Electronic Communications of the EASST

Volume 32 (2010)

Proceedings of the
Fourth International Workshop on
Graph-Based Tools
(GraBaTs 2010)

Verification of Model Transformations to Refactoring Mobile Social
Networks

Mark Asztalos, Péter Ekler, Laszl6 Lengyel, Tihamér Levendovszky

12 pages

Guest Editors: Juan de Lara, Daniel Varro

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Verification of Model Transformations to Refactoring Mobile Social
Networks

Mark Asztalos, Péter Ekler, Laszl6 Lengyel, Tihamér Levendovszky

Budapest University of Technology and Economics
Department of Automation and Applied Informatics
{asztalos, ekler.peter, lengyel, tihamer } @aut.bme.hu

Abstract: Verification of model processing programs, where only the definitions of
the program and the languages of the models to be transformed are analyzed, has be-
come a fundamental issue in model-based software engineering. This analysis may
become very complex, but it is performed only once and the results are indepen-
dent from concrete input models. The formal background of verification methods
for graph rewriting-based model transformations has become a subject of research
recently. In previous work, we have provided fundamental formal and algorithmic
background of a (semi-)automated verification approach for graph transformations.
This work concludes these components and put them together to introduce the im-
plementation of a verification system fully integrated into a model transformation
framework, VMTS. The strong points of our approach is its usability, its implemen-
tation in an existing tool, and its extendibility, which are demonstrated on a case
study in the application domain of mobile centric social networks. Our results show
that the verification of graph rewriting-based model transformations can be largely
automated.

Keywords: model transformation, automated verification

1 Introduction

In model-based software engineering, developers use programs to process models in a repeatable
and automated way. With the increasing need of reliable systems, the verification of such model
processing programs has become a fundamental issue. Verification means determining the cor-
rectness of the program in the sense that the output satisfies certain functional and non-functional
conditions.

Graph rewriting-based model transformation is a frequently used model processing technique,
which is well suited to describe several model processing scenarios. We analyze graph rewriting-
based model transformations that are based on the formal background graph transformation sys-
tems as defined in [EEPT06]. A graph transformation system is defined by a set of rewriting
rules (productions), the applications of rules are the elementary operations on graphs. In our
terminology, a model transformation is the definition of a model processing program specified
by a a set of rewriting rules (based on the double-pushout approach [EEPT06]) and an additional
directed control flow graph that explicitly defines the execution order of the rules.

In this work, we concentrate on the automated, formal verification of model transformations
where only the definition of the transformation and the specification of the languages that de-

1/12 Volume 32 (2010)

Verification of Model Transformations to Refactoring Mobile Social Networks E}

scribe the models to be transformed are used during the analysis process. We use the term
“verification’ as the opposite of ’validation’, where, the program is analyzed at runtime. Most
online techniques extend the definition of the model processors with additional constraint val-
idation code that guarantees that the program cannot finish successfully if a constraint is not
satisfied [Len06]. The main advantage of the verification is that the results of analysis are gen-
eral in the sense that they are independent from the concrete input models. Moreover, the analysis
needs to be performed only once. Comparing to the validation, the disadvantage of the verifica-
tion is the increased complexity of the analysis, since, for example, the termination of a graph
transformation is undecidable in general.

Many published examples can be found for the verification of individual model transforma-
tions, however, these methods usually lack generalization possibilities, since the analysis is per-
formed manually or the methods can be applied only to a certain transformation class or to the
analysis of only a certain type of property. Therefore, there is an increasing need for auto-
mated verification methods and tools. There are few results [Pen09, Ore08, Sch09] related to
verification, moreover, several tools [LT04, KR06] that provide methods that can be reused in
verification methods as well. For a more detailed discussion on related work, see Section 5.

In this paper, we present the concept of an automated verification framework implemented in
Visual Modeling and Transformation System (VMTS) [Vis]. We have defined a formal language
(Model Condition Description Language [AELLI10], detailed in Section 3), which is capable
of expressing certain properties of models. Our system can analyze model transformations and
prove certain properties for the output models. In previous work [ALL10, AEL"10a, AELLI0,
AEL™ 10b] we have described individual components of our verification approach. In this paper,
we introduce each of these components shortly (Section 3) to set the grounds for our discussion,
then, we present the architecture of our implemented verification system (Section 4). We intro-
duce a case study of refactoring social network models in Section 2 to demonstrate the operation
of our system. Section 5 contains discussion on related work and we conclude in Section 6.

2 Case Study

The phone book in our mobile phone is a small part of a social network because every contact
has some kind of relationship to us. Given an implementation that allows us to upload as well as
download our contacts to and from the social networking application, we can completely keep
our contacts synchronized. Phonebookmark [EL10] is a phone book-centric social network
implementation by Nokia Siemens Networks. We took part in the implementation and before
the public introduction it was available for a group of general users from April to December of
2008. It had 420 registered members with more than 72000 private contacts.

2.1 Metamodeling Central Social Network

Visual Modeling and Transformation System (VMTS) [Vis] is a domain-specific modeling,
metamodeling, and model transformation system. In the following, we present the model-based
representation of Phonebookmark networks in VMTS. The metamodel is presented in Figure 1a,
its entities are as follows: a member is a user of the social network, a phone is a mobile device

Proc. GraBaTs 2010 2/12

Eg ECEASST

Member Contact Phone

CustopizedConnecti

~) Attributes 0 "\ A) Attributes ~) Attributes

[
Id: string SimilarityConnec] tion | IsCustomized: bool ContactContainment 1d: string

Processed: string o 0. Id: string Processed: string
— -
IsPrivate: bool
o o. Processed: string o 0.1
PhoneOwnerConnection
0.1 0.*
(a) Phonebookmark Metamodel (b) Sample Instance Model

Figure 1: Phonebookmark Domain in VMTS

of a member, which can contain phone book entries, a contact corresponds to a phone book en-
try of a phone. Relations between the entities have been defined as follows: each member can
own several phones (PhoneOwnerConnection), each phone can contain several contacts (Con-
tactContainment). A contact can be connected to a member with a CustomizedConnection or
a SimilarityConnection edge. A CustomizedConnection, or shortly customization edge, means
that the current entry corresponds to the member of the social network. Whenever the owner
member of the entry connects to the social network, the data can be synchronized. A Similarity-
Connection, or shortly similarity edge, between a member and a contact, denotes that a similarity
detecting algorithm has found similarities between their data so the user has to decide whether
to accept this relation and convert it into a customization edge or reject it. For this purpose,
ApprovalState attribute has been defined for similarity edges, whose value can be approved, re-
Jjected, or, the default value, ignored, which means that the user has not decided yet. In VMTS, a
concrete syntax extension has been defined for the instance models. A sample instance model is
presented in Figure 1b. The entities can be easily differentiated by their icons. Similarity edges
are denoted by red, customization edges by goldenrod colors.

2.2 Similarity Handling Transformation

In VMTS, the graph rewriting-based transformations are defined with the use of two modeling
languages: the Visual Control Flow Language (VCFL) and the Visual Transformation Defini-
tion Language (VTDL) [AAL"09]. The activity diagram-like VCFL models (control flow mo-
dels) controls the execution order of the rewriting rules, while the rewriting rules are described
with VIDL models. The application of the rewriting rules is based on the double pushout ap-
proach [EEPTO06].

Phonebookmark provides a semi-automatic similarity detecting and resolving mechanism,
which detects similarities between phone book contacts and the members of the network. Simi-
larity means that the algorithm suggest to the user that the contact and the member represent the
same person. In this case, a similarity edge is created between the contact and the appropriate
member.

In the following, we present a model transformation (Similarity Handling Transformation) for
the refactoring of Phonebookmark models. This model transformation will be used to demon-
strate the verification system presented in the following section. The user can start this trans-
formation manually after finishing the classification of the similarity edges, where classification
means setting the value of the ApprovalState attributes of the edge. The transformation pro-

3/12 Volume 32 (2010)

Verification of Model Transformations to Refactoring Mobile Social Networks Eﬁ

cesses the classified edges as follows: approved edges are converted into customization edges
and rejected edges are removed. The control flow model of the transformation, is presented in
Figure 2a. It has a start and an end node, and each other node corresponds to a rewriting rule.
The dashed, gray control flow edges are followed, if the application of the source rules was un-
successful, which happens when no matches of the left hand side can be found. The solid, gray
edges are followed if the application of the previous rule was successful, while solid black edges
are followed always. Rules with a circle in the top right bottom are executed exhaustively, which
means that the rule is applied repeatedly, until it cannot be applied any more. For a more detailed
specification of our model transformation language, see [AALT09]. Figure 2 contains the defi-
nitions of the rules. Here, we use a concrete syntax-based formal representation of each rule for
the specification of left hand side (LHS) and right hand side (RHS) of each of them. Informally,
the transformation works as follows: (i) rc1 removes all rejected similarity edges. (ii) If there is
a contact that has two approved similarity edges, rc2 marks the contact. Marking means setting
an attribute of the entity. (iii) 7¢3 changes the approval state of an approved similarity edge of a
marked node to ignored. This rule is reached only when rc2 has been applied successfully. (iv)
rc4 removes the mark from a marked node. (v) rc5 replaces all approved similarity edges with
customization edges. This rule is reached only when rc2 cannot be applied. (vi) rc6 removes all
similarity edges which comes from a member that already has a customization edge.

rcl re2 re3 rcd
R_CSNR.Deleter | €2 |R CSNR:MarkE. R_CSNR:Delet R_CSNR:Unma
ejectedSimilarity rrorWithMultip £ imi X dCont
leSimilarities larity act
e6 e5 not marked ‘marked
81 - - — -
res rc6) 9 approvéd Q
d R,CSNR,P:oge e/ RfCSNf?ide([i;g[e8 @ rejected pp! pproved approved pproved
- ilarity larity2 - =2 =4 =
_— - - - - -
(a) Transformation Control Flow (b) Rule rcl (c) Rule rc2
marked marked

- -] g S <]
arpmved *#nomd ap%oved * \ ’
marked not marked
- - o) * - - - - - w ‘W

(d) Rule rc3 (e) Rule rc4 () Rule rc5 (g) Rule rc6

Figure 2: Similarity Refactoring Transformation

3 Components of a verification framework

In this section, we summarize the fundamental components of our verification approach that have
been presented in [ALL10, AELL10, AEL"10a, AEL*10b].

Model Condition Description Language (MCDL). MCDL is a language for writing expres-
sions (formulae) to specify properties of models. These properties can state the existence or
non-existence of patterns of elements extended by additional constraints.

Proc. GraBaTs 2010 4/12

Eg ECEASST

Informally, patterns consist of model elements along with a set of additional attribute con-
straints. A pattern exists in a model, if the model elements can be matched such that the match
satisfies the constraints as well. MCDL handles attribute constraints in an abstract level, there-
fore, the constraint language may vary through different implementations, e.g. in VMTS, con-
straint code is written in C# or OCL. LHS and RHS of rules are also defined as patterns. For
example, in LHS of rule rcl, we specify that the similarity edge must be rejected, i.e. its Ap-
provalState attribute must have the value rejected, which is an example for attribute constraints
in VMTS.

The simplest expression of MCDL can define that a match of a pattern P must exist in the
model, moreover, MCDL expressions can be composed to more complex MCDL formulae by
standard logical operators (—,A,V). For example, a model satisfies the MCDL condition ¢ =

1 AD _, if there exists a member in the model, but there are no contacts (3 is the abbreviated
form of —d). The presentation of more complex MCDL expression is beyond the scope of this
paper (see [AELL10] for more details), however, we will show more examples for MCDL in
Section 4.1.

Model Condition Inference Logic. Given two MCDL expressions ¢, ¢», we may want to
prove or refute the logical implication ¢; = ¢,. For example: 3 > & — 3. . Model
Condition Inference Logic (MCIL) is an inference logic defined over exEressionsJ()f MCDL.
Deduction rules for the calculus have been proposed in [ALL10], and an automated reasoning
system is implemented in VMTS. To illustrate the role deduction rules, we present two simple
and intuitive examples for them: (i) if P; C P, then 3P, = 3Py, (ii) if P C P, then AP, = 3P,.
Py C P, denotes that the P, is a part of P, i.e. if a match of P, can be found in a model, then, a
match of P; can also be found. 3P; and 3P, are examples for MCDL expressions. The proof of
the previous deduction rules are trivial and, therefore, not detailed in this paper.

MCIL is used during the verification of model transformations. For example, assume that we
can prove that @, is true for each output model of the transformation, and let ¢, be a verifiable
property. (MCDL formulae are usually denoted by Greek letters.) In this case, if the implication
Otinal = @y can be proved, then the property is verified.

Propagation. Propagation is a method to analyze a single rule and having some properties of the
input model, it should derive some properties of the output models. In other words, assume that
we know some properties of all possible models that can be verified before the application of the
rule. These properties are described by MCDL and are called the incoming formula. We have
the incoming formula, and by the very definition of the rule, we may derive certain properties
that will be true after the application of the rule. These properties described by MCDL are called
the outgoing formula. This method is called the propagation of formulae through a rule, which
is a very complex task itself. The derivable information depends on the incoming formula and
the definition of the rule. There are several propagation rules that resembles to deduction rules.
Informally, they are defined in the following form: if a property is derivable from the incoming
formula and another property is true for the rule, then a third property will always be true for the
output model. The more propagation rules we have the more information can be derived and,
therefore, the more properties of the output model can be proved. In the following, propagation

5/12 Volume 32 (2010)

Verification of Model Transformations to Refactoring Mobile Social Networks E}

will be referred as a function Propagate(r, ¢;,) that computes an outgoing formula given a rule r
and an incoming formula ¢;,. In the following, we show an example for the propagation method:

(Pl — ﬂ rsi/ecled and (p2 — ﬂ ufpmved

- -

By the definition of rc5 (Figure 2f), it can be proved that, if given a model M that satisfies ¢,
and M is modified by executing rule rc5, the resulting model will also satisfy ¢; (since rc5 does
not create rejected similarities). Moreover, we can infer that the modified model must satisfy ¢,
independently of the fact that M satisfied ¢, before the application of the rule (because rc5 is
applied exhaustively).

Discovery Algorithm. In the following, we detail the main concept of our verification approach
that employs the components MCDL, MCIL and propagation. We assume that the control flow
of a model transformation is a directed graph.

Given a model transformation, assume that we are able to assign MCDL formulae to each
control flow edge of the transformation. This formula describes the property that can be proved at
the current location of the transformation, i.e.: assuming that if the transformation stopped at the
current location, and the model under transformation were considered the output model, the static
conditions of the assigned formula would be satisfied by all possible output models. Similarly,
the dynamic conditions of the assigned formula would be satisfied by all pairs of possible input
and output models. Again, these conditions are independent from the concrete input models.
During the analysis of a model transformation, our goal is to produce these assignments or, in
other words, to discover the formulae on all flow edges. Assume that we have only one end
node in the control flow, and it has only one incoming edge, and the formula @y;,, is assigned
to this edge. Therefore, @,y is the formula that is satisfied by the transformation. Given a
property that should be verified and is described as an MCDL expression @,.,, if we can prove
that Qfinas = Qver, the property is verified. Moreover, we assign formulae not only to the edges
before the end nodes, but to all flow edges, which helps locating the points where a significant
property does not hold any more. The goal of our method is to collect the most information in the
formulae that are assigned to the edges. However, if nothing can be propagated, it will not imply
the failure of our algorithm, only that the assigned formulae will not contain relevant information,
therefore, the verifiable properties cannot be proved. The pseudocode of the discovery algorithm
is presented in Algorithm 1.

What are the benefits of the discovery algorithm outlined above? (i) Given a verifiable condi-
tion ¢*¢" specified as an MCDL formula, the verification is the proof of the expression ¢/ =
¢"¢". (ii) Formulae are discovered on all edges of the control flow graph, this can help to localize
problematic points of the transformations during the testing phase. We will show examples for
the propagation in Section 4.1, where the transformation handling the similarity is verified.

Proc. GraBaTs 2010 6/12

Eg ECEASST

Algorithm 1 Discovery(transformation 7', initial MCDL formula ¢;,;)
1: initally there are no processed rules
2: let ey be the unique flow edge of the start node: assign @;,;; to ey
3: while there are not processed rules do
4: r< choose anot yet processed rule randomly such that the formulae on all of its incoming
edges have already been discovered. If no such rule exists choose a not yet processed rule
randomly.
5. if all incoming edges of r are discovered then
6: @i, < logical or of the formulae on the incoming edges of r
7. else
8
9

Oin < 0

: for all not yet discovered incoming edge e;, assign an empty formula 0
10: @, < Propagate(r,@i,)

11: for all outoing edge e,,,; of r that has not yet been discovered do

12: assign @, 10 eoyr

4 Automated Verification Framework

The verification framework for model transformations has been implemented in VMTS. The
main elements of the verification process and the components of the framework are presented in
Figure 3. Rounded rectangles are artifacts that are created by the developers or by the verification
framework automatically, while not rounded rectangles are the components of the verification
system implemented in VMTS.

Model Transformation

N Formal Specification of the
Implementation T f : Final
in VMTS) VMTS ransformation
(in Transh R Discovery Formula Inference Logic Result of the
raTns or‘mta on Meta Types Algorithm Dpina inference:
ransiator Rewriting Rules « Proof
Metamodel Definition Control Flow Graph Verifiable + Refutation

o fomula + Cannotdecide
Initial conditions Constraint
Logic

Figure 3: Components of the Verification Framework

The phases of a model-based development (i.e. the implementation of transformations and
the verification process), and the roles of the components are as follows: 1) Domain experts
define the metamodel of the modeled application domains. 2) Model transformation developers
implement a model transformation. 3) From these artifacts, VMTS Transformation Translator
automatically generates the formal specification of the model transformation. This specification
is a formal, declarative description, which makes the further automated analysis of the control
flow and rules possible. 4) The Discovery Algorithm traverses the specification of the transfor-
mation, propagates the initial conditions, discovers the formulae on all edges, and generates the
final formula (@f;,q). 5) MCIL is used to prove or refute the implication @ riuqr = @yer, Where @y,
is the verifiable formula provided by the developer or the tester of the transformation. The Infer-
ence Logic component of VMTS is the implementation of the MCIL. The result of the reasoning

7/12 Volume 32 (2010)

Verification of Model Transformations to Refactoring Mobile Social Networks Eﬁ

can be the proof, or the refutation of the implication, or that the algorithm cannot decide.

4.1 Verification of Model Transformation Handling Similarity

The complete, formal presentation of the verification of the similarity handling transformation
would exceed the limits of this paper, and would need the more detailed introduction of MCDL
and the other components, however, in this section, we present its main steps.

Primarily, we provide initial conditions. Informally, we assume that each input model satisfies
the following conditions: (il1) there cannot exist parallel customization edges, (i2) parallel sim-
ilarity edges cannot have the same target, and (i3) initially all contacts is not marked (a contact
can be marked or not marked, which is expressed by the attribute Processed). The They are
specified by MCDL in Table 1, let 9™ = ¢im A ¢t A\ pinit,

Table 1: Initial Conditions

-

arn (pi'nit = ﬂ \ /\39 \ (12) ¢£’nit — 39 Q @(i3) ¢3im'z _ ﬂ marked

) e -

For the verification, we need to define the verifiable properties, which are as follows (the prop-
erties are formalized in Table 2): (v1) After the application of the transformation, no approved
similarity edge should be present in the model. Each approved edge should be transformed to
a customization edge, or should be deleted if there are more than one approved similarity edge
from the same contact. (v2) After the application of the transformation, no rejected similarity
edge should be present in the model. All rejected similarity edges should be deleted. (v3) After
the application of the transformation, it is forbidden that a contact has a similarity and a cus-
tomization edge at a time. In this case, the similarity edge should have been deleted. (v4) After
the application of the transformation, it is forbidden that a contact has two customization edge
at a time, provided that before that transformation started this pattern was also forbidden. This
would result an inconsistent state.

Table 2: Verifiable Properties

v1) ﬂf v2) EJT v3) 7 (v4) \

-

L
1

-

After the initial conditions are provided and the discovery algorithm is executed, which means
that for each flow edge e a formula ¢, is assigned. Hence, the final formula can be derived, which
is ¢/ = ¢,¢ in our case. MCIL can derive all four verifiable properties from the final formula.
The presentation of the assignments would exceed the limits of this paper, but we provide ¢,s.

Proc. GraBaTs 2010 8/12

Eg ECEASST

not marked

¢88 = ﬂ Vr:zrked /\ ﬂ Q /\ﬂ \ /\ﬂ /\ﬂ KTIECW /\ﬂ GPPV%KMOVM /\ﬂ approved /\ﬂ \

4.2 Evaluation

The satisfaction of a property of a model transformation is undecidable in general, since, for
example, the termination itself is undecidable in general [Plu98]. Our methods provide a way
for the analysis of certain properties, but we cannot assure that the analysis will always lead to
a successful verification. MCDL is used to define the properties of the model transformations
that need to be analyzed. The main idea behind the analysis of a model transformation is that
we follow the execution order of the rules and try to discover what properties can be proved at
different locations of the control flow graph. We process each rule one-by-one and derive a set
of properties that are true after the application of the rule exploiting that we know the properties
that have already been proved to be true before the rule. If our algorithm fails, i.e. we cannot
prove a certain property, it can have three reasons: (i) MCDL is not able to express the property
to be analyzed, or (ii) it may happen that even a rule guarantees a certain property, we may not be
able to automatically derive this property, because of the lack of appropriate propagation rules,
or (iii) the control flow graph may contain too complex structures and the pieces of information
should be collected from different points of the control flow. To summarize, the successfulness
of the verification cannot be assured.

The main advantages of our verification methods are as follows: (i) MCIL terminates, i.e.
if a property can be derived by the deduction rules, then, it can be proved by MCIL. (ii) The
analysis provides information about each location of the transformation. This can help locate the
problematic points and debug the transformation. (iii) The formal background of the verification
methods is platform- and tool-independent.

The main disadvantage of the verification method at its current state is the lack of efficient
control graph processing algorithms and the low number of propagation rules. We also need to
take efficiency issues into account. Largely increasing the set of propagation and inference rules,
the time cost of the algorithms may increase as well, even if the algorithm terminates. We believe
that this issue is not a primary problem to solve, since the analysis needs to be performed only
once.

5 Related Work

In this paper, we have outlined the formal background for the platform-independent verification
of graph rewriting-based model transformations and presented a framework that can automat-
ically analyze model transformations. In the following, work related to both components are
evaluated. Note that the research of this field is still in initial phase, therefore, no fully functional
tools are available.

Analysis of concrete transformations have been presented in several publications [Var(2,
BHO07, BBG'06], but these approaches can usually be applied to only certain (class of) trans-

9/12 Volume 32 (2010)

Verification of Model Transformations to Refactoring Mobile Social Networks E}

formations, or only for certain (type of) properties, and cannot be generalized. [Pen09] presents
a formalism that is similar to our concept of conditions on models. Nested conditions that are
based on traditional application conditions of graph rewriting systems for high-level structures
are formalized. Additionally, a sound and complete satisfiability algorithm for graph conditions
is investigated and a fragment of conditions is identified, for which the algorithm decides. One
main difference between this work and ours is the handling of attribute constraints, our frame-
work makes it easily integrate an external constraint logic. [Ore08] also introduces formalization
for attributed graph constraints. The new notion of attributed constraint combines a (standard)
graph constraint with a formula describing a condition on the attributes of the graphs involved
in the constraint. Moreover, [Ore08] also presents inference rules for the classes of constraints
considered, showing their soundness and completeness. In [Sch09], the authors introduce a for-
malism to describe a model transformation in a declarative way, hereby, verification of soundness
conditions can be performed using an interactive theorem prover.

AGG [LT04] supports a consistency control mechanism which is able to check if a given
graph satisfies certain consistency conditions specified for a graph grammar. Our approach does
not rely on graph grammars with a specific start graph, but on a control flow-based ordering of
rules. Consistency conditions describe basic properties of graphs as e.g. the existence of cer-
tain elements, independent of a particular rule. A graph grammar is consistent if the start graph
satisfies the consistency conditions and the rules preserve this property. GROOVE [KRO06] is
also a tool to analyze consistency constraints on models and graph transformation systems. The
language to specify these constraints is similar to MCDL, however, in this tool, the consistency
checking rather resembles to validation methods, i.e. the output of specific input models are
analyzed. [ABKO7] presents an approach similar to ours: UML metamodels along with em-
bedded well-formedness rules (typically OCL constraints) can be translated to the formalism
Alloy. Then the Alloy Analyzer can conduct fully automated analysis of the transformation. The
difference between our approach and the one presented in the paper is that the Alloy Analyzer
uses a simulation that generates a random instance model of the input metamodel, then analyzes
the behavior of the transformation by transforming this instance model. [LBA10] presents a
mathematical background for the analysis of model transformations. Similarly to our approach,
[LBA10] also formalizes metamodels, models, and structural properties of the transformed mo-
dels. Their implemented model transformation framework can validate certain type of properties
by construction, because of several constraints of the control structure that is used to determine
the execution order of the rules.

6 Conclusions

In this paper, we have outlined a formal, automated framework for the verification of graph
rewriting-based model transformations. We have presented how the components of the frame-
work work together in an implementation of our verification methods in a modeling tool, VMTS.
We have demonstrated the usability of our methods on a case study of the verification of refac-
toring mobile-centric social network models. We provided a summary of the main advantages
and disadvantages of our approach. In future work, we would like to complete the formalism be-
hind each of presented components of our solution, and present more complex case studies. We

Proc. GraBaTs 2010 10/12

Eg ECEASST

believe that our approach can provide the basis for industrial model transformation verification
methods.

Acknowledgements: This paper was supported by the Jdnos Bolyai Research Scholarship of the
Hungarian Academy of Sciences. This work is connected to the scientific program of the "Development of
quality-oriented and harmonized R+D+I strategy and functional model at BUTE” project. This project is
supported by the New Hungary Development Plan (Project ID: TAMOP-4.2.1/B-09/1/KMR-2010-0002).

Bibliography

[AAL*T09] L. Angyal, M. Asztalos, L. Lengyel, T. Levendovszky, I. Madari, G. Mezei,
T. Mészaros, L. Siroki, T. Vajk. Towards a Fast, Efficient and Customizable
Domain-Specific Modeling Framework. In Software Engineering. 2009. Innsbruck,
Austria.

[ABKO7] K. Anastasakis, B. Bordbar, J. M. Kiister. Analysis of Model Transformations via
Alloy. In MoDeVVA’07. Pp. 47-56. October 2007.

[AEL"10a] M. Asztalos, P. Ekler, L. Lengyel, T. Levendovszky, T. Mészaros. Automated Veri-
fication by Declarative Description of Graph Rewriting-Based Model Transforma-
tions. In MPM’10. Oslo, Norway, October 2010.

[AEL"10b] M. Asztalos, P. Ekler, L. Lengyel, T. Levendovszky, T. Mészéros. Formalizing Mo-
dels with Abstract Attribute Constraints. In GCM’10. Enschede, The Netherlands,
September 2010.

[AELL10] M. Asztalos, P. Ekler, L. Lengyel, T. Levendovszky. MCDL: A Language for Spec-
ifying Graph Conditions with Attribute Constraints. In MODEVVA’10. Oslo, Nor-
way, October 2010.

[ALL10] M. Asztalos, L. Lengyel, T. Levendovszky. Towards Automated, Formal Verifica-
tion of Model Transformations. In /CST. Paris, France, April 2010.

[BBGT06] B. Becker, D. Beyer, H. Giese, F. Klein, D. Schilling. Symbolic invariant verifi-
cation for systems with dynamic structural adaptation. In /CSE. Pp. 72-81. ACM,
New York, NY, USA, 2006.

[BHO7] D. Bisztray, R. Heckel. Rule-Level Verification of Business Process Transforma-
tions using CSP. ECEASST 6, 2007.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Se-
ries XIV. Springer, 2006.

[EL10] P. Ekler, T. Lukovszki. Experiences with phonebook-centric social networks. In
CCNC. Las Vegas, USA, 2010.

11/12 Volume 32 (2010)

Verification of Model Transformations to Refactoring Mobile Social Networks Eﬁ

[KRO6]

[LBA10]

[Len06]

[LTO4]

[Ore08]

[Pen09]

[Plu9s8]

[Sch09]

[Var02]

[Vis]

H. Kastenberg, A. Rensink. Model Checking Dynamic States in GROOVE. In In
Model Checking Software (SPIN. Pp. 299-305. Springer, 2006.

L. Lucio, B. Barroca, V. Amaral. A Technique for Automatic Validation of Model
Transformations. In MoDELS (1). Pp. 136-150. 2010.

L. Lengyel. Online Validation of Visual Model Transformations. PhD thesis, Bu-
dapest University of Technology and Economics, 2006.

J. de Lara, G. Taentzer. Automated Model Transformation and Its Validation Using
AToM3 and AGG. In Diagrammatic Representation and Inference. Pp. 182—198.
2004.

F. Orejas. Attributed Graph Constraints. In /CGT. Pp. 274-288. Springer-Verlag,
Berlin, Heidelberg, 2008.

K.-H. Pennemann. Development of Correct Graph Transformation Systems. PhD
thesis, Department of Computing Science, University of Oldenburg, Oldenburg,
Germany, 20009.

D. Plump. Termination of graph rewriting is undecidable. Fundam. Inf. 33(2):201—
209, 1998.

B. Schitz. Formalization and Rule-Based Transformation of EMF Ecore-Based
Models. SLE, Toulouse, France, September 29-30, 2008. Revised Selected Papers,
pp. 227-244, 2009.

D. Varré. Towards Formal Verification of Model Transformations. In PhD Student
Workshop of FMOODS, Enschede, Hollandia. 2002.

Visual Modeling and Transformation System (VMTS) website. http://vmts.aut.bme.
hu/.

Proc. GraBaTs 2010 12/12

http://vmts.aut.bme.hu/
http://vmts.aut.bme.hu/

	Introduction
	Case Study
	Metamodeling Central Social Network
	Similarity Handling Transformation

	Components of a verification framework
	Automated Verification Framework
	Verification of Model Transformation Handling Similarity
	Evaluation

	Related Work
	Conclusions

