
Electronic Communications of the EASST
Volume 32 (2010)

Proceedings of the
Fourth International Workshop on

Graph-Based Tools
(GraBaTs 2010)

Distributed Graph-Based State Space Generation

Stefan Blom, Gijs Kant and Arend Rensink

12 pages

Guest Editors: Juan de Lara, Daniel Varro
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Distributed Graph-Based State Space Generation

Stefan Blom,∗ Gijs Kant† and Arend Rensink‡

sccblom@cs.utwente.nl kant@cs.utwente.nl rensink@cs.utwente.nl
Department of Computer Science

University of Twente, The Netherlands

Abstract: LTSMIN provides a framework in which state space generation can
be distributed easily over many cores on a single compute node, as well as over
multiple compute nodes. The tool works on the basis of a vector representation of
the states; the individual cores are assigned the task of computing all successors of
states that are sent to them. In this paper we show how this framework can be applied
in the case where states are essentially graphs interpreted up to isomorphism, such as
the ones we have been studying for GROOVE. This involves developing a suitable
vector representation for a canonical form of those graphs. The canonical forms are
computed using a third tool called BLISS. We combined the three tools to form a
system for distributed state space generation based on graph grammars.

We show that the time performance of the resulting system scales well (i.e., close to
linear) with the number of cores. We also report surprising statistics on the memory
consumption, which imply that the vector representation used to store graphs in
LTSMIN is more compact than the representation used in GROOVE.

Keywords: Graph Transformation, Symmetry Reduction, State Space Generation,
Distributed Computing, GROOVE, LTSMIN

1 Introduction

For the last two years, the development in modern computer processors has been to put more cores
on a single processor, rather than to speed up individual cores. To benefit from this development,
it is therefore important to find ways to utilise the power of parallel processing. So far, there is no
general way to achieve this for arbitrary applications.

In the context of graph transformation, this topic has been investigated by Bergmann et al. in
[BRV09] for the tool VIATRA2. The core functionality of VIATRA2 is to compute a sequence of
transformations, controlled by a predefined set of rules, as fast as possible. The paper proposes
parallellisation of the matching algorithm.

In this paper, we address parallellisation of GROOVE [Ren04], which differs from other graph
transformation tools in that it aims at complete state space exploration for a given set of rules,
rather than computing a single sequence — where a state equates to a graph. One of the most
important aspects of GROOVE, furthermore, is that states are compared modulo isomorphism; that

∗ Stefan Blom is partially sponsored by the EU under grant number FP6-NEST STREP 043235 (EC-MOAN).
† Gijs Kant is sponsored by the NWO under grant number 612.000.937 (VOCHS).
‡ Arend Rensink is partially sponsored by the NWO under grant number 612.000.632 (GRAIL).

1 / 12 Volume 32 (2010)

mailto:sccblom@cs.utwente.nl
mailto:kant@cs.utwente.nl
mailto:rensink@cs.utwente.nl

Distributed Graph-Based State Space Generation

is, two graphs are considered to represent the same state if they are isomorphic. Though checking
graph isomorphism is thought to be non-polynomial, the resulting reduction in state space size
can more than make up for the cost of isomorphism checking; see, e.g., [CPR08].

At the core of our solution lies LTSMIN [BPW10], an existing framework specifically designed
to enable distributed state space exploration with support for multiple specification languages. To
use LTSMIN, an application has to:

1. Provide a serialisation of states in the form of fixed-length state vectors. State vectors are
minimised to so-called index vectors (see [BLPW08]), which can be efficiently stored and
transmitted.

2. Be able to generate all successors of a given source state, where both the source state and
the successor states are communicated in the form of such a state vector.

LTSMIN will then run parallel copies of this application on every available core; the copies
communicate using message passing, so that this works equally well with parallel and distributed
cores. This method of parallellisation is particularly promising for GROOVE because the time-
intensive step of isomorphism checking is done concurrently for many states.

In the case of GROOVE, Step 2 is present by default, but Step 1 is challenging. It is not enough
to “flatten” graphs to a vector representation of some kind: in order to reduce the state space
up to graph isomorphism, we have to make sure that the representative vector is the same for
isomorphic graphs. For this purpose, we can make use of an existing tool called BLISS [JK07],
which computes canonical graphs based on the principles developed in [McK81]. The LTSMIN

vector representing a graph is thus the “flattening” of its canonical form.

We have experimented with this combination of LTSMIN, GROOVE and BLISS. In this paper we
report two results:

• For larger cases, the time performance of the parallellised system scales well (though
not linearly) with the number of processors. On a single core the setup is a good deal
less efficient than GROOVE, but a system with eight or more cores easily outperforms the
stand-alone version of GROOVE.

• Given a good vectorisation of the canonical form, the memory performance of the combina-
tion of LTSMIN, GROOVE and BLISS is also a good deal better than that of the stand-alone
version. This is surprising given the fact that, in contrast to GROOVE, the data structures
that LTSMIN uses in its tree compression and central state store are not at all optimised
towards the storage of graphs. The gain is large enough to make us consider moving to the
compressed vector representation even in the stand-alone, sequential version.

We introduce GROOVE in Section 2 and the relevant features of the LTSMIN framework in
Section 3, especially the canonical graph vector representation. In Section 4 we report and analyze
the outcome of the experiments. Section 5 draws conclusions and discusses future work.

2 Graph-based state space generation

Graph transformation is a declarative formalism, based on a set of rules that are applied to graphs.
In the context of this paper, graphs are edge-labelled, with labels drawn from a global set Lab;

Proc. GraBaTs 2010 2 / 12

ECEASST

moreover, nodes are drawn either from a set of node identities Node, or from the set of primitive
data values Val= Bool∪ Int∪Real∪String.

Definition 1 (graph, isomorphism) A graph G is a tuple 〈V,E〉 where V ⊆ Node is a finite
set of nodes and E ⊆ V × Lab× (V ∪Val) is a finite set of edges. We use src(e), tgt(e) and
lab(e) to denoted the source, target and label of an edge e. The set of all graphs is denoted
Graph. Graphs G,H are isomorphic, denoted G∼= H, if there exists a bijection f : VG→VH such
that (f (v),a, f̄ (w)) ∈ EH if and only if (v,a,w) ∈ EG, where f̄ = f ∪ idVal. We sometimes write
f (G) = H.

There is no need to precisely define rules; we merely formalise their actions upon graphs. A
rule is an object r that can be applied to a host graph G if there exists a so-called match m for r in
G (not formalised here, either). The rule and the match together determine a transformation of G,
formally expressed by a derivation relation G−r,m−→ H, where H is called the target graph. This
derivation relation is well-defined and deterministic modulo isomorphism:

• G−r,m−→ H and G′ ∼= G implies G′ −r,m−→ H ′ for some H ′ ∼= H.

• G−r,m−→ H1 and G−r,m−→ H2 implies H1 ∼= H2.

Using these concepts we define the graph transition system generated by a set of rules.

Definition 2 (graph transition system) The graph transition system (GTS) for a set of rules R
and a start graph S is given by 〈Q,→,S〉, where→ is the derivation relation restricted to Q, and Q
is the smallest set of graphs such that (i) S ∈ Q, and (ii) H ∈ Q for all G ∈ Q, r ∈ R and G−r,m−→ H.

The GTS is a labelled transition system as used in many verification methods, in particular
model checking [BK09]. Unfortunately, the GTS can easily be infinite, and even when finite can
grow extremely large even for small start graphs — a phenomenon called state space explosion.
One way to combat state space explosion is through symmetry reduction (see, e.g., [CJEF96]).
In the case of graphs, symmetries show up as isomorphisms; the state space can be reduced by
collapsing all isomorphic states, or in other words, taking the quotient of the GTS under ∼=. The
following algorithm generates this quotient 〈Q,T,S〉 (where T is the set of transitions).

1 let Q := {S}, T := /0, F := {S} (F is the collection of fresh states)
2 while F 6= /0
3 do choose G ∈ F (which G is chosen depends on the structure of F)
4 let F := F \{G}
5 for G−r,m−→ H
6 do if ∃H ′ ∈ Q : H ′ ∼= H
7 then let H := H ′

8 else let Q := Q∪{H}, F := F ∪{H}
9 endif

10 let T := T ∪{(G,r,m,H)}
11 endfor
12 endwhile

3 / 12 Volume 32 (2010)

Distributed Graph-Based State Space Generation

The crux is in Line 6, which tests for membership up to isomorphism: given a graph H and a set of
graphs Q, find H ′ ∈ Q such that H ′ ∼= H. Testing H ′ ∼= H for given graphs H,H ′ is believed to be
non-polynomial in |H| (see [Wei02]), and clearly membership up to isomorphism generalises the
pairwise test. However, we have shown in [Ren07, CPR08] that the gain by symmetry reduction
can be huge, and hence can be worthwhile despite its complexity. We now discuss two ways to
implement membership modulo isomorphism.

Graph certificates. The current implementation of GROOVE, as reported in [Ren07], uses
certificates to obtain a data structure for Q allowing a membership-up-to-isomorphism test that
performs well in many practical cases.

A node certifier is a function nc : Graph→Node⇀ Nat, which for every graph G results in
a function ncG : VG→Nat with the property that ncG = ncH ◦ f for all isomorphisms f from
G to H. A graph certifier is a function gc : Graph→Nat such that G ∼= H implies gc(G) =
gc(H). An easy example of a node certifier is to count the number of incident edges (ncG : v 7→
|{e ∈ EG | src(e) = v∨ tgt(e) = v}| for all v ∈VG). Every node certifier nc gives rise to a graph
certifier gc : G 7→ ∑v∈VG

nc(v).
GROOVE currently implements Q as a map Nat→2Graph such that n 7→ {G ∈ Q | n = gc(G)}.

Finding H ′ ∈ Q such that H ′ ∼= H comes down to searching Q(gc(H)), which for a good graph
certifier gc is almost always either empty or a singleton set. Moreover, pairwise testing H ′ ∼= H
for the H ′ ∈ Q(gc(H)) is made easier by using a node certifier.

Canonical forms. One can take the idea of graph certifiers one step further by also requiring
that gc(G) = gc(H) implies G∼= H. This is the idea behind the concept of canonical forms.

A graph canoniser is a function can : Graph→Node⇀ Node, which for every graph G results
in an injective function canG : VG→Node such that G ∼= H if and only if canG(G) = canH(H).
(Note that, in combination with a hash function hash : Node→Nat, this gives rise to a node
certifier nc= hash◦can.) Q can then be implemented as a set of canonical form graphs. Obviously,
computing canonical forms is as complex as testing for isomorphism; nevertheless, in practice
the complexity often turns out to be bearable. In particular, the algorithm developed by McKay
[McK81] as implemented in the tools NAUTY [McK09] and BLISS [JK07] does well in practice.

We have used BLISS in our experimentation in the distributed setting. There is a discrepancy
in that BLISS uses node-labelled rather than edge-labelled graphs; however, our graphs can be
converted to BLISS graphs without loss of information, though with a slight blowup due to the
need to encode edge labels in some way. Another noteworthy property is that the canonical forms
produced by BLISS always map to an initial fragment of Nat; that is, canG(VG) = {0, . . . , |VG|−1}
for all graphs G. BLISS reorders the nodes such that for isomorphic graphs G and H for all v ∈ G
the same number is assigned to v and f (v) ∈ H for some isomorphism f (with H = f (G)).

3 The LTSMIN framework

LTSMIN is meant to be used as a module in a tool chain that enables state space generation
on parallel or distributed systems, consisting of many independent cores. The modular design
ensures that the framework can be used for a variety of formalisms. The communication between
LTSMIN and the application that uses it, hereafter called the user module, is through an interface

Proc. GraBaTs 2010 4 / 12

ECEASST

B
L

IS
S

G
R

O
O

V
E

B
L

IS
S

G
R

O
O

V
E

B
L

IS
S

G
R

O
O

V
E

LTSMIN LTSMIN LTSMIN

Figure 1: 3-core configuration of LTSMIN with GROOVE +BLISS as user module.

called PINS, for Partitioned Next-State function. We will briefly explain the underlying concepts.
To run an application on top of the LTSMIN framework, an LTSMIN client as well as a copy of

the user module is started up in parallel on every core. These copies communicate by message
passing, so that it does not matter (from the protocol view) whether cores are on a single machine
or distributed over different machines. State space exploration then proceeds as follows:

• LTSMIN defines a function that associates a fixed core with each state, on the basis of the
state’s vector representation. When a state is generated, it is sent to the associated core
for further processing. The exploration is kicked off by sending the initial state to the
appropriate core.

• Each core keeps a store of all states sent to it so far, remembering also whether the states
are closed (i.e., already fully explored) or fresh.

• Upon reception of a state, a core adds it to its state store, marking it as fresh if it was not
already in the store.

• Each core computes the successor of each fresh state, and sends the successors to their
associated cores. This computation is done by the user module.

An example configuration with GROOVE and BLISS is depicted schematically in Figure 1.

3.1 State vectors and tree compression

The central concept enabling the modularity of LTSMIN is the state vector. Every state has to
be presented as a vector 〈p1, . . . , pn〉 for fixed n. The nature of the elements pi actually does not
matter, as these are immediately mapped to table indices for each position. That is, for i = 1, . . . ,n
LTSMIN builds up an injective mapping ti : Pi→Nat, where Pi is the set of all values encountered
so far at position i and Nat is a finite fragment of natural numbers; e.g., that fragment which
can be represented in 32 bits. Every state vector 〈p1, . . . , pn〉 is then converted to an index vector
〈t1(p1), . . . , tn(pn)〉 ∈ Natn. The mappings ti are generated on the fly: once a value is encountered
for the first time (on position i) it is added to ti; from then on the same value on that position will
always be mapped to the same index. The function associating a core with each state is computed
as a hash on the index vector, modulo the number of available cores.

The tables (ti)1≤i≤n, together called the leaf database, are duplicated in the system. It is
essential that all workers use the same tables, but they are impossible to build beforehand, as
it is unknown which values will be encountered at each position. For this reason, the LTSMIN

framework also has the task of distributing the tables over the workers, which in turn means that
all the ti are replicated over all LTSMIN clients. On the other hand, the tables also need to be

5 / 12 Volume 32 (2010)

Distributed Graph-Based State Space Generation

known on the side of the user module, since this is where the coding of state vectors to and from
index vectors actually takes place. Thus, in a system with c cores, all ti are replicated 2c times.1

Index vectors are further compressed using so-called tree compression (see [BLPW08]): with-
out going into details, this comes down to repeatedly grouping neighbouring positions of the
index vector and building a new table of all combinations of values at those positions that are
found during exploration. All these tables together form what is called the tree database.

The success of the method crucially depends on finding a state vector representation that has
as few values at each vector position as possible; i.e., each of the Pi should be small. This does
not contradict a huge overall state space size: for maxi |Pi| = m, the number of states that can
potentially be represented is mn. In the worst case, for one or more i |Pi| approaches the total state
space size, and hence so does the size of the tree database; the advantage of this compression
method is then completely lost.

3.2 Serialising canonical form graphs

We will now describe the steps necessary to use GROOVE as a user module in the LTSMIN

framework. The main difficulty is to find a suitable state vector representation. This is entirely up
to the user module: LTSMIN gets to see the state vectors only after they have been produced, and
treats the values in the Pi as completely unstructured.

It is absolutely necessary that the state vectors uniquely represent states. This means that, if
we want to benefit from symmetry reduction, we have to put graphs into canonical form before
communicating them to LTSMIN. Moreover, as explained above, the vector representation should
ideally have only few possible values at each slot.

In Section 2 we have explained that the canonical form computed by BLISS essentially assigns
a sequence number from 0 to |V |−1 to each node of a graph G. This imposes a total ordering ≤
on V ; we will use~v = v0 · · ·vk to denote the ordered sequence of nodes in V . Furthermore, we use
the natural total orders on the primitive values Int, String, Bool and Real and we assume a total
order on Lab (for instance, the alphabetical ordering). This also gives rise to a lexicographical
ordering on edges. In the sequel, ord(X) for a set X with an implicit order will denote the ordered
vector of X-elements, and ~x �I for a sequence x ∈ X∗ and an index set I ⊆ {0, . . . , |~x|−1} will
denote the sequence of elements at positions I.

The vector ~pG representing G will consist of n slots, of which the first contains a sequence of
node colours (i.e., the primitive value in the case of value nodes or the set of self-edges for the
other nodes; this is also used in the conversion to coloured graphs, needed for the use of BLISS),
one for each node, in the order imposed by the canonical form; the second to fifth contain the sets
of primitive values from Val used as target nodes, seperated per primitive type; and the remaining
slots contain outgoing edges for the individual nodes. If k > n−5 (where k = |VG| and n = |~p|)
then nodes are “wrapped around”, e.g. for n = 12 slot p5 would be used for v0,v7,v14, This
way graphs can be encoded into a fixed size vector, even if the size of the graphs is not fixed.

1 This description is actually still slightly simplified with respect to the implementation: there the encoding of the
outgoing states may be different from that of the incoming ones; the former is then local to each core, and the LTSMIN

clients translate the local to the global encoding.

Proc. GraBaTs 2010 6 / 12

ECEASST

-10 B

”hi”A

A 3

ai

i

b

n

i a

0

1

23

4

5

p0 = {A} {A} {B} (Int,1) (Int,0) (String,0) list of nodes
p1 =−10 3 list of Ints
p2 = “hi” list of Strings
p3 = ε (the empty sequence) list of Bools
p4 = ε list of Reals
p5 = {(a,2),(b,1),(i,3)} /0 edges of 0 and 4
p6 = {(a,2),(i,3)} /0 edges of 1 and 5
p7 = {(i,4),(n,5)} edges of 2
p8 = /0 edges of 3

Figure 2: An example graph with |V | = 6, represented by a state vector with |~p| = 9. The
canonical node numbers are in italic. Node labels A, B are self-edges; oval nodes are data values.

Formally this is defined by

pi =

colorG(v0) · · ·colorG(vk) if i = 0
XG if i = 1+ j and X= (Int String Bool Real) � j
outG(w0) · · ·outG(wm) if i = 5+ j and ~w =~v �{l | l = j mod (n−5)}

where colorG(v) denotes the colour and outG(v) the outgoing edges of v, defined as follows:

colorG(v) =
{

self G(v) if v ∈ Node
(X, i) if v = XG �i,

self G(v) = {a | (v,a,v) ∈ EG},
XG = ord(X∩ tgt(EG)) for X= Int,String,Bool,Real,

outG(v) = {(a,canG(w)) | (v,a,w) ∈ EG,v 6= w}.

An example state vector is shown in Figure 2. As related above, this is translated to an index
vector together with a set of tables t0, . . . , tn, so that a value at position i which recurs in another
state vector at the same position is encoded by the same index. For instance, if the graph in
Figure 2 is modified by i := 3 in node 0, only slot 5 of the state and index vectors would change
(namely to {(a,2),(b,1),(i,4)} /0) and only t5 might have to be updated with this new value.

4 The experiments

We have carried out experiments based on three rule systems with varying characteristics.

le A leader election protocol. In this case there is a fixed number of nodes representing network
nodes and a varying number of nodes representing messages. The number of nodes is an
upper limit on the number of messages. This case study has been used for the GraBaTs
2009 tool contest (see http://is.tm.tue.nl/staff/pvgorp/events/grabats2009).

unflagged-platoon A protocol for forming car platoons. In this model there is always a fixed
number of nodes. The behaviour shows extensive symmetries; reduction modulo isomor-
phism shrinks the state space by many orders of magnitude. This case study has been used
for the Transformation Tool Contest 2010 (see http://planet-research20.org/ttc2010).

7 / 12 Volume 32 (2010)

http://is.tm.tue.nl/staff/pvgorp/events/grabats2009
http://planet-research20.org/ttc2010

Distributed Graph-Based State Space Generation

Table 1: Results for the largest start graphs where both GROOVE (sequential) and LTSMIN (1, 8
and 64 cores) were able to generate the state-space. The memory usage shown is the average per
core. The last column shows the number of elements in the global leaf database for LTSMIN.

Grammar/ States/ Time Mem
Start State Transitions Tool Cores (s) Speedup (MB) Leaf db
le 3.724.544 GROOVE 5.128 2.751
start-7p 16.956.727 LTSMIN 1 – – –

8 2.005 2,6 52
64 307 16,7 52 1.819

unflagged-platoon 1.580.449 GROOVE 1.016 1.259
start-10 10.200.436 LTSMIN 1 6.621 0,2 120

8 889 1,1 54
64 156 6,5 54 8.534

append 261.460 GROOVE 202 372
append-4-list-8 969.977 LTSMIN 1 3.285 0,1 99

8 352 0,6 76
64 92 2,2 70 69.147

append A model of list appenders that concurrently add a value to the same list. In this case the
number of nodes grows in each step. The maximal number of nodes equals the number of
appenders plus 1 times the number of elements in the list. There is hardly any nontrivial
isomorphism in the transition system.

The experiments have been performed on a cluster consisting of 8 compute nodes with 4 dual
Intel E5520 CPUs each and 24GB RAM, for a total of 8 cores per compute node and 64 cores in
total. GROOVE 4.0.1 has been used with a Sun Java 1.6.0 64-bit VM with a maximum of 2GB of
memory for each core. For computing canonical forms we used BLISS 0.50. We used LTSMIN 1.5,
with an added dataflow module to facilitate the communication between LTSMIN and GROOVE.
For all experiments, the combined system was given a time limit of 4 hours. The state vector size
for the first two cases was chosen such that n≥ k+5, hence no slot needs to encode the edges of
more than one node; however, this is not the case for the third case.

We have compared the performance of the distributed setting with the default, sequential
implementation of GROOVE (without computation of canonical forms), running on the same
machine but with a memory upper bound of 20GB. For the leader election with start state
start-7p a different machine with 60GB of memory has been used, because with 20GB of
memory the result could not be calculated.

Where there are no values in the table or figures of this section, either the time limit of 4 hours
was exceeded or there was not enough memory.

Global results. Table 1 shows some global results for the three cases, using the largest start
graphs for which the sequential setting could compute the entire state space. We can observe that
with 8 cores, the distributed setting starts to outperform the sequential, and also that the speedup

Proc. GraBaTs 2010 8 / 12

ECEASST

increase from 1 to 8 cores and from 8 to 64 cores is sizeable, though below the optimal value of 8.
Furthermore, the leaf database of the append rule system grows much larger than for the others,
despite the fact that the state space is much smaller. This is a consequence of the fact that the
graph size outgrows the vector size for this case.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

sta
rt-0

3

sta
rt-0

4

sta
rt-0

5

sta
rt-0

6

sta
rt-0

7

sta
rt-0

8

sta
rt-0

9

sta
rt-1

0

sta
rt-1

1

sta
rt-1

2

states

transitions

leaf db

(a) Number of states, transitions and leaf values.

 1

 10

 100

 1000

 10000

start-03

start-04

start-05

start-06

start-07

start-08

start-09

start-10

start-11

start-12

start-13

M
e

m
o

ry
 (

M
B

)

groove
1
8

64

(b) Memory usage for GROOVE and LTSMIN (per core).

 0.1

 1

 10

 100

 1000

 10000

 100000

start-03

start-04

start-05

start-06

start-07

start-08

start-09

start-10

start-11

start-12

start-13

T
im

e
 (

s
)

groove
1
8

16
32
64

(c) Execution time.

 0

 1

 2

 3

 4

 5

 6

 7

start-03

start-04

start-05

start-06

start-07

start-08

start-09

start-10

S
p
e
e
d
u
p

groove
1
8

16
32
64

(d) Speedup compared to GROOVE.

Figure 3: Figures for the car platooning case for different start states.

Time and memory distributions. For the car platooning case, more detailed results are shown
in Figures 3 and 4. First of all, Figure 2a shows that even though the size of the problem grows
exponentially, the number of elements of the leaf value database of LTSMIN does not. This is
also reflected by the per-core memory usage of LTSMIN (Figure 2b), which seems hardly to grow,
in contrast to the more than exponentially growing memory usage of GROOVE.

Figures 2c and 2d show the execution time respectively the speedup of LTSMIN with different
numbers of cores compared to GROOVE. The execution time of LTSMIN with one core is much
worse than GROOVE, but the speedup is growing fast. For the start states with 11 and 12 cars,
GROOVE cannot generate the state-space within 4 hours, but LTSMIN with 8 respectively 16 or
more cores can.

9 / 12 Volume 32 (2010)

Distributed Graph-Based State Space Generation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

groove

8 16 24 32 40 48 56 64

T
im

e
 (

s
)

iso
enc/dec

send/recv

(a) Execution times for start-08.∗

 0

 200

 400

 600

 800

 1000

 1200

groove

8 16 24 32 40 48 56 64

T
im

e
 (

s
)

iso
enc/dec

send/recv

(b) Execution times for start-10.∗

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

groove

1 8 16 24 32 40 48 56 64

T
im

e
 (

s
)

iso
enc/dec

send/recv

(c) Execution times for start-12.

Legend
iso Computing canonical forms, includ-

ing the conversion of GROOVE to
BLISS and back

enc/dec Encoding and decoding of GROOVE
graphs into state vectors and back

send/recv Waiting for the next assignment
from LTSMIN

rest Matching in GROOVE

∗ LTSMIN with one core is left out, because it is more
then five times slower than the fastest after that.

Figure 4: Decomposed execution times for the car platooning case for different numbers of cores.

Execution time decomposition. Figure 4 shows how the execution time is built up. For smaller
start states, the communication between cores (labelled “send/recv” in the figure) is a major
factor in the computation time for LTSMIN, but for larger start states most of the time is spent on
computing canonical forms (isomorphism reduction). As the number of cores grows, however,
the communication again starts to play a larger relative rule — which is to be expected since this
is the only task that is not parallellised; indeed, the communication overhead grows more than
linearly with the number of cores.

Analysis. For lack of space we cannot include all results in this paper, but the trends for the leader
election and append rule systems are very similar to the ones reported above for car platooning.
Based on these results, we come to the following observations:

• The chosen serialisation of graphs works well in the reported cases. The total number of
values stored, the so called leaf database, is orders of magnitude smaller than the total
number of states. Indeed, the number of states grows exponentially with the problem size
for all three modelled systems, but the number of leaf nodes grows less than exponentially.

Proc. GraBaTs 2010 10 / 12

ECEASST

Although the canonical form calculation can renumber nodes in an unpredictable manner,
which in the worst case could blow up the number of leaf values, apparently the different
states are really a combinatorial result of the different parts of the vector. This is especially
true for the leader election and car platooning cases, where the number of nodes is a priori
bounded and the vector size can be chosen to accomodate this; in the append case, where
the state vector representation has to reuse slots for multiple nodes, the results are less
spectacular, though still quite good.

• The memory performance of the distributed LTSMIN solution is better than that of the
sequential GROOVE system. This is a direct consequence of the success of the serialisation,
but it deserves a separate mention. GROOVE uses dedicated data structures, which store
only the difference (delta) between successive graphs; nevertheless, the very general tree
compression algorithm of LTSMIN turns out to beat this hands down. This came as a big
surprise to us, and is reason to reconsider the data structures of GROOVE.

• The time performance of the distributed LTSMIN solution scales well with the number
of cores, especially for larger start graphs. The performance of a single core is quite bad
compared to GROOVE, taking in the order of 8-10 times as much time, but the distributed
system with 8 or more cores is faster. For the largest cases that GROOVE still can compute,
we get speedups up to 16 (for 64 cores); moreover, the LTSMIN solution continues to scale
well for larger start graphs, which GROOVE on its own cannot cope with at all any more.

• The canonical form computation in the LTSMIN-based system lasts as much as 5 times
longer than isomorphism checking in stand-alone GROOVE. As the certificate-based solution
of GROOVE uses the same underlying technique as BLISS’ canonical form computation
(namely, repeated partition refinement), there is no obvious reason for this performance
penalty; we hypothesize that it is a consequence of the required encoding of edge-labelled
GROOVE graphs as node-labelled BLISS graphs, which increases the graph size. It therefore
seems interesting to reimplement the BLISS algorithm for edge-labelled graphs. Given the
fact that isomorphism checking is a major fraction of the total time, we expect that this may
further improve the distributed performance.

5 Conclusion

We showed a successful way of parallellising graph-based state space generation, using a combi-
nation of three tools: GROOVE, BLISS and LTSMIN. A nontrivial step is the encoding of arbitrary
graphs into fixed-sized state vectors. We concluded that the resulting system scales well with the
number of cores, and has a surprisingly good memory performance — so good, in fact, that it
might be worth replacing the current GROOVE data structures. We also observed that a further
performance gain can probably be made by reimplementing the functionality of BLISS in order to
take advantage of the structure of edge-labelled graphs.

An interesting question raised in the course of this work is whether isomorphism checking
is a good idea at all. Omitting the canonical graph computation would ensure that rules have
only local effect on the state vector, giving rise to nontrivial (in)dependencies between transitions.

11 / 12 Volume 32 (2010)

Distributed Graph-Based State Space Generation

This in turn would allow more of the functionality of LTSMIN to be used, namely the symbolic
storage of states. Though there are examples where symmetry reduction has a huge payoff, the
same is true, to an even larger degree, for symbolic representations. This is a subject for future
investigation.

Bibliography

[BK09] C. Baier, J.-P. Katoen. Principles of Model Checking. MIT Press, 2009.

[BLPW08] S. C. C. Blom, B. Lisser, J. C. van de Pol, M. Weber. A Database Approach to
Distributed State Space Generation. In Cerná and Haverkort (eds.), Parallel and
Distributed Methods in verifiCation (PDMC). Electr. Notes Theor. Comput. Sci. 198,
pp. 17–32. Elsevier, 2008.

[BPW10] S. C. C. Blom, J. C. van de Pol, M. Weber. LTSMIN: Distributed and Symbolic
Reachability. In Computer-Aided Verification (CAV). LNCS 6174. Springer, 2010.
See http://fmt.cs.utwente.nl/tools/ltsmin/.

[BRV09] G. Bergmann, I. Ráth, D. Varró. Parallelization of Graph Transformation Based on
Incremental Pattern Matching. In Boronat and Heckel (eds.), Graph Transformation
and Visual Modeling Techniques (GT-VMT). Electr. Comm. of the EASST 18. 2009.

[CJEF96] E. M. Clarke, S. Jha, R. Enders, T. Filkorn. Exploiting Symmetry in Temporal Logic
Model Checking. Formal Methods in System Design 9(1/2):77–104, 1996.

[CPR08] P. Crouzen, J. C. van de Pol, A. Rensink. Applying Formal Methods to Gossiping
Networks with mCRL and Groove. ACM SIGMETRICS Performance Evaluation
Review 36(3):7–16, December 2008.

[JK07] T. Junttila, P. Kaski. Engineering an efficient canonical labeling tool for large and
sparse graphs. In 9th Workshop on Algorithm Engineering and Experiments. Pp. 135–
149. SIAM, 2007. See http://www.tcs.hut.fi/Software/bliss/.

[McK81] B. D. McKay. Practical graph isomorphism. Congressus Numerantium 30:45–87,
1981.

[McK09] B. D. McKay. NAUTY User’s Guide (Version 2.4). Nov. 2009. See http://cs.anu.edu.
au/∼bdm/nauty/nug.pdf.

[Ren04] A. Rensink. The GROOVE Simulator: A Tool for State Space Generation. In Pfaltz et al.
(eds.), Applications of Graph Transformations with Industrial Relevance (AGTIVE).
LNCS 3062, pp. 479–485. Springer Verlag, 2004.

[Ren07] A. Rensink. Isomorphism Checking in GROOVE. In Zündorf and Varró (eds.), Graph-
Based Tools (GraBaTs). Electr. Comm. of the EASST 1. September 2007.

[Wei02] E. W. Weisstein. Isomorphic Graphs. From MathWorld – A Wolfram Web Resource.
http://mathworld.wolfram.com/IsomorphicGraphs.html, 2002.

Proc. GraBaTs 2010 12 / 12

http://fmt.cs.utwente.nl/tools/ltsmin/
http://www.tcs.hut.fi/Software/bliss/
http://cs.anu.edu.au/~bdm/nauty/nug.pdf
http://cs.anu.edu.au/~bdm/nauty/nug.pdf
http://mathworld.wolfram.com/IsomorphicGraphs.html

	Introduction
	Graph-based state space generation
	The LTSmin framework
	State vectors and tree compression
	Serialising canonical form graphs

	The experiments
	Conclusion

