
Electronic Communications of the EASST
Volume 33 (2010)

Proceedings of the
Fourth International Workshop on
Foundations and Techniques for

Open Source Software Certification
(OpenCert 2010)

Component Certification as a Prerequisite for Widespread OSS Reuse1

George Kakarontzas, Panagiotis Katsaros, Ioannis Stamelos

20 pages

Guest Editors: Luis S. Barbosa, Antonio Cerone, Siraj A. Shaikh
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

1 This work is partially funded by the European Commission in the context of the OPEN-SME “Open-Source Soft-
ware Reuse Services for SMEs” project, under the grant agreement no. FP7-SME-2008-2 / 243768

http://www.easst.org/eceasst/


ECEASST

Component Certification as a Prerequisite for Widespread OSS
Reuse†

George Kakarontzas1, Panagiotis Katsaros2, Ioannis Stamelos3

1 gkakaron@teilar.gr
2 katsaros@csd.auth.gr
3 stamelos@csd.auth.gr

Aristotle University of Thessaloniki, Greece

Abstract: Open source software is the product of a community process that in a
single project may employ different development techniques and volunteers with
diverse skills, interests and hardware. Reuse of OSS software in systems that will
have to guarantee certain product properties is still complicated. The main reason is
the many different levels of trust that can be placed on the various OSS sources and
the lack of information for the impact that a reused OSS component can have on the
system properties. A prerequisite for promoting widespread reuse of OSS software
is certification at the component level in an affordable cost. This work addresses the
main technical issues behind OSS component certification byformal and semifor-
mal techniques, as well as the incentives that raised the need for the OPEN-SME
European funded project. OPEN-SME introduces an OSS software reuse service
for SMEs, in order to address the problem that OSS evolves by volunteers that fol-
low different development processes. We discuss the requirements relating to OSS
software reuse based on the findings of a survey. Then we present the OPEN-SME
tool-set and approach for OSS reuse and finally we show how theprovision of veri-
fiable certificates can provide assurance that an OSS component conforms to one or
more anticipated requirements, necessary for reusing it ina system.

Keywords: component certification, open source software reuse, component-based
development

1 Introduction

Trusted software componentsare defined as “reusable software elements that possess specified
and guaranteed property qualities” [Mey03]. This definition by Bertrand Meyer emphasizes two
aspects that we need to consider. The first one is that elements should be ‘reusable’. The second
is that someone should guarantee their properties in relation to quality (e.g. security). Reusability
may be considered as an umbrella property that embeds many other properties including quality
related ones. Quality on the other hand is a multi-faceted concept with many different and often
incompatible views [Gar84, KP96]. In software, numerous quality models have been established
in an attempt to capture essential quality aspects and product characteristics that contribute to

† This work is partially funded by the European Commission in the context of the OPEN-SME “Open-Source Soft-
ware Reuse Services for SMEs” project, under the grant agreement no. FP7-SME-2008-2 / 243768

1 / 20 Volume 33 (2010)

mailto:gkakaron@teilar.gr
mailto:katsaros@csd.auth.gr
mailto:stamelos@csd.auth.gr


Component Certification as a Prerequisite for Widespread OSS Reuse 1

these aspects. For example the ISO-9126 quality model [ISO01] defines software product qual-
ity as a combination of six characteristics, namely functionality, reliability, usability, efficiency,
maintainability and portability, which are further sub-divided in sub-characteristics (e.g. the un-
derstandability and learnability sub-characteristics ofusability). However none of the quality
models had established a unanimous consensus and criticismexists even for the ISO quality
model, which enjoys the status of an international standard. For example a survey for the ISO
quality model revealed ambiguities in the structure of the quality model although it also pro-
vided evidence for its (partial) validity [HSC04]. Furthermore software quality can be generally
viewed from the perspective of process-based approaches toquality, such as CMMI and ISO-
9001, which assume that by improving the process of softwaredevelopment eventually better
quality products will follow, and product-based approaches to quality which measure or verify
software characteristics to objectively conclude qualityrelated issues. These two general ap-
proaches also generate criticism and none is unanimously accepted. For Open Source Software
(OSS) quality however, and although process-based approaches are valuable, we cannot hope
that they can affect the processes followed by open source projects, since the participation in
these projects is mostly volunteer-based. It is therefore important to focus on product charac-
teristics that provide the opportunity to objectively conclude an OSS product’s quality. Finally,
studies have established that the quality of OSS is comparable to closed source software; how-
ever this may be happening for different reasons. For example [Abe07] observes that intense
bug reporting in OSS projects in tandem with rapid release cycles results in decreased defect
density. Modularity, documentation, improved tools and processes are also very important since
they increase participation effectively contributing to the so-called many-eyeballs effect:“given
enough eyeballs, all bugs are shallow”[Ray01].

The OPEN-SME project [OPE10] introduces a set of methodologies, associated tools and
business models centered on SME Associations, which will enable software development SMEs
to effectively introduce Open Source Software Reuse practices in their production processes. In
this context, software reuse is regarded as the sharing of software modules across different de-
velopment teams, organizations, and diverse application domains. The potential benefits from
the adoption of Software Reuse practices by software SMEs could provide substantial competi-
tive advantages against large players by improving productivity, increasing competitiveness, and
facilitating entrance to new markets. A prerequisite for the effective reuse of software modules
however is the trustworthiness of these modules. To establish trustworthiness, SME Associa-
tions which are representatives of software development SMEs provide a number of services
centered on the reuse of OSS software effectively acting as certification authorities for their
SME members. The OPEN-SME project emphasizes trustworthiness of software components
through product-based approaches to quality because, as wealready mentioned, process-based
approaches are not suitable for OSS software reuse.

In the rest of this paper in Section2 we present a survey which we conducted in order to elicit
requirements for the trustworthiness of OSS reusable components. Based on the results of this
survey we then present the OPEN-SME process in Section3. In Section4 we discuss the details
of the OPEN-SME tools and processes related to OSS componentcertification. Next in Section5
we will review some of the most prominent approaches to OSS software certification and quality.
Finally in Section6 we conclude.

Proc. OpenCert 2010 2 / 20



ECEASST

2 A survey of issues for the trustworthiness of OSS software

In order to form the requirements of the OPEN-SME project a questionnaire was sent to a number
of Small and Medium Enterprises. The respondents were 41 experienced developers, analysts
and designers, of the SMEs participating in the OPEN-SME project. The questionnaire was
quite extensive since the OPEN-SME project aims at developing and support a reuse process and
tools, however a number of questions were specifically addressing quality issues that are directly
related to the trustworthiness aspect of OSS reuse. In this section we present some of the most
important findings of this survey which helped in shaping theOPEN-SME processes and tools.

In the question ‘What do you consider the most important artifact to reuse’ the respondents
were given the options to rate in a scale from 1 to 5 (1 being unimportant and 5 being extremely
important) the reuse importance of requirements, documentation, design, code and test suites.
The result is shown in Figure1. As can be seen, the most important reuse artifact is source
code whereas the less reusable artifact are requirements. The importance of code as a reuse
artifact signifies that tools and processes should concentrate in establishing trust at this level,
since developers are more likely to be interested in directly reusing source code modules. This
emphasis on source code is also evident in a number of commercial tools that aim in architecture
reconstruction from source code and re-modularization such as Structure 101 [STR10] and Lattix
[Lat10]. The main reason for this emphasis is that design documentsand other artifacts are
often outdated and inaccurate. The source code is considered therefore the definitive trustworthy
artifact to examine, in order to obtain knowledge for a system for the purposes of maintenance,
evolution and reuse.

Figure 1: Relative importance of several artifacts as reuseartifacts

Another important finding of the survey is that the vast majority of the respondents said that
their organization supports the reuse of OSS software. On the question “Does your organization
encourage reuse of Open Source Components?”, the vast majority of the respondents (80%) said
that their organization supports OSS reuse, but there was also a small percentage (15%) that said

3 / 20 Volume 33 (2010)



Component Certification as a Prerequisite for Widespread OSS Reuse 2

that their organization discourages the reuse of OSS. A small percentage (5%) was not sure if
their organization supports the reuse of OSS or not (Figure2).

Figure 2: Support for OSS reuse

The most important factors preventing OSS reuse according to the respondents were the lack
of documentation (80%) and the uncertainty on the quality ofOSS components (76%). Barriers
for OSS reuse are also the difficulty in searching and retrieving OSS components (66%) and
licensing (59%). The reluctance to use components that werenot developed in-house (i.e. the
so-called ‘Not invented here syndrome’) is only preventingOSS reuse by 46% according to the
respondents (Figure3). It is noticeable that two of the factors that are considered very important
for trust, namely the knowledge embodied in documentation and the quality uncertainty are also
the most important factors preventing the reuse of OSS components.

Figure 3: Relative importance of factors preventing OSS reuse

Proc. OpenCert 2010 4 / 20



ECEASST

A question that demonstrated a significant gap for the reuse of OSS software regarded the
source of reusable OSS components. The respondents were asked to determine the source of
reusable components: ‘The source for reusable code you usually use is (select as many as appro-
priate, use a scale between 1 to 5 to indicate the most important sources)” and the options were
In-house legacy code repositories, Publicly available open source code repositories (e.g. Source-
Forge, Google Code, etc.), Specialized Open Source Software search engines (e.g. Koders,
Krugle, etc.) and Classical search engines. The responses (Figure4) demonstrate that devel-
opers do not view the specialized OSS search engines as important as other sources of reusable
software. Another question was ‘Have you used specialized Open Source code search engines
(e.g. Google code search, Koders etc.)?’ in which the respondents that said that they have used
specialized OSS search engines were only 12%.

Figure 4: Relative importance of sources of reusable components

Since specialized OSS search engines are not widely used it is interesting to determine what
are the most important services that reusers would expect from a repository. On the question of
the importance of services that should be provided by a reuserepository (Figure5), developers
view as more important the services related on the description of the reusable components (e.g.
version management, and dependency management) than reputation-based services (e.g. repos-
itory usage and numbers of downloads of a component). This signifies again the importance of
tangible evidence on characteristics and properties of thesource code.

Collectively this survey demonstrates that in order to improve the reuse of OSS software third-
party reuse service providers are needed. In the context of the OPEN-SME project the reuse
service providers are the SME associations. In a different context however these services can be
provided by independent corporations. More specifically:

• Source code based analyses that provide undisputable evidence for the quality of OSS
components are very important, since they can provide quality metrics and guarantees that
can be used as descriptors of OSS components in repositoriesto improve knowledge and
found trust. Quality metrics however are not a replacement for documentation. The lack

5 / 20 Volume 33 (2010)



Component Certification as a Prerequisite for Widespread OSS Reuse 3

Figure 5: Relative importance of services provided by reuserepositories

of documentation can be counterbalanced by both automatic and semi-automatic means.
Examples of automatically produced documentation are the verifiable security properties
or the diagrams that can be produced by analyzing the source code. Textual descriptions
of software however, are not produced automatically.

• As the survey demonstrated, although source code is entirely different than text, reusers
often resort to classical search engines for their reuse needs. This signifies a lack of con-
crete advantages of specialized OSS search engines in relation to classical search engines.
We believe that source code analysis can be used to improve this situation. In fact there
are several European research projects (some of which we will review later in Section
5) such as FLOSSMETRICS and SQO-OSS, that already successfully followed this ap-
proach. These research efforts concentrated on the collection of metrics from the source
code mostly automatically, attempting to analyze thousands of projects. However current
state-of-the-art prevents certain useful information to be extracted entirely automatically.
For example feature location identifies the components thatparticipate in a use case, a very
important piece of information for the reuser, and cannot beentirely automated. It can be
however supported by analysis tools in such a way that the engineer is not required to have
a prior knowledge of the system under analysis [RHR09]. The OPEN-SME approach com-
plements the entirely automated approaches with the semi-automatic collection of analyses
results for a smaller number of projects, targeting specificdomains and specific projects.

• The importance of documentation and quality metrics for theestablishment of trust in OSS
reuse overshadows other factors such as the reluctance to use software not developed in-
house. Therefore trustworthiness is not an issue related somuch with the origin of the

Proc. OpenCert 2010 6 / 20



ECEASST

reused software as it is related to the provision of evidencefor the software itself. This
fact in tandem with the widespread support for OSS reuse evidenced by the responses
to the survey, suggests that there is large potential impactfor reuse support services in
relation to OSS. In fact the 15% of the respondents who said that their organization does
not support OSS reuse, were not concerned with the quality ofOSS software, but rather
restricted in reusing OSS software due to legislation relating to public sector projects in
certain countries, that required commercial support for the provided software.

3 The OPEN-SME process and tools

Trustworthiness is a multi-faceted concept and for reusersto trust software developed from OSS
communities an independent service is required in order to provide the missing link between
reusers and developers. Software component certification is preferably based on objective mea-
surable product qualities and is carried independently from the original developers of a software
system. As the survey from the previous section demonstrated, the automatic collection of met-
rics from thousands of projects is probably not specific enough for the purpose of reuse which
requires more information in a more targeted domain of applications. Besides this, many existing
projects already provide results in the area of automated collection of quality metrics (see Sec-
tion 5 for an overview). OPEN-SME therefore is based on the assumption that a service provider
positioned between the OSS projects and the reusers of OSS components provides services of
both automated and semi-automated source code analysis, certification based on these analyses
and packaging of the results in a familiar format to the reusers. The overall architecture of the
OPEN-SME approach is depicted in Figure6. As can be seen in Figure6, the role of the reuse
facilitator service is carried out by SME Associations. Thereusers (i.e. Software Development
SMEs) do not seek reusable components directly from existing OSS project repositories and OSS
search engines, but rather use the service provided by the SME Associations.

As can be seen in Figure6, existing OSS search engines and repositories lie outside the scope
of the OPEN-SME project. They provide the initial input to the system, which analyzes, gener-
ates metadata and packages existing OSS artifacts for reuse. Thedomain engineering processis
performed by thereuse engineer, an expert operating the OPEN-SME toolset. Systematic soft-
ware reuse is divided in activities or processes related to building reusable assets and activities
and processes related to reusing these assets in the contextof a software application development.
The latter processes are referred to as application engineering processes. The processes which
concentrate on producing reusable assets are collectivelyreferred to as domain engineering pro-
cesses or methodologies. The authors in [MMYA02] define domain engineering as “the set of
activities involved in developing reusable assets across an entire application domain, or family
of applications”. In domain engineering a number of applications are identified and their simi-
larities and variabilities are analyzed to produce a domainmodel. Then the model is designed
and implemented. Concrete artifacts of the implemented model are then reused in a number of
applications.

The domain engineering process in the context of the OPEN-SME project is different than a
typical domain engineering process. The main differences are the following:

1. Domain analysis and design is carried out using as exemplar applications Open Source

7 / 20 Volume 33 (2010)



Component Certification as a Prerequisite for Widespread OSS Reuse 4

Figure 6: OPEN-SME generic approach and project results

Software (OSS) applications that are available through theOSS search engine (OCEAN).
During analysis and design these exemplars will provide inspiration for the concepts of the
“unifying” reference architecture. The architecture design (and later the implementation)
do not strive to create a common reference architecture (e.g. as in product lines) that will
be used as a platform (i.e. framework) for the SMEs applications. This is both undesir-
able and infeasible. It is undesirable because SMEs wish to differentiate each other, and
a common framework would undermine their competitiveness since it would prevent (to
a certain extent) innovations. It is infeasible because in practice the SMEs will already
have developed their own frameworks and incorporating the technical differences of all
these different frameworks to a “unifying” framework is a very difficult if not impossible
undertaking. Instead the role of the reference architecture is to provide a detailed descrip-
tion for the common domain concepts and their organization to a typical architecture. This
typical architecture plays an important twofold role: (a) It provides a knowledge artifact

Proc. OpenCert 2010 8 / 20



ECEASST

enabling the reusers to learn the different concepts and their relationships, and relate these
concepts to their own products, and (b) It also provides a classification framework for
reusable components.

2. Domain implementation does not implement the domain concepts from scratch. The main
input for the implementation of the domain concepts of the reference architecture are the
components that are discovered with the analysis of the OSS projects using the Compo-
nent Adaptation Environment toolset (COPE). These components may in fact differ from
the concepts as they appear in the typical architecture. Butthis does not signify a prob-
lem since in the OPEN-SME project the typical architecture does not play the role of the
framework that is reused as-is, but rather the role of a classifying framework as we ex-
plained earlier. From a reuser perspective what is important is that reusable components
are sufficiently related to their classifying concepts fromthe typical architecture.

Application engineering on the other hand is performed by the SME developers who use their
in-house development processes as usual blended with reusepractices similarly to the approach
proposed by [CCL06]. The important difference with the OPEN-SME approach, as opposed to
reusing OSS software directly from their project repositories, is that the application developers
use a domain-specific component repository (i.e. COMPARE) which contains the OSS artifacts
after analysis by the SME Associations’ reuse engineers. The metadata provided by this analysis
step help in increasing trust and consequently improving the reuse readiness[NAS10] of existing
OSS artifacts.

The tools that the reuse engineers use to perform their analysis, certification and packaging
are the following three:

1. OCEAN: OCEAN (Open Source Search Engine) will provide unified access to information
already available in several OSS search engines. Several OSS search engines exist (e.g.
FOSSOLOGY, Google Code Search, Koders, FLOSSMOLE, SQOOSS,etc.) and make it
possible to find open source software that satisfies certain conditions, such as software that
is written in a specific programming language, having a specific license, contains certain
keywords, satisfies certain quality metrics and so on. OCEANis ameta-search enginethat
is intended to collect information from diverse search engines and provide this information
under a unifying framework.

2. COPE: COPE (Component Adaptation Environment) is designed to support the following:

(a) It will provide an environment for the enactment of the domain engineering process
of OPEN-SME including feature modeling capabilities and the definition of archi-
tectural elements.

(b) It will provide an environment for static and dynamic analysis of existing OSS projects.
The analysis goals include the following: (a) Automatic generation of metadata in
addition to those provided by the OCEAN search engine, (b) Semi-automatic iden-
tification of the features of software so that it is easier to relate these features to
the feature model of the domain, and (c) Provision of input for possible adaptations
that can be used in order to adapt the existing identified components to the reference
architecture.

9 / 20 Volume 33 (2010)



Component Certification as a Prerequisite for Widespread OSS Reuse 5

(c) It will integrate existing Model Driven Development (MDD) tools that will be used
for the adaptations mentioned in (2c) as well as the definition of generic and reusable
adaptation patterns.

(d) It will allow reasoning through an appropriate knowledge base. The knowledge base
will provide facts for the discovered features of OSS code and the reuse engineer
will be able to query the knowledge base. This knowledge basewill be also used to
enhance the COMPARE repository and search engine with semantic search capabil-
ities.

(e) It will integrate existing safety analysis tools for theanalysis of safety properties of
the components which is especially significant for safety-critical systems.

(f) It will provide an environment for testing and collection of test results.

(g) Finally it will integrate the above mentioned features through a comprehensive user
interface allowing the reuse engineer to perform the above mentioned activities as
efficiently and intuitively as possible.

3. COMPARE: COMPARE (Component Repository and Search Engine) will support the fol-
lowing activities:

(a) It will provide an environment to assist reusers to search and discover the assets
(software artifacts, technical documents, test suites, metamodels) produced by the
Domain Engineering Process.

(b) Provide advanced search capabilities for components tothe reusers using diverse
criteria such as execution framework, programming language, licence, desired func-
tionality, etc.

(c) Store and use all the available information about the role of a component in the
domain architecture in order to achieve higher precision and recall.

(d) Use the ‘semantic’ distance of a component from certain specified criteria (e.g. it’s
distance from the definition of a prototypical entity from the domain ontology, or the
number of tests that the component passes from a given test suite).

(e) Provide the asset retrieval services in such a way that the artifacts are retrieved in a
holistic manner.

(f) Support the communication of information, between the asset consumers (re-users)
and the asset producers (in our case the reuse engineers), such as requests/orders,
bug reports, advertisements, etc.

(g) Provide adequate data models for structuring this kind of communication in order to
be rapidly processed.

(h) Allow re-users to obtain information about the verification and certification attributes
of a component and certifiers to provide such information.

In the following section we will discuss the tools and processes in relation to component
certification.

Proc. OpenCert 2010 10 / 20



ECEASST

4 OSS components’ certification

Certification as a means for establishing trust aims to provide objective evidence for a product
quality in the form of an authoritative statement that suggests contractual obligations and legal
implications. Lessons learned from recent attempts [SK04, HALM08] showed that software cer-
tification comes at a high cost that the current OSS communityis doubtful, if they will ever spent.
OPEN-SME introduces an independent reuse service that opens a perspective for economies of
scale in OSS reuse through the packaging of OSS software in ready-to-use components. The
same service has the potential of an independent party for certifying the packaged OSS code at
an affordable cost for the SME members. Certification of OSS components should take place in
the context of the system where the components are to be reused. In the OPEN-SME process, a
partial description of the system context is provided by thetypical domain-specific architecture
that prescribes certain quality guarantees for the OSS components. OPEN-SME certification
concerns the aforementioned contextual qualities, as wellas the implementation specific compo-
nent qualities that can be ascertained independently of their use context (e.g. absence of buffer
overflows). The aim of trusted quality guarantees for the OSScomponents is the only techni-
cally feasible and economically viable alternative to the concept of trusted components, which
is an illusive goal when certification is limited in the source code and the system context is only
partially specified.

Certification is supported by the COPE toolset and is connected to the provision of verifiable
evidence for the guaranteed qualities, as accompanying component assets in the COMPARE
repository. It is inherently a normative product certification [Wal04], since it basically aims to es-
tablish evidence that the OSS code (product) conforms to some typical domain-specific architec-
ture, which is the established norm. Depending on the quality property that is certified, evidence
may be produced either by observation and measurement (empirical certification) or by formal
and semi-formal means. Observation and measurement is typically employed in coverage-based
testing, whereas semi-formal certification refers to static program analysis. When there is need
for the more costly formal certification, a feasible alternative at an affordable cost may be the use
of a certifying model checker [DKFW10] over the program slice, which is related to the property
of interest.

OPEN-SME certification is procedural rather than fully mechanized, from the point of view
that it is based on the role of a trained certifying agent, i.e. the reuse engineer. At the same time,
the process is based on mature tool support for testing, static analysis and formal verification,
fully interoperable with the COPE toolset for packaging thedeveloped component assets. Certi-
fication is not driven by some standard that defines how compliance is enforced, but it is guided
by a domain-specific OSS reuse de facto standard, which is theunderlying typical architecture.
Table1 summarizes the main characteristics of the OPEN-SME certification profile, which were
discussed in the preceding paragraphs.

4.1 On the adoption of a software assurance classification system

A software assurance classification system determines the level of confidence required for cer-
tifying that the software fulfills the anticipated qualities. Certification costs increase with in-
creasing the required confidence for a software or a softwarecomponent. The system used for

11 / 20 Volume 33 (2010)



Component Certification as a Prerequisite for Widespread OSS Reuse 6

Characteristic Comment

Normative certification Conformance to a domain-specific typi-
cal architecture.

Trusted product OSS source code of the reusable compo-
nents.

Trusted qualities Contextual qualities specified in the
domain-specific architecture and local
component qualities.

Formal and empirical certification Combines observation and measurement
(testing) with semi-formal and formal
certification (static analysis and model
checking).

Procedural certification Carried our by a trained reuse engineer
with appropriate tool support.

Absence of definition for compliance
to a specific standard

Based on a de facto standard: the
domain-specific typical architecture.

Table 1: OPEN-SME certification profile

software assurance classification depends on the certified quality and implies certain tasks in the
certification process for establishing the required level of confidence. For a security certified
software we adopt the Common Criteria [ISO99] classification system with sevenevaluation
assurance levels (EALs)as shown in Figure7. For a safety critical software the level of confi-
dence placed on the individual components depends on theirsafety integrity levels (SILs)that are
assigned by an appropriate SIL allocation algorithm [PWR+10].

A quality guarantee for an OSS component is certified by the reuse engineer at a specific
assurance level. The certificate (tests, design information etc.) is packaged together with all
other component assets and is stored in the COMPARE repository. The reuse engineer may
utilize assets provided by the OSS project that have to be validated, but if a certain degree of
assurance is to be achieved this may incur some re-engineering effort. Validation of existing
assets or production of new certification assets are supported by appropriate verification and
validation tools and the COPE toolset. The assurance level at which a software component is
certified is reflected in the packaged assets.

4.2 Certificate life cycle and change management

OPEN-SME certificates will be verifiable by the component re-user, under the condition that the
re-user has access to appropriate tool support. Under this requirement, test-based certificates take
the form of test suites and oracles for a certain code coverage level (verifiable condition). Static
analysis certificates are represented by code annotations that express the certified requirements.
These annotations depend on the used programming language (e.g. Java JSR-305 annotations),
as well as the tool support required for verifying them. Finally, a formal certificate includes code
annotations (preconditions, postconditions and invariants), a state-based behavior representation

Proc. OpenCert 2010 12 / 20



ECEASST

Figure 7: Common Criteria Assurance Classification

of the certified subject and a property specification expressed in a formal logic system.
Authenticity of certificates is assured by code file signing,so that the re-user can verify that

the code has not been altered or corrupted since it was signed. For this purpose, OPEN-SME
builds on the GPG Signing and Encrypting technology, which is supported by the COMPARE
repository and the OPEN-SME Application Engineering process.

The certification process has to cope with the fast and agile OSS development processes and
this implies a number of requirements for certificate handling and life cycle and version man-
agement. Toward this aim, COMPARE will provide functions for tracking the dependencies
between issued certificates for a domain architecture. Also, the COPE toolset will be able to
automatically recompute certificates for new component releases and relate them to a history of
certifications for the system level quality guarantees.

4.3 Certification by testing

In OPEN-SME, certification by testing is supported by third-party tools. Both functional and
structural testing processes are available and the reuse engineer selects the one prescribed by the
aimed assurance level. In functional testing, which is alsocalled model-based testing the reuse

13 / 20 Volume 33 (2010)



Component Certification as a Prerequisite for Widespread OSS Reuse 7

engineer certifies the absence of design errors, some of which may be not possible to detect by
structural testing. Examples of such quality guarantees are the absence of deadlocks, livelocks
or that a forbidden application state cannot be reached.

The System Under Test (SUT) is represented by amodel programderived by (i) data abstrac-
tion from the SUT’s variables, (ii) behavioral abstractionfrom the SUT program statements and
(iii) environmental abstraction, where the environment effects are replaced by non-determinism.
A finite state machine (FSM) is then generated that instantiates all possible ”runs” of the model
program. An exploration algorithm searches the FSM for specification or design errors. It is
important that exploration is limited only to appropriate scenarios for the purpose of the certifi-
cation, such as to avoid a possible state space explosion. The model-based testing approach that
is integrated to the OPEN-SME certification process is the one described in [JVCS07]. However,
this is not enough in order to conclude the process. Certification also includes a precise definition
of a conformance relation between the SUT and the model program. The software is certified
only when the SUT conforms to the model program, which can be shown by the conformance
testing approach in [FT07] for component-based systems. An important challenge for the OPEN-
SME process is to effectively deploy a truly compositional approach that will allow to take into
account individual specifications for the components’ behavior (test-by-contract paradigm).

In structural testing, components will be tested in isolation from the rest of the system using
stubs and drivers in place of the interfacing components. The SUT is certified with the same test
case design technique (branch/decision coverage) for all interacting components or else, if there
are components that have been already certified with different techniques then the validity of the
certification depends on the subsumption relations betweenthe used techniques. OPEN-SME
tool support will also automate structural testing starting with the generation of test oracles from
the component contracts.

Verifiability of the testing certificates will be assured by code coverage metrics and measure-
ments for the certified components.

4.4 Certification by static analysis

Static program analysis became recently an attractive alternative, because of the advent of effi-
cient and accurate enough analyses. These analyses are easily accessible in mature static analysis
tools with good extensibility prospects. They are particularly effective in local component qual-
ities like the absence of dangerous vulnerabilities.

Contextual properties that can be certified include temporal safety guarantees that are checked
by typestate tracking, as well as high level security properties like information flow guarantees
that are checked by taint propagation analyses. However, compositional certification is still an
open research problem [CC02] and there is no reported success story in the current state of
practice.

5 Related Work

A number of projects attempted to provide quality indicators for OSS software and to improve
the trustworthiness of OSS. In this section we review the most important of these projects.

Proc. OpenCert 2010 14 / 20



ECEASST

5.1 SQO-OSS and Alitheia core

Alitheia-core [GS09] was developed as part of the Software Quality Observatory for Open
Source Software (SQO-OSS) European Community’s Sixth Framework Programme. Alitheia-
core is an extensible platform for quality analysis of software projects which integrates with a
diverse set of revision control systems (e.g. SVN, GIT etc.), bug tracking systems (e.g. Bugzilla,
Mantis etc.), mailing lists, Wiki documentation systems etc. that are used in the development
of open source software projects. The need to interface withall these systems required a com-
mon representation of metadata that eliminates the need of handling multiple data formats at the
higher layers of the system. The architecture of Alitheia-core is a three-tier architecture with a
Results and Presentation tier, a System Core tier and a Data Mirroring, Storage and Retrieval
tier. The Data Mirroring, Storage and Retrieval tier is responsible for storing project metadata
and metric results and uses an object-relational mapping technology for transaction management
and mapping of runtime types to database data types. For performance and scalability there
is a preprocessing phase each time a project is registered with the system for the extraction of
metadata and the storage of these metadata to the database layer. A variety of quality plugins
which are implemented as OSGi components are then used for accessing these metadata and
calculating different metrics which are necessary for quality analysis. Researchers interested in
using the system for different quality analyses than the ones provided out of the box, can develop
their own quality analysis plugins. To ease this extensibility and mask the OSGi details from the
developers of extension plugins, the system provides a skeleton plugin that the developers can
extend to build their own. Plugins can have activation typesto enable the update of stored values
when corresponding artifacts change and scope which determines the set of artifacts that are used
for the metrics that a plugin calculates. Furthermore plugins can have dependencies to handle
composite metrics whose values depend on the values of othermetrics. Dependencies determine
the execution order of the respective plugins which calculate the dependent metrics. Several
metrics are already provided, but as we already mentioned the system is specifically designed to
allow for easy integration of more metrics as required by software engineering research.

5.2 The QualiPSO Approach and Toolset

Another EU funded project in the context of the 6th FP is QualiPSO . QualiPSO [BLM+10] is
an attempt to establish a methodology and develop the respective tools for the trustworthiness of
OSS software. The general approach is that trustworthinesscan be established by subjective and
objective criteria. Since trustworthiness is a multi-faceted quality there are several elementary
quality characteristics that need consideration such as ‘As-is Utility’, ‘Functionality’, ‘Reliabil-
ity’, ‘Security’ and so on. For each such quality property the subjective model evaluates it by
collecting the users’ opinion. On the other hand for the objective model a number of metrics
that can be collected automatically from tools are used. Statistical evaluations carried out in the
context of the project established that the subjective (user perceived) quality of trustworthiness
is linked with reliability, usability, interoperability,efficiency and documentation and that other
factors such as the popularity and the development languageare insignificant. Similarly there
are significant correlations between trustworthiness and reliability and measurable (objective)
characteristics such as the size of the code base and its complexity. A number of tools were

15 / 20 Volume 33 (2010)



Component Certification as a Prerequisite for Widespread OSS Reuse 8

developed to support the project’s goals:

• Spago4Qis a platform that integrates quality measurements collected by different tools
and provides a quality indication visually to its users. Measurements tools are used by
Spago4Q via extractors. These extractors are used to trigger the analysis by the lower-
level tools or to collect the results of existing measurements from the database. Spago4Q
is free software distributed under the GNU Lesser General Public License (LGPL).

• MACXIM is a tool that statically analyzes the source code of a project and extracts several
metrics. Currently it supports the Java language. MACXIM separates the parsing phase
from the analysis phase. Parsing generates an abstract representation of the source code
which is saved as XML in a database. Queries (in XQuery or in Java) are then used to
extract metrics from the XML abstract representation of thesource code in the database.
These metrics can be visualized either directly by MACXIM own interface or through
Spago4Q which integrates it. The tool computes 70 metrics atapplication, package, class
and method level. The tool is free software distributed under the GNU Lesser General
Public License (LGPL).

• JaBUTi is a testing coverage tool that operates on the Java bytecodelanguage and can
be used without the program source code. It analyzes the testsuite of a Java program
against control and data flow testing criteria and produces six metrics that can be used
for the evaluation of the reliability and correctness of an OSS product. JaBUTi is partially
integrated to the Spago4Q platform and is free software distributed under the GNU General
Public License (GPL).

There is also a Goal-Question-Metrics (GQM) tool which can be used for the application of
the GQM methodology, but this tool is not yet publicly available or integrated in the Spago4Q
platform. Also the Spago4Q platform integrates a number of other tools, such as StatSVN and
StatCVS for statistical analysis of software repositories, FOSSology for license information and
JUnit for collecting test status data. PMD and Checkstyle for the analysis of possible bugs, dead
code, code duplications and other problems have been integrated in the MACXIM tool.

5.3 FLOSSMETRICS

FLOSSMETRICS [FLO10] is another European funded project with the central goal ofproduc-
ing quantitative analysis results for thousands of open source projects and making this data pub-
licly available for different studies of OSS including quality studies. Other goals of the project
include the provision of several high-level analyses of theresults (e.g. evolution analysis of
OSS projects), a guide for Small and Medium Enterprises and the development of several OSS
tools suitable for the retrieval and analysis of OSS projectdata. Currently in the Melquiades
website [Mel10] there is data available for 2,630 OSS projects. This data can be accessed by
various means including the following: (1) Using a REST API client scripts can access the data
directly, (2) Direct access to Melquiades database is also possible but limited (after request), (3)
Database dumps can be downloaded directly. The Melquiades database is MySQL and the dumps
are compressed images of the files produced by the mysqldump command. The dumps can be
for individual projects and also aggregated dumps for all projects but for different repositories.

Proc. OpenCert 2010 16 / 20



ECEASST

The kinds of repositories that the system aggregates are Software Configuration Management
systems, Mailing lists and Issue tracking systems, (4) A variety of metrics is also available in-
cluding code metrics (e.g. source code lines, cyclomatic complexity etc.), (5) Researches can
also use a number of predefined queries to analyze the data such as the total number of commits,
the number of commits per time unit etc.

In order to get this data FLOSSMETRICS developed a number of OSS tools that access the
data and these tools are also available for further extension and development.

• SVSAnalY: The purpose of this tool is to retrieve information from CVSor Subversion
repositories and store this information in a database. The database schema is divided in
two parts. The first part contains information retrieved directly from the repository log
(e.g. files, people involved, branches, tags etc.). The second part (i.e. extensions) contains
additional information such as metrics for source code files. CVSAnalY is free software
and can be redistributed and modified under the terms of the GNU General Public License.

• Bicho : Bicho is Bug Tracking System (BTS) analyzer. As with CVSAnalY this is a
command-based tool which retrieves data from the bug tracking system and inserts it in a
database. The database schema contains several tables: a table of bugs, a table comments
found in the BTS about each bug, and a table of attachments found in the BTS about each
bug etc. Bicho is also free software under the GNU General Public License.

• MLStat: Mailing list analyzer tool. This is another command-line tool with the purpose of
extracting information from a mailing list and storing it ina database. The database schema
includes information on messages in the mailing list, the people and their association to
messages etc. This program is also free software distributed under the GPL.

5.4 Software Certification Success Stories

Two of the most notable examples of software certification include the works reported in [SK04]
and [HALM08].

In [SK04] the authors conducted a Common Criteria [ISO99] based certification of Linux.
Their conclusions from this work are that:

• At a low level of evaluation assurance it is possible to certify an OSS like Linux in about
four months

• There are outstanding difficulties with the lack of adequatedocumentation in OSS

The results of this project are promising for the goals of OPEN-SME, since OPEN-SME targets
components and not complete systems (e.g. Linux). Therefore it is expected that the certification
process for components will require less time and fewer expenses. Furthermore the cost factor
of certification and the lack of documentation seem to indicate that an asynchronous service in
respect to the reuse activity is essential, since it can provide missing data and documentation
related to the certification task and amortize the cost through a new business model.

In [HALM08] the authors used a formal certification process for certifying the core of a sys-
tem. Their approach used three partitions of the system formwhich only one (which is less than

17 / 20 Volume 33 (2010)



Component Certification as a Prerequisite for Widespread OSS Reuse 9

10%) required formal verification. This reduction of the code to be verified resulted in fewer ex-
penses. Their approach is based on a high-level state machine specification of the behavior of the
software and a formal specification of the property. The codeis annotated and then partitioned
based on the property to be specified and only part of the code is taken into account. More specif-
ically the code is partitioned into three partitions: (a) Event, (b) Trusted and (c) Other Code. The
high-level specification and the property are translated tothe language of a mechanical prover
and it is subsequently proved that the specification satisfies the property. Then a mapping is de-
veloped from the preconditions and the postconditions of the high level specification to those of
the annotated code and it is demonstrated that this partition of the code (i.e. the Event partition)
is a refinement of the high level specification and that the trusted and Other Code partitions are
benign.

6 Conclusions

In this paper we presented the approach of the OPEN-SME EU funded project [OPE10] which
is a project aiming to support the reuse of OSS software components from software development
SMEs. We started by reviewing a survey related to OSS reuse which guided the design of the
OPEN-SME toolset. The OPEN-SME approach processes and tools as well as the project’s
approach to software certification were also discussed.

Bibliography

[Abe07] M. Aberdour. Achieving Quality in Open Source Software.IEEE Software24:58–
64, 2007.
doi:http://doi.ieeecomputersociety.org/10.1109/MS.2007.2

[BLM +10] V. del Bianco, L. Lavazza, S. Morasca, D. Taibi, D. Tosi. The QualiSPo approach to
OSS product quality evaluation. InProceedings of the 3rd International Workshop
on Emerging Trends in Free/Libre/Open Source Software Research and Develop-
ment. FLOSS ’10, pp. 23–28. ACM, 2010.
doi:http://doi.acm.org/10.1145/1833272.1833277

[CC02] P. Cousot, R. Cousot. Modular Static Program Analysis. In Proceedings of the
11th International Conference on Compiler Construction. CC ’02, pp. 159–178.
Springer-Verlag, London, UK, 2002.
http://dx.doi.org/10.1007/3-540-45937-513

[CCL06] I. Crnkovic, M. Chaudron, S. Larsson. Component-Based Development Process
and Component Lifecycle. InInternational Conference on Software Engineering
Advances (ICSEA’06). P. 44. IEEE, 2006.

[DKFW10] K. Dräger, A. Kupriyanov, B. Finkbeiner, H. Wehrheim. SLAB: A Certifying
Model Checker for Infinite-State Concurrent Systems. InTACAS. Pp. 271–274.
2010.
http://dx.doi.org/10.1007/978-3-642-12002-222

Proc. OpenCert 2010 18 / 20

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MS.2007.2
http://dx.doi.org/http://doi.acm.org/10.1145/1833272.1833277
http://dx.doi.org/10.1007/3-540-45937-5_13
http://dx.doi.org/10.1007/978-3-642-12002-2_22


ECEASST

[FLO10] FLOSSMetrics Consortium. FLOSSMetrics Final Report. Technical report, March
2010.

[FT07] L. Frantzen, J. Tretmans. Model-based testing of environmental conformance of
components. InProceedings of the 5th international conference on Formal methods
for components and objects. FMCO’06, pp. 1–25. Springer-Verlag, 2007.
http://dx.doi.org/10.1007/978-3-540-74792-51

[Gar84] D. Garvin. What Does ‘Product Quality’ Really Mean?Sloan Management Review
26:25–43, 1984.

[GS09] G. Gousios, D. Spinellis. Alitheia Core: An extensible software quality monitoring
platform. In IEEE 31st International Conference on Software Engineering (ICSE
2009). Pp. 579–582. May 2009.
doi:10.1109/ICSE.2009.5070560

[HALM08] C. Heitmeyer, M. Archer, E. Leonard, J. McLean. Applying Formal Methods to a
Certifiably Secure Software System.IEEE Transactions on Software Engineering
34:82–98, 2008.
doi:http://doi.ieeecomputersociety.org/10.1109/TSE.2007.70772

[HSC04] J. Ho-Won, K. Seung-Gweon, C. Chang-Shin. Measuring Software Product Qual-
ity: A Survey of ISO/IEC 9126.IEEE Software21:88–92, 2004.
doi:http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331309

[ISO99] Evaluation Criteria for IT Security, parts 1 to 3. 1999.

[ISO01] Software Engineering Product Quality Part 1 - Quality Model, 1st ed. 2001.

[JVCS07] J. Jacky, M. Veanes, C. Campbell, W. Schulte.Model-Based Software Testing and
Analysis with C#. Cambridge University Press, 2007.

[KP96] B. Kitchenham, S. Pfleeger. Software Quality: The Elusive Target.IEEE Software
13:12–21, January 1996.
doi:10.1109/52.476281

[Lat10] Lattix Website. http://www.lattix.com, November2010.

[Mel10] Melquiades Data Website. http://melquiades.flossmetrics.org/, November 2010.

[Mey03] B. Meyer. The grand challenge of trusted components. In Software Engineering,
2003. Proceedings. 25th International Conference on. Pp. 660 – 667. May 2003.
doi:10.1109/ICSE.2003.1201252

[MMYA02] H. Mili, A. Mili, S. Yacoub, E. Addy. Reuse-Based Software Engineering: Tech-
niques, Organization and Controls. Wiley, 2002.

[NAS10] NASA Earth Science Data Systems - Software Reuse Working Group. Reuse Readi-
ness Levels (RRLs). Technical report, April 2010.

19 / 20 Volume 33 (2010)

http://dx.doi.org/10.1007/978-3-540-74792-5_1
http://dx.doi.org/10.1109/ICSE.2009.5070560
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TSE.2007.70772
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331309
http://dx.doi.org/10.1109/52.476281
http://dx.doi.org/10.1109/ICSE.2003.1201252


Component Certification as a Prerequisite for Widespread OSS Reuse 10

[OPE10] Open-SME Website. http://opensme.eu, November 2010.

[PWR+10] Y. Papadopoulos, M. Walker, M.-O. Reiser, M. Weber, D. Chen, M. Törngren,
D. Servat, A. Abele, F. Stappert, H. Lonn, L. Berntsson, R. Johansson, F. Tagli-
abo, S. Torchiaro, A. Sandberg. Automatic allocation of safety integrity levels. In
Proceedings of the 1st Workshop on Critical Automotive applications: Robustness
and Safety. CARS ’10, pp. 7–10. ACM, New York, NY, USA, 2010.
doi:http://doi.acm.org/10.1145/1772643.1772646

[Ray01] E. S. Raymond.The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 2001.

[RHR09] A. Rohatgi, A. Hamou-Lhadj, J. Rilling. Approach for solving the feature location
problem by measuring the component modification impact.IET Software3(4):292–
311, 2009.
doi:10.1049/iet-sen.2008.0078

[SK04] K. Shankar, H. Kurth. Certifying Open Source-The Linux Experience.IEEE Secu-
rity and Privacy2:28–33, 2004.
doi:http://doi.ieeecomputersociety.org/10.1109/MSP.2004.96

[STR10] Structure101 Website. http://www.headwaysoftware.com, November 2010.

[Wal04] K. C. Wallnau. Software Component Certification: 10Useful Distinctions. Techni-
cal report, Software Engineering Institue, September 2004.

Proc. OpenCert 2010 20 / 20

http://dx.doi.org/http://doi.acm.org/10.1145/1772643.1772646
http://dx.doi.org/10.1049/iet-sen.2008.0078
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MSP.2004.96

	Introduction
	A survey of issues for the trustworthiness of OSS software
	The OPEN-SME process and tools
	OSS components' certification
	On the adoption of a software assurance classification system
	Certificate life cycle and change management
	Certification by testing
	Certification by static analysis

	Related Work
	SQO-OSS and Alitheia core
	The QualiPSO Approach and Toolset
	FLOSSMETRICS
	Software Certification Success Stories

	Conclusions

