Electronic Communications of the EASST

Volume 33 (2010)

Proceedings of the
Fourth International Workshop on
Foundations and Techniques for
Open Source Software Certification
(OpenCert 2010)

Component Certification as a Prerequisite for Widespreasl R&use
George Kakarontzas, Panagiotis Katsaros, loannis Stamelo

20 pages

Guest Editors: Luis S. Barbosa, Antonio Cerone, Siraj A. Shaikh
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

1 This work is partially funded by the European Commissiorhia tontext of the OPEN-SME “Open-Source Soft-
ware Reuse Services for SMES” project, under the grant ageeno. FP7-SME-2008-2 / 243768


http://www.easst.org/eceasst/

@ ECEASST

Component Certification as a Prerequisite for Widespread OS
Reuse'

George Kakarontzas, Panagiotis Katsaro$, loannis Stamelos

! gkakaron@teilar.gr
2 katsaros@csd.auth.gr
3 stamelos@csd.auth.gr
Aristotle University of Thessaloniki, Greece

Abstract: Open source software is the product of a community processiniha
single project may employ different development technégaed volunteers with
diverse skills, interests and hardware. Reuse of OSS s@ftinasystems that will
have to guarantee certain product properties is still caratgdd. The main reason is
the many different levels of trust that can be placed on thiewa OSS sources and
the lack of information for the impact that a reused OSS carepbcan have on the
system properties. A prerequisite for promoting widespnmease of OSS software
is certification at the component level in an affordable cokis work addresses the
main technical issues behind OSS component certificatiofotmgal and semifor-
mal techniques, as well as the incentives that raised the foeehe OPEN-SME
European funded project. OPEN-SME introduces an OSS seftveause service
for SMEs, in order to address the problem that OSS evolvelnteers that fol-
low different development processes. We discuss the remeints relating to OSS
software reuse based on the findings of a survey. Then werpridgeOPEN-SME
tool-set and approach for OSS reuse and finally we show howrthasion of veri-
fiable certificates can provide assurance that an OSS compomeforms to one or
more anticipated requirements, necessary for reusingaisiystem.

Keywords: component certification, open source software reuse, coerdased
development

1 Introduction

Trusted software componerdage defined as “reusable software elements that possesBezpec
and guaranteed property qualitie$¢y03. This definition by Bertrand Meyer emphasizes two
aspects that we need to consider. The first one is that elerskaotild be ‘reusable’. The second
is that someone should guarantee their properties inaaltdiquality (e.g. security). Reusability
may be considered as an umbrella property that embeds miagymbperties including quality
related ones. Quality on the other hand is a multi-facetexdtept with many different and often
incompatible viewsEar84 KP9§. In software, numerous quality models have been estadulish
in an attempt to capture essential quality aspects and pratharacteristics that contribute to

T This work is partially funded by the European Commissiorhia tontext of the OPEN-SME “Open-Source Soft-
ware Reuse Services for SMEs” project, under the grant egetno. FP7-SME-2008-2 / 243768

1/20 Volume 33 (2010)


mailto:gkakaron@teilar.gr
mailto:katsaros@csd.auth.gr
mailto:stamelos@csd.auth.gr

Component Certification as a Prerequisite for Widespread OSS Reuse * @

these aspects. For example the 1SO-9126 quality moe8€l(]] defines software product qual-
ity as a combination of six characteristics, namely furidy, reliability, usability, efficiency,
maintainability and portability, which are further sulvidied in sub-characteristics (e.g. the un-
derstandability and learnability sub-characteristicsugdbility). However none of the quality
models had established a unanimous consensus and critisisits even for the ISO quality
model, which enjoys the status of an international standiad example a survey for the ISO
quality model revealed ambiguities in the structure of thaliy model although it also pro-
vided evidence for its (partial) validityHSCO04. Furthermore software quality can be generally
viewed from the perspective of process-based approachgsatity, such as CMMI and 1SO-
9001, which assume that by improving the process of softwaxelopment eventually better
quality products will follow, and product-based approacke quality which measure or verify
software characteristics to objectively conclude qualilated issues. These two general ap-
proaches also generate criticism and none is unanimousgpted. For Open Source Software
(OSS) quality however, and although process-based agmsaare valuable, we cannot hope
that they can affect the processes followed by open soueqts, since the participation in
these projects is mostly volunteer-based. It is therefomgortant to focus on product charac-
teristics that provide the opportunity to objectively clhuale an OSS product’s quality. Finally,
studies have established that the quality of OSS is comlgatalzlosed source software; how-
ever this may be happening for different reasons. For exadile07] observes that intense
bug reporting in OSS projects in tandem with rapid releasgesyresults in decreased defect
density. Modularity, documentation, improved tools anolgaisses are also very important since
they increase participation effectively contributing e so-called many-eyeballs effetgriven
enough eyeballs, all bugs are shallojyRay01].

The OPEN-SME projectQPELQ introduces a set of methodologies, associated tools and
business models centered on SME Associations, which wabknsoftware development SMEs
to effectively introduce Open Source Software Reuse megtin their production processes. In
this context, software reuse is regarded as the sharingftwfege modules across different de-
velopment teams, organizations, and diverse applicationaihs. The potential benefits from
the adoption of Software Reuse practices by software SMisl gwovide substantial competi-
tive advantages against large players by improving pradtytincreasing competitiveness, and
facilitating entrance to new markets. A prerequisite far dffective reuse of software modules
however is the trustworthiness of these modules. To estabilustworthiness, SME Associa-
tions which are representatives of software developmenESkrovide a number of services
centered on the reuse of OSS software effectively actingedsfication authorities for their
SME members. The OPEN-SME project emphasizes trustweshiof software components
through product-based approaches to quality because, atr@aely mentioned, process-based
approaches are not suitable for OSS software reuse.

In the rest of this paper in Secti@we present a survey which we conducted in order to elicit
requirements for the trustworthiness of OSS reusable capmis. Based on the results of this
survey we then present the OPEN-SME process in Se8tiomSectiord we discuss the details
of the OPEN-SME tools and processes related to OSS compoaification. Next in Sectioh
we will review some of the most prominent approaches to O&®are certification and quality.
Finally in Section6 we conclude.

Proc. OpenCert 2010 2120



@ ECEASST

2 A survey of issues for the trustworthiness of OSS software

In order to form the requirements of the OPEN-SME projectestjonnaire was sent to a number
of Small and Medium Enterprises. The respondents were 4ériexged developers, analysts
and designers, of the SMEs patrticipating in the OPEN-SMEepto The questionnaire was
quite extensive since the OPEN-SME project aims at devedpaind support a reuse process and
tools, however a number of questions were specifically aditrg quality issues that are directly
related to the trustworthiness aspect of OSS reuse. Indbitos we present some of the most
important findings of this survey which helped in shaping@REN-SME processes and tools.

In the question ‘What do you consider the most importanfaatito reuse’ the respondents
were given the options to rate in a scale from 1 to 5 (1 beingportant and 5 being extremely
important) the reuse importance of requirements, docuatien{ design, code and test suites.
The result is shown in Figuré. As can be seen, the most important reuse artifact is source
code whereas the less reusable artifact are requiremetts.imiportance of code as a reuse
artifact signifies that tools and processes should coratenin establishing trust at this level,
since developers are more likely to be interested in diygetlising source code modules. This
emphasis on source code is also evident in a number of corfahiemls that aim in architecture
reconstruction from source code and re-modularizatioh agcStructure 109TR1(Q and Lattix
[Latld. The main reason for this emphasis is that design docunaerdsother artifacts are
often outdated and inaccurate. The source code is condittezeefore the definitive trustworthy
artifact to examine, in order to obtain knowledge for a sysfer the purposes of maintenance,
evolution and reuse.

Importance as a reuse artefact

100% N

90% 0% §7%

80% 75% o
70% 67%

60%

50% -

40% -

30%

20%

10%

0%

requirements  documentation design code test suites

Figure 1: Relative importance of several artifacts as rewskcts

Another important finding of the survey is that the vast mgjasf the respondents said that
their organization supports the reuse of OSS software. ©qulestion “Does your organization
encourage reuse of Open Source Components?”, the vastitynajahe respondents (80%) said
that their organization supports OSS reuse, but there wassamall percentage (15%) that said

3/20 Volume 33 (2010)



Component Certification as a Prerequisite for Widespread OSS Reuse 2 @

that their organization discourages the reuse of OSS. Algraatentage (5%) was not sure if
their organization supports the reuse of OSS or not (Figure

Support for OSS reuse

B ORGANIZATION
SUPPORTS OS5 REUSE

B ORGANIZATION DOES
NOTSUPPORT 0SS REUSE

5 DON'TKNOW IF
ORGANIZATION
SUPPORTS OS5 REUSE

Figure 2: Support for OSS reuse

The most important factors preventing OSS reuse accorditigetrespondents were the lack
of documentation (80%) and the uncertainty on the qualit98f components (76%). Barriers
for OSS reuse are also the difficulty in searching and retiie®SS components (66%) and
licensing (59%). The reluctance to use components that nareleveloped in-house (i.e. the
so-called ‘Not invented here syndrome’) is only prevent®8S reuse by 46% according to the
respondents (Figur®). It is noticeable that two of the factors that are considesery important
for trust, namely the knowledge embodied in documentatimhthe quality uncertainty are also
the most important factors preventing the reuse of OSS coas.

Importance of factors preventing OSS reuse
i, . .
a5 | e
T0% - £5%% 66%
6O0% -
Sov 46%
40% -
30%
20%
10% -
0% - T ;
Licensing Quality Lack of The "Not invented The difficulty in
uncertainty documentation here' syndrome searching and
retrieving 055
components

Figure 3: Relative importance of factors preventing OSSeeu

Proc. OpenCert 2010 4/20



@ ECEASST

A question that demonstrated a significant gap for the refiseS& software regarded the
source of reusable OSS components. The respondents wee askletermine the source of
reusable components: ‘The source for reusable code yollyssa is (select as many as appro-
priate, use a scale between 1 to 5 to indicate the most imp@tarces)” and the options were
In-house legacy code repositories, Publicly availablenamirce code repositories (e.g. Source-
Forge, Google Code, etc.), Specialized Open Source Saftaearch engines (e.g. Koders,
Krugle, etc.) and Classical search engines. The respofRigpsd€ 4) demonstrate that devel-
opers do not view the specialized OSS search engines astanpas other sources of reusable
software. Another question was ‘Have you used specializgenCsource code search engines
(e.g. Google code search, Koders etc.)?’ in which the respus that said that they have used
specialized OSS search engines were only 12%.

Importance of sources of reusable

components

700 b5%

' 64% 51%
60% |
s0% |
40% 31%
30%
20%
10%

anin-house legacy  a public repository {e.g.  aspecialized 055  classicalsearch engines
code repository SourceForge) search engines {e.g.
Koders)

Figure 4: Relative importance of sources of reusable compsn

Since specialized OSS search engines are not widely usethteresting to determine what
are the most important services that reusers would expatt & repository. On the question of
the importance of services that should be provided by a rem®sitory (Figureb), developers
view as more important the services related on the desmniti the reusable components (e.g.
version management, and dependency management) thaatiepltased services (e.g. repos-
itory usage and numbers of downloads of a component). Thisfis again the importance of
tangible evidence on characteristics and properties asdhece code.

Collectively this survey demonstrates that in order to iovprthe reuse of OSS software third-
party reuse service providers are needed. In the contexteoOPEN-SME project the reuse
service providers are the SME associations. In a differentext however these services can be
provided by independent corporations. More specifically:

e Source code based analyses that provide undisputableneeider the quality of OSS
components are very important, since they can providetyualktrics and guarantees that
can be used as descriptors of OSS components in repositolieprove knowledge and
found trust. Quality metrics however are not a replacementécumentation. The lack

5/20 Volume 33 (2010)



Component Certification as a Prerequisite for Widespread OSS Reuse 8 ﬁ

Importance of services provided by a reuse

repository
0% -
Bl% 83% BO%
B80% 1%
T0%
0% 67% 89%
60%
50%
40% -1
30% -
20% -
10%
0% - ' - ' - ' )
areusable  browsing and report version dependency quality metrics reuse-related
asset searching  generstionon management management (&g depthof metrics(eg
description the repository for for software  inheritanceof number of

usage distinguishing assets classes) downloads)
versions of
reusable sszets

Figure 5: Relative importance of services provided by reapesitories

of documentation can be counterbalanced by both automadicemi-automatic means.
Examples of automatically produced documentation are ¢hnifiable security properties
or the diagrams that can be produced by analyzing the soodm dextual descriptions
of software however, are not produced automatically.

e As the survey demonstrated, although source code is gntiérent than text, reusers
often resort to classical search engines for their reusésnékhis signifies a lack of con-
crete advantages of specialized OSS search engines iomgiatlassical search engines.
We believe that source code analysis can be used to imprvsithation. In fact there
are several European research projects (some of which Weewiéw later in Section
5) such as FLOSSMETRICS and SQO-0OSS, that already sucdgsi&fildbwed this ap-
proach. These research efforts concentrated on the d¢ohieat metrics from the source
code mostly automatically, attempting to analyze thousaigrojects. However current
state-of-the-art prevents certain useful informationdcektracted entirely automatically.
For example feature location identifies the componentsaidudicipate in a use case, a very
important piece of information for the reuser, and canno¢mtgely automated. It can be
however supported by analysis tools in such a way that thimeegis not required to have
a prior knowledge of the system under analy&islR09. The OPEN-SME approach com-
plements the entirely automated approaches with the setoiretic collection of analyses
results for a smaller number of projects, targeting spediimains and specific projects.

e The importance of documentation and quality metrics foetablishment of trust in OSS
reuse overshadows other factors such as the reluctance software not developed in-
house. Therefore trustworthiness is not an issue relatedust with the origin of the

Proc. OpenCert 2010 6/20



@ ECEASST

reused software as it is related to the provision of eviddac¢he software itself. This

fact in tandem with the widespread support for OSS reuseeaeield by the responses
to the survey, suggests that there is large potential imjpaiatieuse support services in
relation to OSS. In fact the 15% of the respondents who saitthieir organization does
not support OSS reuse, were not concerned with the quali@3$ software, but rather
restricted in reusing OSS software due to legislation iredato public sector projects in

certain countries, that required commercial support fergtovided software.

3 The OPEN-SME process and tools

Trustworthiness is a multi-faceted concept and for reusetrsist software developed from OSS
communities an independent service is required in orderdwige the missing link between
reusers and developers. Software component certificaipreferably based on objective mea-
surable product qualities and is carried independentiy fitee original developers of a software
system. As the survey from the previous section demonsirtite automatic collection of met-
rics from thousands of projects is probably not specific ghdier the purpose of reuse which
requires more information in a more targeted domain of appbins. Besides this, many existing
projects already provide results in the area of automatédation of quality metrics (see Sec-
tion 5 for an overview). OPEN-SME therefore is based on the assamitat a service provider
positioned between the OSS projects and the reusers of Q8fooents provides services of
both automated and semi-automated source code analygicaton based on these analyses
and packaging of the results in a familiar format to the resis&he overall architecture of the
OPEN-SME approach is depicted in Figu:eAs can be seen in Figu® the role of the reuse
facilitator service is carried out by SME Associations. Taesers (i.e. Software Development
SMESs) do not seek reusable components directly from egi€)i8S project repositories and OSS
search engines, but rather use the service provided by tte/Adociations.

As can be seen in Figu& existing OSS search engines and repositories lie outsedsdope
of the OPEN-SME project. They provide the initial input te teystem, which analyzes, gener-
ates metadata and packages existing OSS artifacts for. rfEisdomain engineering process
performed by theeuse engineeran expert operating the OPEN-SME toolset. Systematie soft
ware reuse is divided in activities or processes relatediidibg reusable assets and activities
and processes related to reusing these assets in the cofraesdftware application development.
The latter processes are referred to as application engigeerocesses. The processes which
concentrate on producing reusable assets are collectigfggred to as domain engineering pro-
cesses or methodologies. The authorsMiV[YAO2] define domain engineering as “the set of
activities involved in developing reusable assets acrossntire application domain, or family
of applications”. In domain engineering a number of appigce are identified and their simi-
larities and variabilities are analyzed to produce a domaialel. Then the model is designed
and implemented. Concrete artifacts of the implementedeinae: then reused in a number of
applications.

The domain engineering process in the context of the OPENE-$Mject is different than a
typical domain engineering process. The main differenceshe following:

1. Domain analysis and design is carried out using as exeraplaications Open Source

7120 Volume 33 (2010)



Component Certification as a Prerequisite for Widespread OSS Reuse * @

SMEs Assoclations
Result3 &
xisting 0SS Search Open sourCe Ca;did»alo Sourco
Engines and 4 ————| sEArch eNgine
Repositories m‘n_’—.g:_"f‘ i
Resultd A
Result 1 a | E
—
Domain [ E
Engineering : g
Process :
i I X
! - | /;;usabie §
S N | Gomwnens g
Results
»| COMpanent & E
rePository And =
seaRch Engine 3
(COMPARE) é
'
i
]Soﬁmu Development SMEs
E
.. Result2 » !
- |
]

Custom

Software ;DDIIcamIr\
Engineering - ngineerlng | a4
Teols: Process

& Engineering - & Q__‘:‘l
Process — DTW& Input

-——

Business 1 ) artdact
Process 1@. Group ———Lsas I:I_.Q Oulput

e

Figure 6: OPEN-SME generic approach and project results

Software (OSS) applications that are available throughQ8& search engine (OCEAN).
During analysis and design these exemplars will providgiration for the concepts of the
“unifying” reference architecture. The architecture dasfand later the implementation)
do not strive to create a common reference architecture &s.m product lines) that will
be used as a platform (i.e. framework) for the SMEs appboati This is both undesir-
able and infeasible. It is undesirable because SMEs wislffeyehtiate each other, and
a common framework would undermine their competitivenéssesit would prevent (to
a certain extent) innovations. It is infeasible becauserattre the SMEs will already
have developed their own frameworks and incorporating ¢letrtical differences of all
these different frameworks to a “unifying” framework is ayelifficult if not impossible
undertaking. Instead the role of the reference architedsuto provide a detailed descrip-
tion for the common domain concepts and their organizatiantypical architecture. This
typical architecture plays an important twofold role: (aplovides a knowledge artifact

Proc. OpenCert 2010 8/20



@ ECEASST

enabling the reusers to learn the different concepts andrtiationships, and relate these
concepts to their own products, and (b) It also provides ssifiaation framework for
reusable components.

2. Domain implementation does not implement the domainegtscfrom scratch. The main
input for the implementation of the domain concepts of thiersnce architecture are the
components that are discovered with the analysis of the O§&gbs using the Compo-
nent Adaptation Environment toolset (COPE). These commtsnmay in fact differ from
the concepts as they appear in the typical architecture.tiaidoes not signify a prob-
lem since in the OPEN-SME project the typical architectusesdnot play the role of the
framework that is reused as-is, but rather the role of a ifjasg framework as we ex-
plained earlier. From a reuser perspective what is impbitathat reusable components
are sufficiently related to their classifying concepts fribva typical architecture.

Application engineering on the other hand is performed lBySME developers who use their
in-house development processes as usual blended with peatces similarly to the approach
proposed by CCLOg. The important difference with the OPEN-SME approach, gzsosed to
reusing OSS software directly from their project repogi®ris that the application developers
use a domain-specific component repository (i.e. COMPARgRvcontains the OSS artifacts
after analysis by the SME Associations’ reuse engineers.métadata provided by this analysis
step help in increasing trust and consequently improviegatise readinesgNAS1( of existing
OSS artifacts.

The tools that the reuse engineers use to perform their sinalgertification and packaging
are the following three:

1. OCEAN OCEAN (Open Source Search Engine) will provide unified asd¢e information
already available in several OSS search engines. Sevefals@&ch engines exist (e.g.
FOSSOLOGY, Google Code Search, Koders, FLOSSMOLE, SQO&8$,and make it
possible to find open source software that satisfies centaiditions, such as software that
is written in a specific programming language, having a digeldtense, contains certain
keywords, satisfies certain quality metrics and so on. OCEdneta-search engirthat
is intended to collect information from diverse search ragiand provide this information
under a unifying framework.

2. COPE COPE (Component Adaptation Environment) is designedppat the following:

(@) It will provide an environment for the enactment of thernddan engineering process
of OPEN-SME including feature modeling capabilities and trefinition of archi-
tectural elements.

(b) It will provide an environment for static and dynamic busés of existing OSS projects.
The analysis goals include the following: (a) Automatic getion of metadata in
addition to those provided by the OCEAN search engine, (i@eitomatic iden-
tification of the features of software so that it is easierdtate these features to
the feature model of the domain, and (c) Provision of inputpfassible adaptations
that can be used in order to adapt the existing identified ooets to the reference
architecture.

9/20 Volume 33 (2010)



Component Certification as a Prerequisite for Widespread OSS Reuse ° @

(c) It will integrate existing Model Driven Development (MD) tools that will be used
for the adaptations mentioned in (2c) as well as the defmiifcgeneric and reusable
adaptation patterns.

(d) It will allow reasoning through an appropriate knowledzpse. The knowledge base
will provide facts for the discovered features of OSS code #e reuse engineer
will be able to query the knowledge base. This knowledge balée also used to
enhance the COMPARE repository and search engine with densaarch capabil-
ities.

(e) It will integrate existing safety analysis tools for tealysis of safety properties of
the components which is especially significant for safeitjeal systems.

(H It will provide an environment for testing and colleatiof test results.

(g) Finally it will integrate the above mentioned featuresotigh a comprehensive user
interface allowing the reuse engineer to perform the abogationed activities as
efficiently and intuitively as possible.

3. COMPARE COMPARE (Component Repository and Search Engine) wilpsupthe fol-
lowing activities:

(a) It will provide an environment to assist reusers to deanad discover the assets
(software artifacts, technical documents, test suitesamedels) produced by the
Domain Engineering Process.

(b) Provide advanced search capabilities for componentegaeusers using diverse
criteria such as execution framework, programming langubcence, desired func-
tionality, etc.

(c) Store and use all the available information about the adla component in the
domain architecture in order to achieve higher precisiahranall.

(d) Use the ‘semantic’ distance of a component from certpéctified criteria (e.g. it's
distance from the definition of a prototypical entity fronettlomain ontology, or the
number of tests that the component passes from a given st su

(e) Provide the asset retrieval services in such a way tleaaitiifacts are retrieved in a
holistic manner.

() Support the communication of information, between thsed consumers (re-users)
and the asset producers (in our case the reuse enginea8)asuequests/orders,
bug reports, advertisements, etc.

(g) Provide adequate data models for structuring this kirsbmmunication in order to
be rapidly processed.

(h) Allow re-users to obtain information about the verifioatand certification attributes
of a component and certifiers to provide such information.

In the following section we will discuss the tools and pramssin relation to component
certification.

Proc. OpenCert 2010 10/ 20



@ ECEASST

4 OSS components’ certification

Certification as a means for establishing trust aims to peowabjective evidence for a product
quality in the form of an authoritative statement that ssigeontractual obligations and legal
implications. Lessons learned from recent attemptsJ4, HALMO08] showed that software cer-
tification comes at a high cost that the current OSS commisdgubtful, if they will ever spent.
OPEN-SME introduces an independent reuse service thas@parspective for economies of
scale in OSS reuse through the packaging of OSS softwarady+t®-use components. The
same service has the potential of an independent party fifyaeg the packaged OSS code at
an affordable cost for the SME members. Certification of O&8monents should take place in
the context of the system where the components are to bedresthe OPEN-SME process, a
partial description of the system context is provided bytipecal domain-specific architecture
that prescribes certain quality guarantees for the OSS opengs. OPEN-SME certification
concerns the aforementioned contextual qualities, asagdhe implementation specific compo-
nent qualities that can be ascertained independently afuke context (e.g. absence of buffer
overflows). The aim of trusted quality guarantees for the ©&8ponents is the only techni-
cally feasible and economically viable alternative to tbaeaept of trusted components, which
is an illusive goal when certification is limited in the soeir@mode and the system context is only
partially specified.

Certification is supported by the COPE toolset and is comadeitt the provision of verifiable
evidence for the guaranteed qualities, as accompanyingp@oemt assets in the COMPARE
repository. Itis inherently a normative product certifioat[\Wal04], since it basically aims to es-
tablish evidence that the OSS code (product) conforms t@dgpical domain-specific architec-
ture, which is the established norm. Depending on the gquaddperty that is certified, evidence
may be produced either by observation and measurementr{eahgiertification) or by formal
and semi-formal means. Observation and measurement gatlypémployed in coverage-based
testing, whereas semi-formal certification refers to statogram analysis. When there is need
for the more costly formal certification, a feasible alteiveat an affordable cost may be the use
of a certifying model checkeJKFW10] over the program slice, which is related to the property
of interest.

OPEN-SME certification is procedural rather than fully meealzed, from the point of view
that it is based on the role of a trained certifying agent,the reuse engineer. At the same time,
the process is based on mature tool support for testinge stagalysis and formal verification,
fully interoperable with the COPE toolset for packaging deeeloped component assets. Certi-
fication is not driven by some standard that defines how ca@mpd is enforced, but it is guided
by a domain-specific OSS reuse de facto standard, which isritterlying typical architecture.
Tablel summarizes the main characteristics of the OPEN-SME aatiifin profile, which were
discussed in the preceding paragraphs.

4.1 On the adoption of a software assurance classification sgm

A software assurance classification system determinestet df confidence required for cer-
tifying that the software fulfills the anticipated qualgie Certification costs increase with in-
creasing the required confidence for a software or a softa@mgponent. The system used for

11/20 Volume 33 (2010)



Component Certification as a Prerequisite for Widespread OSS Reuse 6 @

| Characteristic | Comment |
Normative certification Conformance to a domain-specific typi-
cal architecture.
Trusted product OSS source code of the reusable compo-
nents.
Trusted qualities Contextual qualities specified in the

domain-specific architecture and logal
component qualities.
Formal and empirical certification Combines observation and measurement
(testing) with semi-formal and formal
certification (static analysis and model
checking).
Procedural certification Carried our by a trained reuse engineer
with appropriate tool support.
Absence of definition for compliance Based on a de facto standard: the
to a specific standard domain-specific typical architecture.

Table 1: OPEN-SME certification profile

software assurance classification depends on the certifi@iygand implies certain tasks in the
certification process for establishing the required levetanfidence. For a security certified
software we adopt the Common Criteri&99 classification system with sevesvaluation
assurance levels (EAL8k shown in Figur€. For a safety critical software the level of confi-
dence placed on the individual components depends ongiieity integrity levels (SIL$hat are
assigned by an appropriate SIL allocation algorithtufR" 10].

A quality guarantee for an OSS component is certified by tlsaesngineer at a specific
assurance level. The certificate (tests, design informatic.) is packaged together with all
other component assets and is stored in the COMPARE repposiithe reuse engineer may
utilize assets provided by the OSS project that have to dated, but if a certain degree of
assurance is to be achieved this may incur some re-engigeeffiort. Validation of existing
assets or production of new certification assets are sugapdny appropriate verification and
validation tools and the COPE toolset. The assurance leéwghigh a software component is
certified is reflected in the packaged assets.

4.2 Certificate life cycle and change management

OPEN-SME cetrtificates will be verifiable by the componentisef, under the condition that the
re-user has access to appropriate tool support. Undeetisrement, test-based certificates take
the form of test suites and oracles for a certain code coedeagl (verifiable condition). Static
analysis certificates are represented by code annotahanhgxpress the certified requirements.
These annotations depend on the used programming langeggeléva JSR-305 annotations),
as well as the tool support required for verifying them. Rina formal certificate includes code
annotations (preconditions, postconditions and invésjam state-based behavior representation

Proc. OpenCert 2010 12 /20



@ ECEASST

Some level of confidence in correct operation is

required, but the threats to security are not serious.
EAL 1 Independent assurance for a functionally tested
product is required.

Independent assurance for a structurally tested

product. Some design information is required, but
EAL2 certification can be done in the absence of a
complete development record.

Independent assurance for methodically tested

and checked security at a moderate level of
EAL3 confidence. Indicates positive security engineering
at the design stage.

Independent assurance for methodically
EAL4 designed, tested and reviewed security at a
moderate to high level of confidence.

EAL5 Independent assurance for semiformally
designed and tested security.

EALG Independent assurance for semiformally verified
design and tested security.

EALT Independent assurance for formally verified
design and tested security.

Figure 7: Common Criteria Assurance Classification

of the certified subject and a property specification exgedsa formal logic system.

Authenticity of certificates is assured by code file signisg that the re-user can verify that
the code has not been altered or corrupted since it was sigeadthis purpose, OPEN-SME
builds on the GPG Signing and Encrypting technology, whickupported by the COMPARE
repository and the OPEN-SME Application Engineering pssce

The certification process has to cope with the fast and agii® @evelopment processes and
this implies a number of requirements for certificate harglind life cycle and version man-
agement. Toward this aim, COMPARE will provide functions fracking the dependencies
between issued certificates for a domain architecture. ,Als® COPE toolset will be able to
automatically recompute certificates for new componemiasds and relate them to a history of
certifications for the system level quality guarantees.

4.3 Certification by testing

In OPEN-SME, certification by testing is supported by thaatty tools. Both functional and
structural testing processes are available and the regageen selects the one prescribed by the
aimed assurance level. In functional testing, which is alted model-based testing the reuse

13/20 Volume 33 (2010)



Component Certification as a Prerequisite for Widespread OSS Reuse ’ @

engineer certifies the absence of design errors, some ohwiiiy be not possible to detect by
structural testing. Examples of such quality guaranteestsr absence of deadlocks, livelocks
or that a forbidden application state cannot be reached.

The System Under Test (SUT) is represented byoalel progranmderived by (i) data abstrac-
tion from the SUT’s variables, (ii) behavioral abstractfoom the SUT program statements and
(iif) environmental abstraction, where the environmeifé@s are replaced by non-determinism.
A finite state machine (FSM) is then generated that instestiall possible "runs” of the model
program. An exploration algorithm searches the FSM for ifigation or design errors. It is
important that exploration is limited only to appropriatesarios for the purpose of the certifi-
cation, such as to avoid a possible state space explosi@moddel-based testing approach that
is integrated to the OPEN-SME certification process is thed@scribed in]VCS07. However,
this is not enough in order to conclude the process. Cetiifitalso includes a precise definition
of a conformance relation between the SUT and the model anogiThe software is certified
only when the SUT conforms to the model program, which canhoeve by the conformance
testing approach irqT07] for component-based systems. Animportant challengehto@PEN-
SME process is to effectively deploy a truly compositiongpaach that will allow to take into
account individual specifications for the components’ bargtest-by-contract paradigm).

In structural testing, components will be tested in isolatirom the rest of the system using
stubs and drivers in place of the interfacing components. JUT is certified with the same test
case design technique (branch/decision coverage) fartalidcting components or else, if there
are components that have been already certified with diffeezhniques then the validity of the
certification depends on the subsumption relations betweemsed techniques. OPEN-SME
tool support will also automate structural testing startivith the generation of test oracles from
the component contracts.

Verifiability of the testing certificates will be assured lyde coverage metrics and measure-
ments for the certified components.

4.4 Certification by static analysis

Static program analysis became recently an attractivenalige, because of the advent of effi-
cient and accurate enough analyses. These analyses &y@easssible in mature static analysis
tools with good extensibility prospects. They are partidyl effective in local component qual-
ities like the absence of dangerous vulnerabilities.

Contextual properties that can be certified include tempafaty guarantees that are checked
by typestate tracking, as well as high level security prigedike information flow guarantees
that are checked by taint propagation analyses. Howevempasitional certification is still an
open research problenC{C0J and there is no reported success story in the current sfate o
practice.

5 Related Work

A number of projects attempted to provide quality indicatfmr OSS software and to improve
the trustworthiness of OSS. In this section we review thetrimpgortant of these projects.

Proc. OpenCert 2010 14 /20



@ ECEASST

5.1 SQO-0SS and Alitheia core

Alitheia-core [5S09 was developed as part of the Software Quality ObservatoryCipen
Source Software (SQO-0OSS) European Community’s Sixth Bwark Programme. Alitheia-
core is an extensible platform for quality analysis of saiitevprojects which integrates with a
diverse set of revision control systems (e.g. SVN, GIT gbu tracking systems (e.g. Bugzilla,
Mantis etc.), mailing lists, Wiki documentation systems. ethat are used in the development
of open source software projects. The need to interface allitthese systems required a com-
mon representation of metadata that eliminates the neeanafling multiple data formats at the
higher layers of the system. The architecture of Alitheeecs a three-tier architecture with a
Results and Presentation tier, a System Core tier and a Diataridg, Storage and Retrieval
tier. The Data Mirroring, Storage and Retrieval tier is msfble for storing project metadata
and metric results and uses an object-relational mappaigtdogy for transaction management
and mapping of runtime types to database data types. Farrpefice and scalability there
is a preprocessing phase each time a project is registetbdhve system for the extraction of
metadata and the storage of these metadata to the datapaseAavariety of quality plugins
which are implemented as OSGi components are then used dessing these metadata and
calculating different metrics which are necessary for ifpahnalysis. Researchers interested in
using the system for different quality analyses than thes gnevided out of the box, can develop
their own quality analysis plugins. To ease this extenigytéind mask the OSGi details from the
developers of extension plugins, the system provides &tkeplugin that the developers can
extend to build their own. Plugins can have activation tyjpesnable the update of stored values
when corresponding artifacts change and scope which diekesrthe set of artifacts that are used
for the metrics that a plugin calculates. Furthermore pisigian have dependencies to handle
composite metrics whose values depend on the values of miteics. Dependencies determine
the execution order of the respective plugins which cateuthe dependent metrics. Several
metrics are already provided, but as we already mentioredytstem is specifically designed to
allow for easy integration of more metrics as required byveafe engineering research.

5.2 The QualiPSO Approach and Toolset

Another EU funded project in the context of the 6th FP is QR@&D . QualiPSOBLM "10] is

an attempt to establish a methodology and develop the riagpéaols for the trustworthiness of
OSS software. The general approach is that trustworthiceasse established by subjective and
objective criteria. Since trustworthiness is a multi-tacequality there are several elementary
quality characteristics that need consideration such agsAltility’, ‘Functionality’, ‘Reliabil-
ity’, ‘Security’ and so on. For each such quality propertg gubjective model evaluates it by
collecting the users’ opinion. On the other hand for the cibje model a number of metrics
that can be collected automatically from tools are usedis8tal evaluations carried out in the
context of the project established that the subjectiver(pseceived) quality of trustworthiness
is linked with reliability, usability, interoperabilityefficiency and documentation and that other
factors such as the popularity and the development langasgsignificant. Similarly there
are significant correlations between trustworthiness afidhility and measurable (objective)
characteristics such as the size of the code base and itdedtyp A number of tools were

15/20 Volume 33 (2010)



Component Certification as a Prerequisite for Widespread OSS Reuse 8 @

developed to support the project’s goals:

e Spago4Qis a platform that integrates quality measurements cealtbbly different tools
and provides a quality indication visually to its users. Bl@@ments tools are used by
Spago4Q via extractors. These extractors are used to triggeanalysis by the lower-
level tools or to collect the results of existing measuretsémom the database. Spago4Q
is free software distributed under the GNU Lesser Generali®license (LGPL).

¢ MACXIMis a tool that statically analyzes the source code of a prajed extracts several
metrics. Currently it supports the Java language. MACXIMasates the parsing phase
from the analysis phase. Parsing generates an abstraesegpation of the source code
which is saved as XML in a database. Queries (in XQuery or wa)Jare then used to
extract metrics from the XML abstract representation ofgberce code in the database.
These metrics can be visualized either directly by MACXIMroimterface or through
Spago4Q which integrates it. The tool computes 70 metriepplication, package, class
and method level. The tool is free software distributed aride GNU Lesser General
Public License (LGPL).

e JaBUTiis a testing coverage tool that operates on the Java bytdaogaage and can
be used without the program source code. It analyzes thestiést of a Java program
against control and data flow testing criteria and produgesnstrics that can be used
for the evaluation of the reliability and correctness of éSJproduct. JaBUTi is partially
integrated to the Spago4Q platform and is free softwareilliseéd under the GNU General
Public License (GPL).

There is also a Goal-Question-Metrics (GQM) tool which carubed for the application of
the GQM methodology, but this tool is not yet publicly avhlior integrated in the Spago4Q
platform. Also the Spago4Q platform integrates a numbertlérotools, such as StatSVN and
StatCVS for statistical analysis of software repositqrig8SSology for license information and
JUnit for collecting test status data. PMD and Checkstytete analysis of possible bugs, dead
code, code duplications and other problems have been atéebin the MACXIM tool.

5.3 FLOSSMETRICS

FLOSSMETRICSIFLO1( is another European funded project with the central gogiroéluc-
ing quantitative analysis results for thousands of opemncgoprojects and making this data pub-
licly available for different studies of OSS including giyalstudies. Other goals of the project
include the provision of several high-level analyses of iésults (e.g. evolution analysis of
OSS projects), a guide for Small and Medium Enterprises hadiévelopment of several OSS
tools suitable for the retrieval and analysis of OSS progit. Currently in the Melquiades
website MellQ] there is data available for 2,630 OSS projects. This databeaaccessed by
various means including the following: (1) Using a REST ARértt scripts can access the data
directly, (2) Direct access to Melquiades database is alseiple but limited (after request), (3)
Database dumps can be downloaded directly. The Melquiatabake is MySQL and the dumps
are compressed images of the files produced by the mysgldommand. The dumps can be
for individual projects and also aggregated dumps for ajgmts but for different repositories.

Proc. OpenCert 2010 16 /20



@ ECEASST

The kinds of repositories that the system aggregates atev&@ef Configuration Management
systems, Mailing lists and Issue tracking systems, (4) Aetsiof metrics is also available in-
cluding code metrics (e.g. source code lines, cyclomatinptexity etc.), (5) Researches can
also use a number of predefined queries to analyze the ddtastiee total number of commits,
the number of commits per time unit etc.

In order to get this data FLOSSMETRICS developed a number3%$ @ols that access the
data and these tools are also available for further exterasid development.

e SVSAnalY: The purpose of this tool is to retrieve information from C¥SSubversion
repositories and store this information in a database. Ht@bdse schema is divided in
two parts. The first part contains information retrievededily from the repository log
(e.g. files, people involved, branches, tags etc.). Thegkpart (i.e. extensions) contains
additional information such as metrics for source code.fi@gSAnalY is free software
and can be redistributed and modified under the terms of thg Gaheral Public License.

e Bicho: Bicho is Bug Tracking System (BTS) analyzer. As with CVSAh#his is a
command-based tool which retrieves data from the bug tngcéystem and inserts it in a
database. The database schema contains several tableke afftaugs, a table comments
found in the BTS about each bug, and a table of attachmentslfioLthe BTS about each
bug etc. Bicho is also free software under the GNU Generali¢uizense.

e MLStat: Mailing list analyzer tool. This is another command-liveltwith the purpose of
extracting information from a mailing list and storing itardatabase. The database schema
includes information on messages in the mailing list, theppe and their association to
messages etc. This program is also free software distdlurider the GPL.

5.4 Software Certification Success Stories

Two of the most notable examples of software certificatiafuide the works reported il5K04]
and HALMO8].

In [SK04 the authors conducted a Common Criterli@@99 based certification of Linux.
Their conclusions from this work are that:

e At alow level of evaluation assurance it is possible to eeh OSS like Linux in about
four months

e There are outstanding difficulties with the lack of adequteumentation in OSS

The results of this project are promising for the goals of @FEME, since OPEN-SME targets
components and not complete systems (e.g. Linux). Therdfarexpected that the certification
process for components will require less time and fewer @& Furthermore the cost factor
of certification and the lack of documentation seem to irtdithat an asynchronous service in
respect to the reuse activity is essential, since it canigeomissing data and documentation
related to the certification task and amortize the cost tfinanew business model.

In [HALMO8] the authors used a formal certification process for ceniifythe core of a sys-
tem. Their approach used three partitions of the system ¥anioh only one (which is less than

17/20 Volume 33 (2010)



Component Certification as a Prerequisite for Widespread OSS Reuse 9 @

10%) required formal verification. This reduction of the edd be verified resulted in fewer ex-

penses. Their approach is based on a high-level state neagihértification of the behavior of the

software and a formal specification of the property. The dedmnotated and then partitioned
based on the property to be specified and only part of the sdd&en into account. More specif-

ically the code is partitioned into three patrtitions: (agBt; (b) Trusted and (c) Other Code. The
high-level specification and the property are translatetihéolanguage of a mechanical prover
and it is subsequently proved that the specification satisifie property. Then a mapping is de-
veloped from the preconditions and the postconditions ehilgh level specification to those of

the annotated code and it is demonstrated that this partfithe code (i.e. the Event partition)

is a refinement of the high level specification and that thetédiand Other Code partitions are
benign.

6 Conclusions

In this paper we presented the approach of the OPEN-SME Edietliproject DPE1Q which

is a project aiming to support the reuse of OSS software coemis from software development
SMEs. We started by reviewing a survey related to OSS reusehvguided the design of the
OPEN-SME toolset. The OPEN-SME approach processes ansl &golvell as the project’s
approach to software certification were also discussed.

Bibliography

[Abe07] M. Aberdour. Achieving Quality in Open Source Sddtw.|[EEE Software24:58—
64, 2007.
doi:http://doi.ieeecomputersociety.org/10.1109/MB2.2

[BLM T10] V.del Bianco, L. Lavazza, S. Morasca, D. Taibi, D. TogieTQualiSPo approach to
OSS product quality evaluation. Proceedings of the 3rd International Workshop
on Emerging Trends in Free/Libre/Open Source Software &elseand Develop-
ment FLOSS '10, pp. 23-28. ACM, 2010.
doi:http://doi.acm.org/10.1145/1833272.1833277

[CCO02] P. Cousot, R. Cousot. Modular Static Program Analybi Proceedings of the
11th International Conference on Compiler Constructi@C '02, pp. 159-178.
Springer-Verlag, London, UK, 2002.
http://dx.doi.org/10.1007/3-540-4593748

[CCLO6] I. Crnkovic, M. Chaudron, S. Larsson. Componens&h Development Process
and Component Lifecycle. Iimternational Conference on Software Engineering
Advances (ICSEA'06). 44. IEEE, 2006.

[DKFW10] K. Drager, A. Kupriyanov, B. Finkbeiner, H. Weleim. SLAB: A Certifying
Model Checker for Infinite-State Concurrent SystemsTRACAS Pp. 271-274.
2010.
http://dx.doi.org/10.1007/978-3-642-1200222

Proc. OpenCert 2010 18/20


http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MS.2007.2
http://dx.doi.org/http://doi.acm.org/10.1145/1833272.1833277
http://dx.doi.org/10.1007/3-540-45937-5_13
http://dx.doi.org/10.1007/978-3-642-12002-2_22

E

ECEASST

[FLO10]

[FTO7]

[Gar84]

[GS09]

FLOSSMetrics Consortium. FLOSSMetrics Final Rep®echnical report, March
2010.

L. Frantzen, J. Tretmans. Model-based testing ofrenmnental conformance of
components. IProceedings of the 5th international conference on Formethods
for components and objectSMCQ’06, pp. 1-25. Springer-Verlag, 2007.
http://dx.doi.org/10.1007/978-3-540-7479215

D. Garvin. What Does ‘Product Quality’ Really MeaBildan Management Review
26:25-43, 1984.

G. Gousios, D. Spinellis. Alitheia Core: An extemsiboftware quality monitoring
platform. InIEEE 31st International Conference on Software Enginep(iCSE
2009) Pp. 579-582. May 2009.

doi:10.1109/ICSE.2009.5070560

[HALMO8] C. Heitmeyer, M. Archer, E. Leonard, J. McLean. Aping Formal Methods to a

[HSCO04]

[1S099]
[1SO01]
[JVCS07]

[KP96]

[Latl10]

[Mell10]
[Mey03]

Certifiably Secure Software SystetliEE Transactions on Software Engineering
34:82-98, 2008.
doi:http://doi.ieeecomputersociety.org/10.1109/T20B7.70772

J. Ho-Won, K. Seung-Gweon, C. Chang-Shin. MeaguSiaftware Product Qual-
ity: A Survey of ISO/IEC 9126lEEE Software21:88-92, 2004.
doi:http://doi.ieeecomputersociety.org/10.1109/MB4£ 1331309

Evaluation Criteria for IT Security, parts 1 to 3.9
Software Engineering Product Quality Part 1 - QuaWlodel, 1st ed. 2001.

J. Jacky, M. Veanes, C. Campbell, W. SchiNtedel-Based Software Testing and
Analysis with C#Cambridge University Press, 2007.

B. Kitchenham, S. Pfleeger. Software Quality: Thedile TargetlEEE Software
13:12-21, January 1996.
doi:10.1109/52.476281

Lattix Website. http://www.lattix.com, Novemb2010.
Melquiades Data Website. http://melquiades.fiessics.org/, November 2010.

B. Meyer. The grand challenge of trusted componemtsSoftware Engineering,
2003. Proceedings. 25th International Conferencen 660 — 667. May 2003.
doi:10.1109/ICSE.2003.1201252

[MMYAOQ2] H. Mili, A. Mili, S. Yacoub, E. Addy. Reuse-Based Software Engineering: Tech-

[NAS10]

niques, Organization and ControlgViley, 2002.

NASA Earth Science Data Systems - Software Reus&WpiGroup. Reuse Readi-
ness Levels (RRLs). Technical report, April 2010.

19/20

Volume 33 (2010)


http://dx.doi.org/10.1007/978-3-540-74792-5_1
http://dx.doi.org/10.1109/ICSE.2009.5070560
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TSE.2007.70772
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331309
http://dx.doi.org/10.1109/52.476281
http://dx.doi.org/10.1109/ICSE.2003.1201252

Component Certification as a Prerequisite for Widespread OSS Reuse 10 @

[OPE10] Open-SME Website. http://opensme.eu, Novemb#0.20

[PWR"10] Y. Papadopoulos, M. Walker, M.-O. Reiser, M. Weber, De@hM. Torngren,
D. Servat, A. Abele, F. Stappert, H. Lonn, L. Berntsson, Radsson, F. Tagli-
abo, S. Torchiaro, A. Sandberg. Automatic allocation oésaintegrity levels. In
Proceedings of the 1st Workshop on Critical Automotive iappibns: Robustness
and SafetyCARS '10, pp. 7-10. ACM, New York, NY, USA, 2010.
doi:http://doi.acm.org/10.1145/1772643.1772646

[Ray01] E. S. RaymondThe Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutiona@’Reilly & Associates, Inc., Sebastopol,
CA, USA, 2001.

[RHRO9] A. Rohatgi, A. Hamou-Lhadj, J. Rilling. Approachrfsolving the feature location
problem by measuring the component modification impg&dt.Software3(4):292—
311, 2009.
doi:10.1049/iet-sen.2008.0078

[SK04] K. Shankar, H. Kurth. Certifying Open Source-The wirExperiencelEEE Secu-
rity and Privacy2:28—-33, 2004.
doi:http://doi.ieeecomputersociety.org/10.1109/\2BB4.96

[STR10]  Structurel01 Website. http://www.headwaysofea@m, November 2010.

[Wal04] K. C. Wallnau. Software Component Certification: U€eful Distinctions. Techni-
cal report, Software Engineering Institue, September 2004

Proc. OpenCert 2010 20/20


http://dx.doi.org/http://doi.acm.org/10.1145/1772643.1772646
http://dx.doi.org/10.1049/iet-sen.2008.0078
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MSP.2004.96

	Introduction
	A survey of issues for the trustworthiness of OSS software
	The OPEN-SME process and tools
	OSS components' certification
	On the adoption of a software assurance classification system
	Certificate life cycle and change management
	Certification by testing
	Certification by static analysis

	Related Work
	SQO-OSS and Alitheia core
	The QualiPSO Approach and Toolset
	FLOSSMETRICS
	Software Certification Success Stories

	Conclusions

