concerning the
traffic on a given route.

Figure 3: Meta-model for the Personal Mobility Manager

Basic PMM actions are modeled by EMF model transformation rules, shown in Figure 4.
Rule ChooseDestination creates a Destination object where the name of the desti-

nation is an input parameter; rules RequestRouteMap and ResponseRouteMap realize the
creation of a route (modeled by a Route object) via a web service call. Having called this web
service more than once, one of the returned routes is chosen by the user in rule ChooseRoute.
For a given route, the web service is used by rules RequestJamStatus and Response-
JamStatus to get information about the current traffic situation on this route. Depending on
the information obtained by the web service (and coded in the JamStatus node), the means of

5 / 13 Volume 32 (2010)

Visual Modeling of Controlled EMF Model Transformation using HENSHIN

Figure 4: EMF model transformation rules for the Personal Mobility Manager

transport can be changed from the default means ”car” (as presented in the start graph in Figure 1)
to the alternative means of transport ”bike”. This is realized by applying rules ForbidCar and
SelectBike. At last, the information about traffic (JamStatus node) and possible alter-
native routes which have not been chosen, are deleted using rules DeleteJamStatus and
DeleteUnusedRoute.

In the next section, we explain the use of HENSHIN transformation units to encapsulate and
control the order of rule applications.

4 HENSHIN Transformation Units

HENSHIN transformation units may be arbitrarily nested inside each other. The most basic unit
is a transformation rule. A HENSHIN transformation unit may be of type IndependentUnit (all
subunits are applied in arbitrary order), SequentialUnit (all subunits are applied sequentially in
a given order), CountedUnit (its subunit is applied a given number of times), ConditionalUnit
(its subunits are applied depending on the evaluation of a given condition unit), and PriorityUnit
(the applicable subunit with the highest priority is applied next). A unit is applicable (and returns

Proc. GraBaTs 2010 6 / 13

ECEASST

true) if it can be successfully executed. PriorityUnits and IndependentUnits are always appli-
cable, while SequentialUnits (CountedUnits) are applicable only if all subunits are applicable in
the given order (the given number of times). A ConditionalUnit is applicable if either the then-
subunit (in case the condition is true) or the else-subunit (in case the condition is false) are
applicable.

HENSHIN transformation units may be defined in the tree view or, alternatively, in a visual
editor. The tree view shows all transformation units and their nesting hierarchy (see Figure 5).
The visual editor for one unit shows the unit in a left view and one selected subunit in a right
view. Unit and subunit may share parameters indicated by the coloring of the parameter fields
(see Figure 5, where editors for unit mainUnit and unit trafficWS are opened in parallel). A
transformation unit view shows the unit’s name as header, a checkbox Activated which the user
may select/deselect to indicate whether this unit is active (will be considered while executing), a
set of parameters shown as boxes in the left column, and the names and kinds of its subunits in the
right column. Arrows from (to) parameter boxes to (from) subunits indicate which parameters
are input (output) of which subunit.

Figure 5: HENSHIN GUI with transformation unit editor

The transformation unit mainUnit shown in Figure 5 is the main control structure for the
PMM example. It is a SequentialUnit (symbolized by a film strip as icon in the upper left corner)
containing four subunits. This means that each subunit is applied once, in the given order from
top to bottom. The first subunit, ChooseDestination is a transformation rule, marked by
gear-wheels (see Figure 4 for the rule definition). This rule has an input parameter, the desti-
nation dest, a user-defined parameter. The second subunit of the main unit is a CountedUnit
(symbolized by a ”×n” icon). The counter is set to 3, i.e. its subunit is applied three times. Unit
pollTrafficWS is shown with its contents in the view to the upper right: it contains in turn a
SequentialUnit (trafficWS) which controls four rules realizing the web service requests and
processing the responses. The interaction of these rules within unit trafficWS can be seen in

7 / 13 Volume 32 (2010)

Visual Modeling of Controlled EMF Model Transformation using HENSHIN

the lower left view: rule ResponseRouteMap produces an output parameter of type Route
which serves again as input parameter for rule RequestJamStatus.

The third subunit of mainUnit, decideMeans, is a ConditionalUnit (symbolized by an if-
then-else icon). Clicking on its field, a detailed view of this unit is opened (see Figure 6). Here, a
condition called AllRoutesJammed (which will be discussed in Section 5) is checked which
is given as an empty rule where we check its application condition. If the condition is evaluated
to true, the two rules ForbidCar and SelectBike in the sequential unit are applied in this
order. Otherwise, rule ChooseRoute is applied and the parameter route is returned to the
parent unit mainUnit.

Figure 6: HENSHIN transformation unit decideMeans

The last child unit of mainUnit is the IndependentUnit removeUnusedData (with a die
as icon symbol). This unit contains two rules, DeleteJamStatus and DeleteUnused-
Route which perform garbage collection and are applied in arbitrary order, as long as possible.

5 Application Conditions

For graph transformation rules, well-known negative application conditions may be used that
forbid to apply a rule if a certain structure is present in the graph. As a generalization, appli-
cation conditions (introduced as nested application conditions in [HP09]) further enhance the
expressiveness of graph transformations by providing a more powerful mechanism to control
rule applications. While application conditions are as powerful as first order logic on graphs,
we can still obtain most of the interesting results available for graph transformations without ap-
plication conditions also for transformations with application conditions [EHL+10a, EHL10b] if
certain additional properties hold.

Like transformation units, application conditions can be nested. Moreover, application condi-
tions may be negated, and several application conditions may be combined by using the logical
connectors AND and OR.

Definition 2 (Graph condition and application condition) A graph condition ac over graph G
is of the form true or ∃(a,c) where a : P→ C is a graph morphism from a premise graph P to

Proc. GraBaTs 2010 8 / 13

ECEASST

a conclusion graph C, and c is a condition over C. Moreover, Boolean formulas over conditions
over P yield conditions over P, i.e. ¬c and ∧ j∈Jc j are (Boolean) conditions over P where J is
an index set and c, (c j) j∈J are conditions over P. Additionally, ∃a abbreviates ∃(a, true), ∀(a,c)
abbreviates ¬∃(a,¬c), false abbreviates ¬true, ∨ j∈Jc j abbreviates ¬∧ j∈J ¬c j, and c =⇒ d
abbreviates ¬c∨ d. A graph condition ac is called application condition of rule r : L→ R if ac
is a graph condition over L; an application condition of the form ¬∃a is usually called negative
application condition.

A condition is satisfied by a morphism into a graph if the required structure exists, which can
be verified by the existence of suitable morphisms.

Definition 3 (Satisfaction of conditions) Given a graph condition ac, a morphism p : P→ G
satisfies ac, written p |= ac, if ac = true. A morphism p : P→ G satisfies condition ac = ∃(a,c)
if there is an injective graph morphism q : C → G such that q ◦ a = p and q satisfies c. The
satisfaction of conditions by graphs and morphisms is extended to Boolean conditions in the
usual way. A rule L→ R is applicable only if the application condition ac is satisfied for its
match m : L→ G, i.e. if m |= ac.

Let us consider once more the ConditionalUnit decideMeans from our PMM example (see
Figure 6). Here, the condition AllRoutesJammed is expressed by an empty rule4 with a
nested application condition, shown in Figure 7.

In view 1 of Figure 7, the empty rule is shown together with the outermost condition graph
(condition over LHS). In the tree view of 1 , it can be seen that we require ¬∃Route, i.e. a
morphism from graph Route (consisting of a single Route node) into the host graph must
not exist for the rule to be applicable. Since this application condition is nested, we require a
further condition for the Route graph, formulated as disjunction (OR-construct) over two more
conditions: (¬∃ HasNoJamStatus∨∃ IsFree). This formula can be seen in the tree view of 2 ,
as well as in the corresponding visual hierarchical view where the formula is depicted as an OR
block with two compartments. Clicking on one of the two parts of the disjunction in the visual
view (or on one of the two OR branches in the tree view) opens the next level, either for the
formula ¬∃HasNoJamStatus in 3 or for the formula ∃IsFree in 4 . Here, we have arrived at
the basic level of graph morphisms. The complete nested application condition means that the
empty rule is applicable (returns true) if there exists no route that has either no JamStatus
node or that has a JamStatus node with attribute jam=false. Recall that in this case (all
routes are jammed) unit decideMeans (see Figure 6) applies rule switchToBike, otherwise
a route is chosen for the car as transport means.

6 Related Work

There are a number of model transformation engines which can modify models in EMF format
such as ATL [JK05], EWL [KPPR07], Tefkat [LS05], VIATRA2 [VB07], MOMENT [Bor07].
4 Note that we allow arbitrary transformation units as conditions in ConditionalUnits. While this may lead to side
effects if a unit different from the empty rule is used, the conceptual advantage is that components of HENSHIN

transformation units always are transformation units in turn.

9 / 13 Volume 32 (2010)

Visual Modeling of Controlled EMF Model Transformation using HENSHIN

Figure 7: Empty rule AllRoutesJammed with application condition

For ATL, a formal semantics based on Maude has been introduced recently [TV10]. Formal
semantics defined in Maude for MOMENT and for ATL might be exploited for analyzing EMF
model transformations. None of these tool environments supports visual editing of control struc-
tures.

Graph transformation tools like PROGRES [SWZ99], AGG [AGG09], FuJaBa [FNTZ00] and
MoTMoT [FOT10] feature visual editors which also support the definition of control structures,
e.g. by story diagrams in FuJaBa, which were extended by implicit control in [MV08]. The tool
GrGen.NET [GK08] also supports the arbitrary nesting of application conditions but is based on
a textual specification language. MoTMoT (Model driven, Template based, Model Transformer)
is a compiler from visual model transformations to repository manipulation code. The compiler
takes models conforming to a UML profile for Story Driven Modeling as input and outputs Java
Metadata Interface (JMI) code. Control structures are expressed by activity diagrams. Since
the MoTMoT code generator is built using AndroMDA, adding support for other repository
platforms (like EMF) is possible in principle and consists of adding a new set of code templates.

To the best of our knowledge, none of the existing EMF model transformation approaches

Proc. GraBaTs 2010 10 / 13

ECEASST

(based on graph transformation or not) support confluence and termination analysis of EMF
model transformation rules yet. Here, the HENSHIN approach and tool environment serves as
a bridge to make well-established tool features and formal techniques for graph transformation
available for model-driven development based on EMF.

7 Conclusion

In this paper, we presented two extensions for supporting controlled EMF transformations in our
EMF transformation environment HENSHIN. The first extension supports the visual definition of
HENSHIN transformation units which may be hierarchically nested (the basic unit being a rule)
and which restrict the possible rule application sequences in a suitable way. The second exten-
sion concerns the definition of application conditions for transformation rules. Such conditions
may be nested as well, and they may be combined by logical connectors such as AND and OR.
We illustrated the usage of the extended HENSHIN environment by a simulation example of a
personal mobility manager (PMM). Apart from the PMM example, HENSHIN has been applied
also for larger case studies, e.g. for model refactorings [ABJ+10] and model-to-model transfor-
mations such as the Ecore2Genmodel case study of the Transformation Tool Contest 2010 [?]5.

The extended HENSHIN environment provides visual views for all control structures and con-
ditions supporting zooming into deeper nesting levels. Thus, the visualization is independent of
the complexity of the (nested) control structures, as only two levels are shown at a time. Both
tree view editing and visual editing is supported at all levels. For editing formulas within appli-
cation conditions, from the user’s perspective an additional textual view of a complete formula
might be desirable [GP96]. The integration of such a textual formula view in HENSHIN is work
in progress.

A special kind of transformation units in HENSHIN are AmalgamationUnits, which are useful
to specify forall-operations on recurring model patterns. An AmalgamationUnit is a multi-rule
scheme containing the model pattern and a fixed kernel rule part. An amalgamated rule, induced
by such a scheme, is a kind of parallel rule synchronized at the kernel rule part. Its application
modifies all recurring instances of the model pattern in one step. The development of a visual
editor within HENSHIN for AmalgamationUnits is work in progress.

Furthermore, on the theoretical side we aim to lift confluence and termination analysis results
from the rule level to the level of transformation units.

References

[ABJ+10] T. Arendt, E. Biermann, S. Jurack, C. Krause, G. Taentzer. Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations. In Proc. of the
ACM/IEEE 13th Intern. Conf. on Model Driven Engineering Languages and Sys-
tems (MoDELS’10). LNCS 6394, pp. 121–135. 2010.
http://tfs.cs.tu-berlin.de/publikationen/Papers10/ABJ+10.pdf

[AGG09] TFS-Group, TU Berlin. AGG. 2009. http://tfs.cs.tu-berlin.de/agg.

5 On the TTC webpage http://planet-research20.org/ttc2010/ a Share demo of HENSHIN can be found as well.

11 / 13 Volume 32 (2010)

http://tfs.cs.tu-berlin.de/publikationen/Papers10/ABJ+10.pdf
http://tfs.cs.tu-berlin.de/agg
http://planet-research20.org/ttc2010/

Visual Modeling of Controlled EMF Model Transformation using HENSHIN

[BEK+06] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer, E. Weiss. Graphical Def-
inition of In-Place Transformations in the Eclipse Modeling Framework. In Nier-
strasz et al. (eds.), Proc. of the International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS’06). LNCS 4199, pp. 425–439. Springer,
Berlin, 2006.
http://tfs.cs.tu-berlin.de/publikationen/Papers06/BEK+06a.pdf

[BEL+10] E. Biermann, C. Ermel, L. Lambers, U. Prange, G. Taentzer. Introduction to AGG
and EMF Tiger by Modeling a Conference Scheduling System. Int. Journal on Soft-
ware Tools for Technology Transfer 12(3-4):245–261, Juli 2010.
http://www.springerlink.com/content/p4n1g45627852743/

[BET08] E. Biermann, C. Ermel, G. Taentzer. Precise Semantics of EMF Model Transfor-
mations by Graph Transformation. In Czarnecki (ed.), Proc. ACM/IEEE 11th Inter-
national Conference on Model Driven Engineering Languages and Systems (MoD-
ELS’08). LNCS 5301, pp. 53–67. Springer, 2008.
http://tfs.cs.tu-berlin.de/publikationen/Papers08/BET08.pdf

[Bor07] A. Boronat. MOMENT: A Formal Framework for Model Management. PhD thesis,
Universitat Politècnica de València, 2007.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theor. Comp. Science. Springer, 2006.
http://www.springer.com/3-540-31187-4

[EHL+10a] H. Ehrig, A. Habel, L. Lambers, F. Orejas, U. Golas. Local Confluence for Rules
with Nested Application Conditions. In Ehrig et al. (eds.), Proceedings of Intern.
Conf. on Graph Transformation (ICGT’ 10). LNCS 6372, pp. 330–345. Springer,
2010.
http://tfs.cs.tu-berlin.de/publikationen/Papers10/EHL+10.pdf

[EHL10b] H. Ehrig, A. Habel, L. Lambers. Parallelism and Concurrency Theorems for Rules
with Nested Application Conditions. Electr. Communications of the EASST 26:1–
24, 2010.
http://journal.ub.tu-berlin.de/index.php/eceasst/issue/view/36

[EMF08] Eclipse Consortium. Eclipse Modeling Framework (EMF) – Version 2.4. 2008.
http://www.eclipse.org/emf.

[EMT09] TFS-Group, TU Berlin. EMF Tiger. 2009. http://tfs.cs.tu-berlin.de/emftrans.

[FNTZ00] T. Fischer, J. Niere, L. Torunski, A. Zündorf. Story Diagrams: A new Graph Rewrite
Language based on the Unified Modeling Language. In Engels and Rozenberg
(eds.), Proc. of the 6th International Workshop on Theory and Application of Graph
Transformation (TAGT). LNCS 1764, pp. 296–309. Springer, Berlin, 2000.

[FOT10] FOTS-Group, University of Antwerp. MoTMoT: Model driven, Template based,
Model Transformer. 2010. http://www.fots.ua.ac.be/motmot/index.php.

Proc. GraBaTs 2010 12 / 13

http://tfs.cs.tu-berlin.de/publikationen/Papers06/BEK+06a.pdf
http://www.springerlink.com/content/p4n1g45627852743/
http://tfs.cs.tu-berlin.de/publikationen/Papers08/BET08.pdf
http://www.springer.com/3-540-31187-4
http://tfs.cs.tu-berlin.de/publikationen/Papers10/EHL+10.pdf
http://journal.ub.tu-berlin.de/index.php/eceasst/issue/view/36
http://www.eclipse.org/emf
http://tfs.cs.tu-berlin.de/emftrans
http://www.fots.ua.ac.be/motmot/index.php

ECEASST

[GK08] R. Geiß, M. Kroll. GrGen.NET: A Fast, Expressive, and General Purpose Graph
Rewrite Tool. In Schürr et al. (eds.), Proc. 3rd Intl. Workshop on Applications
of Graph Transformation with Industrial Relevance (AGTIVE’07). LNCS 5088.
Springer, 2008.

[GP96] T. R. G. Green, M. Petre. Usability Analysis of Visual Programming Environments:
a ‘cognitive dimensions' framework. Journal of Visual Languages and Com-
puting 7(2):131–174, 1996.

[HP09] A. Habel, K.-H. Pennemann. Correctness of high-level transformation systems rel-
ative to nested conditions. Mathematical Structures in Computer Science 19:1–52,
2009.

[JK05] F. Jouault, I. Kurtev. Transforming Models with ATL. In MoDELS Satellite Events.
LNCS 3844, pp. 128–138. Springer, Berlin, 2005.

[KPPR07] D. Kolovos, R. Paige, F. Polack, L. Rose. Update Transformations in the Small with
Epsilon Wizard Language. Journal of Object Technology 6(9):53–69, 2007.

[LMEP08] L. Lambers, L. Mariani, H. Ehrig, M. Pezze. A Formal Framework for Developing
Adaptable Service-Based Applications. In Fiadeiro and Inverardi (eds.), Proc. Fun-
damental Approaches to Software Engineering (FASE’08). LNCS 4961, pp. 392–
406. Springer, 2008.

[LS05] M. Lawley, J. Steel. Practical Declarative Model Transformation with Tefkat. In
MoDELS Satellite Events. LNCS 3844, pp. 139–150. Springer, Berlin, 2005.

[MV08] B. Meyers, P. Van Gorp. Towards a Hybrid Transformation Language: Implicit and
Explicit Rule Scheduling in Story Diagrams. In Proceedings of the 6th International
Fujaba Days. 2008.

[SWZ99] A. Schürr, A. Winter, A. Zündorf. The PROGRES-Approach: Language and Envi-
ronment. In Ehrig et al. (eds.), Handbook of Graph Grammars and Computing by
Graph Transformation, Volume 2: Applications, Languages and Tools. Pp. 487 –
550. World Scientific, River Edge, NJ, USA, 1999.

[TV10] J. Troya, A. Vallecillo. Towards a Rewriting Logic Semantics for ATL. In Tratt
and Gogolla (eds.), Proc. of the Intern. Conf. on Model Transformation (ICMT’10).
LNCS 6142, pp. 230–244. Springer, 2010.

[VB07] D. Varró, A. Balogh. The model transformation language of the VIATRA2 frame-
work. Science of Computer Programming 68(3):214–234, 2007.

13 / 13 Volume 32 (2010)

	Introduction
	EMF Model Transformation based on Graph Transformation
	Typed Attributed Graphs and Graph Transformation
	Typed Attributed Graphs versus EMF Modeling

	Example: Personal Mobility Manager
	Henshin Transformation Units
	Application Conditions
	Related Work
	Conclusion

