Electronic Communications of the EASST

Volume 33 (2010)

Proceedings of the
Fourth International Workshop on
Foundations and Techniques for
Open Source Software Certification
(OpenCert 2010)

Methodologies and Tools for OSS: Current State of the Riacti
Zulgarnain Hashmi, Siraj A. Shaikh and Naveed Ikram

11 pages

Guest Editors: Luis S. Barbosa, Antonio Cerone, Siraj A. Shaikh

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Methodologies and Tools for OSS: Current State of the Practe

Zulgarnain Hashmi?, Siraj A. Shaikh? and Naveed Ikram*

1 zulgarnain@iiu.edu.pknaveed.ikram@iiu.edu.pk
Department of Software Engineering,
Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad, Pakistan

2 s.shaikh@coventry.ac.uk
Department of Computing and the Digital Environment,
Faculty of Engineering and Computing,
Coventry University, Coventry, United Kingdom

Abstract: Over the years, the Open Source Software (OSS) developrasnnh-
tured and strengthened, building on some established ahalthgies and tools. An
understanding of the current state of the practice, howeyetill lacking. This pa-
per presents the results of a survey of the OSS developer oaitytwith a view
to gain insight of peer review, testing and release managepmactices, along with
the current tool sets used for testing, debugging and, buitdrelease management.
Such aninsight is important to appreciate the obstacleggwome to introduce cer-
tification and more rigour into the development processs hdped that the results
of this survey will initiate a useful discussion and allove ttommunity to identify
further process improvement opportunities for produciatids quality software.

Keywords: Open Source, Testing, Debugging, Release ManagementRieeiemw.

1 Introduction

Open Source Software (OSS) is becoming popular both in essinommunities and academic
sectors. The OSS movement has proved its worth with notabiupts such as Linux, Apache,
MySQL and Mozilla, to name a few.

OSS development is typically initiated by a small group cbgde [SFF"06] and can be dis-
tinguished from traditional development in terms of vokars involved in the development of
software dictated by their need and interest, as opposedi¢aliaated team of paid developers
guided by some (usually profit-making) commercial prod&etch volunteers choose when and
what they want to work on with typically a very loose heiraychs opposed to their paid counter-
parts. The expectation of most OSS projects is that theesgdupport in terms of development
tools, no or very less formal design, improper project dgwelent planning, a fixed list of deliv-
erables is not available and finally no structured testinguality assurance of the final product.
OSS projects are also less likely to be supported by projacagement, metrics, estimation and
scheduling tools as there is no need for strict deadlinedatzhcing budgets{FL05 Rob03.

OSS projects have been criticised for lack of clear and op¢silcbf development processes.
Studies on Apache and MozillMFH99, MFHO02, RM02] usually give an informal description

1/11 Volume 33 (2010)

mailto:zulqarnain@iiu.edu.pk
mailto:naveed.ikram@iiu.edu.pk
mailto:s.shaikh@coventry.ac.uk

The ECEASST Document Class @

of development processes which cannot be usefully reptlicat

Our observation discovers that sources of information ercdmmunity, project history, work
roles and task prescription provided on several OSS prujebsites appear mind-numbing and
ambiguous. A need for standard and clear development peadias been acknowledgé&th03.
Sharing clear and open description of development prosegsth a view to further improvisa-
tion and reuse is certainly of great interest to the wider @&8munity Mic05, RM02]. Our
effort is aimed at better understanding some of the devetopprocesses and behaviour within
a set of OSS projects.

We present a survey of OSS developers. The survey is edsedgacriptive in nature and
lies in cross-sectional time dimensional category. The2b@ OSS projects from a variety
of domains were selected from SourceFor§e09 and Launchpadljau09 on the basis of
downloading ratings. The sampling ensured that each meoflibe population has an equal
probability of being selected. Download rates do not coryeglity or success but certainly of-
fers a measure of fithess for purpose as users of OSS haveladidwnloaded it; it is essentially
an objective measure independent of our influendie()5].

The hope is that this work will allow the wider community teeidify process improvement
for better quality and critical software. The importanceqaglity in OSS due to development
practices has already been acknowleddged(g. Such an insight is important to appreciate the
obstacles to overcome to introduce certification and mgeuriinto the development and testing
processes. Moreover, attempts to introduce the use of farmadelling and verification within
OSS developmen practices has also been sugges&@| though challenges have also been
identified as to who and where to initiate such changes wittenOSS community; addressing
such challenges is of interest to us in this paper and is tabgithe next step.

1.1 Rest of this paper

The rest of this paper is organised as follows. Seidascribes some of the related work. Some
past observations and the relevant trends observed arghirtmuattention. Sectiofi discusses
the methodology adopted for this effort with particular déragis on the choice of OSS projects
targeted for the survey. This is helpful in setting the ressinl the overall context. Sectioh
presents the results of the survey. Some trends of interestighlighted though the majority of
the results serve to affirm traditional perceptions of thes@8mmunity. Sectio® concludes
the paper and promises some future work.

2 Related work

Organisational structures, technical roles and careeortypities within the OSS community
have been widely studiecbfa07 YK]. Traditionally software engineers have been restricted t
roles like requirements analyst, software designer, jgrogner or code tester. In the OSS com-
munity, roles and progression (or movement) is more sunarynteering roles can move up and
down amongst different paths much more gracefully, withghssibility of lateral movements
as well. Some of the recognised roles in OSS incloidgect leadey core developer or member
active developelpassive or peripheral developdiug fixer bug reporter reader/active useand

Proc. OpenCert 2010 2/11

@ ECEASST

passive usemwith the likely possibility of overlap. Not all of these tgp of roles exist in all OSS
communities, and some communities may use different naRtesexample, some communities
refer to core members as maintainers. The difference betiueg fixer and peripheral developer
is also rather small as peripheral developers are likeleteriyaged in fixing bugs.

Several developers and users examining the source code & ¢ime fundamental principles
that underlies OSS. Some reports show that peer review oe €685 has been performed by
millions of developers GBBZ03. Such code reviews are mostly done before and after any
source code is committed to the repositorySP4, performed in a distributed, asynchronous
manner. They are certainly more extensively acknowledgedaacepted as part of the organi-
sational culture in OSS than in traditional developmente @bvelopers more likely to perform
them without any directions, which although not vital, maydsign of commitment to qual-
ity within OSS projects. It is useful in detecting flaws, dafeand quality of OSS, and is well
recognised in software engineering generally for its @uwle [Ema01 HS0J.

In a survey Fta03, about 9% of OSS developers claimed the peer review of ttieeesource
code, whereas peer review of most of the code was pointedyob®% of the developers. Al-
though the team members vary but the main emphasis is to rizexitme ability to find bugs.
The actual task is classified to be either ad-hoc or basedroa shecklist. The former signifies
that the reviewers team has to examine in a perfect manndig ¢t imperfections without any
guidance. In order to guide and facilitate reviewers in exémg all defect forms, standardized
checklist of frequent faults is considered. There is goadasnce that checklist-based techniques
tend to find more defects than ad-hoc techniguzR\[03.

Testing is an essential part of the software developmemtciitle. Recent studies establish
the uniqueness of the OSS development model with excefitiomgh user involvement and
structured approach for flaw/bug handling process, in tmeest of testing for OSSQMKO08].
Unit testing is the most frequent in OSS development. Pliesase testing on broader perspectives
is less common, with the idea being that the released caedildealt with by the users and its
flaws reported.

Pre-release testing is not commonly demonstrated and feestang is even not implemented
for most of the OSS developmenti$02 GA04]. With confidence in code peer reviewed, many
OSS developers are content with only minor testi&taD3. Some other sources go as far as to
claim that over 80% of OSS developers dont have any plansofge[ZEO0Q.

There is no specific evidence with regards to automated tmdlslebuggers are widely ac-
knowledged ZEOQ. For regression tests, about 48% of OSS projects follovelbaes testing,
whereas proportion is relatively higher in mega proje@&(3. A study conducted on the
Apache project revealed that no system testing or regmresgs performedNIFHO2]. Further
analysis reports that while regression test suites weiiabl@afor Apache they were not actually
mandatory Ere03. This complements with suggestions that improvementdsired in quality
assurance practices, applied processes and project sucitesa PMKO08S].

Release management is a vital part in OSS development. Matdr Mic07] presents a
comparative study on release management to find that it caatbgorised into three types, with
respect to the concerned audience and the effort requildelit@r the releasadeveloper release
for interested developers and experienced users requéssgor no effortmajor or stabilised
releasedor end users requiring more effort to deliver with consad#e new features and func-
tionality, bugs fixed and tested, andnor releases or updatder existing users requiring a slight

3/11 Volume 33 (2010)

The ECEASST Document Class @

effort for stabilised releasé/[HP07].

More generally, a feature-based strategy is adopted inhadgctain criteria or goals have to
be fulfilled, or, a time-based strategy with particular daget for release and used as orientation
for release.

3 Research Design

The research method used in this study is essentially aysutvieh is most common for generat-
ing primary data. This survey is descriptive in nature aed iih cross-sectional time dimensional
category. The unit of analysis is essentially individuald &SS developers are the respondents
for this survey. The main objectives of the survey are tordeitee the development processes
and developmental tools being used in OSS projects.

Our population is open source developers and targeted qtigng are developers of recog-
nised OSS initiatives. The most important source to collgcrmation about the development
processes and tools used in OSS projects are OSS commusnitiess those accessed through
SourceForgeand LaunchPag where thousands of OSS projects are hosted across seweral d
mains.

Our selected domains abeisiness intelligence and performance managenagital archiv-
ing, CMS system<RM, e-commerceERP, email client frameworks message boardgroject
managementscheduling site managemensocial networkingticketing systemandwiki. We
selected the top 250 OSS projects from these domains on iedfalownloading ratings from
SourceForge§ou09 and Launchpadlau09. We have chosen a systematic sampling method
where each member of the population has an equal probatiliiging selected.

Note that we use the download rate to define success. Dovatbmdot convey quality or
success of OSS but certainly offers a measure of fitness fpopa as users of OSS have actively
downloaded it. Downloads do provide the advantage as a meeasit is objective and dependent
on the userslic05].

We designed an online questionnaire consisting of 33 questn total. We drew inspiration
from [KENUO7] for questions relating to peer review and testing of sofewaValidity and
reliability are the main priorities in surveys. There is a@&def for pilot testing to assess the
questionnaire clarity, understandability, comprehesrs2ss and acceptability. Surveys should
be adequately pre-tested to check that the respondentsstamte the meaning of the questions
or statements and to gauge whether test items are at an appedpvel of difficulty.

We validated our questionnaires by faculty members and @8&stry experts and their re-
liability was determined by getting few responses from thpydation. Participants were given
an opportunity to offer comments on the structure of the times including clarity, relevance
to the objectives of the study, level of difficulty and lengththe survey. Several changes were
made to improve the experience as per the feedback.

A detailed search was undertaken to identify projects whidhted with the same name under
different domains. 250 projects were identified after atiating duplications. Once the list of
OSS projects was decided, names and contact details ofgpeatéve developers were collected
(from their hosting websites). Some developers were algaviad in more than one project,
which were also excluded for duplication. We restrictedwaTs in our questionnaire for a

Proc. OpenCert 2010 4/11

@ ECEASST

specific project.

4 Results and Analysis

This section presents the results of our survey. Sedctidrdiscusses the profile of projects
and individuals who responded to the survey. This sets théegbfor the following sections
which delve into peer review practices in Sectib, testing strategies in Sectigh3, release
management in Sectioh.4 and the use of tools in Sectioh5. Section4.6 provides a brief
analysis on the results commenting on the aspects that aatifular interest.

4.1 Developer and project profile

Over 58% of the total developers surveyed have more thanrs yéa&xperience working with
OSS. Of the rest, over 18% have 3 to 5 years, over 17% have 1 éar3 yand just under 5%
of the developers have less than one year of experience mgowkith OSS. Over 3% preferred
not to answer. Over 36% of the total developers who respomwticthed a graduate degree,
with over 25% holding a masters degree and just under 12%ngp#d doctoral degree. Over
31% of the total respondents identified themselves as priejgder, over 25% as core developer,
over 10% as active developer and over 9% as passive develtymrover 7% claimed project
management and over 3% bug reporter roles. Just under 12% fieé other category, which
included translator and community manager roles. Out ofdta respondents, over 61% of the
developers participate only part-time participation veasrover 24% are as dedicated full-time.
A small percentage, just over 14%, described their pagetmp as either ifiree time voluntarily

or occassional

When asked about information provision and disseminatiorthfeir OSS projects, over 96%
of the respondents claimed that their project has a dedieedbsite. Of other similar resources,
over 91% identified announcements, over 87% provide somm &ruser documentation and
just over 81% mentioned a feature list advertised for thgepto Mailing lists, tutorials and
to-do lists were also identified by well over 50% of the regpats. Some other avenues for
communications identified included code collaboratorps#fpries, forums and case studies pro-
vided for the users.

For internal communication a variety of resources weretified including mailing lists (by
over 76%), threaded discussion forums (60%), IRC/chafiimsmessaging (over 55%), news-
groups (over 17%), community digests (just under 13%) ahdratsources such as XMPP, bug
trackers, wiki sites and micro blogging (over 16%).

The authority to commit code varies from project to projedth the majority allowing core
developers (just under 92%) to commit. Over 60% mentionddeadevelopers and over a
quarter mentioned passive developers with the ability tarod.

4.2 Peer Review

The survey reveals that software testing and release maneageare far more prevalent than
code review, with over 87% confirming that some form of teptamd release management is
carried out on the OSS project they are involved in. Only @& of the respondents claimed

5/11 Volume 33 (2010)

The ECEASST Document Class @

any code review for the software they are involved with. Tiisomewhat surprising as almost
40% of the respondents did not claim any code review on thejepts.

Of those who did affirm code review, over a third claimed tleaiaews are performed before
any source code is committed to the code base. Around 30%afgomed that some review is
performed randomly and before product release.

An important element of code review is inspection of coddtemi by others. Over a quarter
of those surveyed affirmed that they regularly review othedde with just over 30% claiming
occasional review of other’s code. Ony under 10% said theg Im&ver reviewed source code
written by others. This reflects very well highlighting acstg ethos of evaluation and self-
regulation amongst the section of the OSS community.

4.3 Testing

There is strong evidence that developers have the primappnsibility for testing according to
the 93% of the respondents. Testing is also left to users entwlf of the projects. Dedicated
individuals for quality and assurance are also identifieeblmr 27% of the respondents. Over
42% of the projects are said to have some formal testing groee

The type of testing carried out is of interest here: nearBo48 the respondents identified a
black box approach to testing, with a similar 40% identifyia white box approach. For unit
tests, over 35% of the developers mentiostatement testingver 21% mentionegdath/branch
testing over 17% mentionebtbop testingand just under 6% claimingutation testingA range
of testing techniques are adopted by OSS projects. Wheredffe identify multiple techniques,
survey respondents affirmed functional testing is adopyealbr 67% of the projects, with some
form of system testing by over 42%, regression testing by 4266, integration testing by just
under 39% and acceptance testing by under 19%.

Over two-thirds of the projects affirmed a continuous scledr testing, with over a third
also claiming pre-release testing. Post-release testsgalgo highlighted by around 10% of the
projects. Only under a quarter of the projects keep any fdretatistical testing for future use
and analysis.

4.4 Release management

Clear and consistent release procedures are importantdfS$ project is to provide a coordi-
nated and timely delivery. Our survey reveals over half ef phoject leaders to have complete
release authority with under 20% of the projects also atgwgore developers to have authority
over release. Some projects also identified dedicatedsel@aproduct managers having release
authority.

Of the projects surveyed, just under 30% release every sirtmpwith 11% releasing every
quarter and a similar percentage every year. Nearly halHeptojects releasghen readywith
just over 15% releasing dixed datesa similar number releasingften and earlyand only under
10% releasing fofixed features

The decision to release is as important as the frequency:58% of our respondents affirmed
that core team consensus is the basis for release. Almostdaalko rely on single release
authority’s decision, with a similar number also citing k&trdemands, committers’ consensus

Proc. OpenCert 2010 6/11

@ ECEASST

and zero bug reporting in beta release also as contribuaictors.

45 Tools

In this section the most commonly tools identified by the syrkespondents are highlighted.
This is helpful as it offers some insight into the choice aflsofor OSS.

45.1 Version Control

Version control systems are undoubtedly crucial for OS®ld@ment as they allow management
of changes to source code and documents. Our survey revdalerSion as the most common
version control system used, followed by Git and CVS. Sorherathoices are Mercurial, Bazaar
and Darcs. Only Git and Mercurial are distributed systenia psoviding no central source base
and different branches holding different parts of the code.

TortoiseSVN is the most popular client for those who havera#i the use of Subversion.
RapidSVN, Textmate SVN and KDESvn are some of the othertsliglentified.

4.5.2 Issue Tracking

Issue tracking systems allow individual or groups of depets to keep track of outstanding bugs
or issues effectively. Mantis, Bugzilla and Trac are the rpopular issue tracking systems iden-
tified in our survey. Issue trackers provided by Sourcefo@@ogle, Codeplex and Launchpad
are also identified. Other similar systems mentioned irelll&A, FogBugz, Roundup, Zentrack
and YouTrack, demonstrating a very wide variety of systamsse.

4.5.3 Testing tools

A huge variety of tools supporting testing are identified ur survey including JUnit, easy-
mock, PhpUnit, CTest, DUnit, Litmus, nosetests, PythontTast, QUnit, Selenium, Hudson,
buildbot, NUnit, MsTests, ReSharper, TestDriven, NCov@pe Unit testing, Ruby unit test,
Squish (Froglogic), NUnit, MbUnit, GNU autotools, Pootiealacheck, Maven Invoker Plugin,
MyTAP and GTest. There is no clear pattern for a single mopufaw tool, perhaps due to the
nature of the activity involved.

45.4 Peer Review

Smart Bear Code Collaborator, Fisheye, Bugzilla, EclipstRootle are some of the most pop-
ular tools identified.

4.5.5 Build System

A wide variety of build systems are identified including Altake, Automake, CMake, Gnu Au-
totools, Tinderbox, Hudson, Bamboo, NAnt, MsBuild, Mav&BT (Scala-based Simple Build
Tool), XCode, Python setuptools, Buildout, buildbot, Mt@Build, Rake (Ruby), TeamCity,
PEAR (PHP Extension and Application Repository) and Eelips

7111 Volume 33 (2010)

The ECEASST Document Class @

4.5.6 Documentation System

The most common documentation system identified in the gusv@oxygen, which offers sup-
port for both on-line and off-line documentation from a skesaurce files. Other tools identified
include Epydoc and Sphinx (for generating APl documentiatio Python), Javadoc (for gener-
ating API documentation in HTML format from source code)n&eastle, DocProject, Delph-
iCodeToDoc, phpDocumentor (phpDoc) and RDoc.

4.5.7 Integrated Development Environment

Eclipse has been recognised as the most common developlatotrp amongst the community

surveyed. Other notable tools mentioned include CodeMisyalStudio, ReSharper, Quanta
HTML editor, TextMate, Kate, Delphi, Lazarus, Komodo IDEgtdpad++, Qt Creator, Vim,

Emacs, Xcode, NetBeans, Eclipse-Pydev and PyPaPi.

4.6 Analysis

With over half the respondents having over 5 years of expeéeavith OSS, our survey is in-
formed by an extensively experienced group of individuséth nearly a two-third of the com-
munity contribution being as part-time, this reflects on Woéuntary yet dedicated nature of
participation by the sampled OSS community. A majority & tespondents were either project
leaders or core developers with a graduate degree.

Needless to say, most projects claim to have some proceaptade for controlling changes
to software and supporting document. Most of them allow dereslopers to commit code with
nearly two-third also allowing active developers to comntiis is critical because it implies that
any significant changes that need to be brought in to impreveldpmental processes, would
not only require a consent on behalf of the core developettseqgfroject but also depend on their
adoption of new practice as well.

When it comes to testing, unit testing is most common withrangt focus on functional
testing. Nearly 50% of the projects are also using some fdrotooumented test cases. This
sends a strong hint as to where more rigour and assurancaim@easuld be incorporated in
OSS development in general. Strict and specific testingriical functionality could be the key
here to associate any standard evaluation of the softwaram@ncertification that may follow.

Note that projects that have adopted some formal testingeproe are also the ones where
release management is an integral part of the project.

It is interesting to observe that nearly all OSS projectsars&ide range of communication
tools and strategies with nearly all having a dedicated ebBEeature lists, mailing lists, user
and developer documentation are some of the other most camnmeghanisms in use. This
demonstrates the need for effective and efficient commtiaitghat the disparate set of users
employ to contribute to the success of OSS.

For the purposes of change of developmental practices aptiad of more rigorous means,
our survey results offers to identify a starting point. Ithe experienced members of the com-
munity that are best placed to bring about this change. Tlig appear counterintuitive as
developers who are in set their ways are least likely to batagd change. The results, however,
reveal that it is indeed the most experienced (those with®years of experience) of developers

Proc. OpenCert 2010 8/11

@ ECEASST

who perform peer review, and are responsible for testindnein projects, and have the ability to
commit code and authority to release. Of those with lessperance, a very small proportion
fall in this category.

5 Conclusion

The work presented in this paper came out of a desire to uladiekshe OSS developer com-
munity better and the state of current development pratitae accuracy of the survey results
presented in this paper is undoubtedly subject to the sudesign and the target population. It
serves however to provide a snapshot which is both usefuiraichtive of further inquiry.

The motivation behind this work follows from earlier work $0§ that encourages a more
rigorous approach to software development and testingmilie OSS community. Any such
change therefore has to be brought about carefully. Thétsesfithis paper serve to highlight a
prevailing structure of OSS projects, which should be tadvrantage of. The leadership for any
such initiative should also ideally come from within the goomity. This will facilitate adoption
and better stands to influence the younger and future gémesatf developers who are to follow.

5.1 Future work

The target population for this survey has provided with & sample of the community some
of whom could be targeted for further inquiry. Following thervey, we are currently in the
process of setting up a shorter follow-up survey to exploeegerceptions of formal methods
and more rigorous methods alike for adoption by the commuApects of software modelling
and verification, assurance and certification will be exgdloVe hope to report on the results of
this follow-up survey soon. These results will undoubtealigvide us with a platform for more
concrete proposals for change.

Acknowledgements: The authors would like to thank Shahida Bibi at Internatidsimic
University for her assistance with data collection for {béger.

Bibliography

[CS08] A. Cerone, S. A. Shaikh. Incorporating Formal Methadthe Open Source Soft-
ware Development Process. limernational Workshops on Foundations and Tech-
niques bringing together Free/Libre Open Source Softward Bormal Methods
(FLOSS-FM 2008) & 2nd International Workshop on Foundadiamd Techniques
for Open Source Software Certification (OpenCert 20Q8)U-1IST Research Re-
port 398, pp. 26—34. 2008.

[DRWO03] A. Dunsmore, M. Roper, M. Wood. The development awadlation of three di-
verse techniques for object-oriented code inspectBE transactions on software
engineering29(8):677—686, 2003.

9/11 Volume 33 (2010)

The ECEASST Document Class @

[Ema0l] K. E. Emam. Software Inspection Best Practiéggle Project Management Advi-
sory Service(9), 2001.

[Ere03] J. R. Erenkrantz. Release management within op@rcerojectsProceedings of
the Third Workshop on Open Source Software EngineerindlaPal, Oregon 2003.

[GAO4] C. Gacek, B. Arief. The Many Meanings of Open Sout&EE Software21(1):34—
40, 2004.

[GBBZ03] S. Greiner, B. Boskovic, J. Brest, V. Zumer. Setuissues in information systems
based on open source technologiE’ ROCON 2003.

[HS02] T. Halloran, W. Scherlis. High quality and open s@usoftware practice@nd Work-
shop on Open Source Software Engineering, Internationaif€ence on Software
Engineering pp. 19-25, 2002.

[KENUO7] G. Koru, K. E. Emam, A. Neisa, M. Umarji. A Survey ofudlity Assurance Prac-
tices in Biomedical Open Source Software Projedturnal of Medical Internet
Researct9(2):e8, May 2007.

[Lau09] LaunchPad Home pagetps://launchpad.ngt2009.
https://launchpad.net/

[MFH99] A. Mockus, R. Fielding, J. Herbsleb. A Case Study @fe@ Source Software Devel-
opment: The Apache Servétroceedings of the 22nd International Conference on
Software Engineering (ICSE), Los Angeles, @B 263-272, 1999.

[MFHO2] A. Mockus, R. Fielding, J. D. Herbsleb. Two Case $gdf Open Source Software
Development: Apache and MozillACM Transactions on Software Engineering
and Methodology 1(3):309-346, 2002.

[MHPO7] M. Michlmayr, F. Hunt, D. Probert. Release managenie free software projects:
Practices and problemB:IP International Federation for Information Processing
Open Source Development, Adoption and Innova2igfh:295-300, 2007.

[MicO5] M. Michlmayr. Software Process Maturity and the Sess of Free Software
Projects.Software Engineering: Evolution and Emerging Technoledig0:3—-14,
2005.

[MicO7] M. Michimayr. Quality Improvement in Volunteer Free and Open Source aoftw
Projects — Exploring the Impact of Release Managen®D thesis, University of
Cambridge, UK, 2007.

[OMKO08] T. Otte, R. Moreton, H. D. Knoell. Applied Quality Asirance Methods under the
Open Source Development ModtEE 32nd International Computer Software and
Applications Conference (COMPSAQ@p. 1247-1252, 2008.

Proc. OpenCert 2010 10/11

https://launchpad.net/
https://launchpad.net/

E

ECEASST

[RFLO5]

[RMO2]

[Rob02]

[SCO9]

[Sca03]

[Scal7]

[SFF+06]

[Sou09]

[Sta02]

[YK]

[ZEOO]

[ZEO3]

J. Robbins, H. Fitzgerald, S. Lakhani. Adopting @@ource Software Engineering
(OSSE) Practices by Adopting OSSE Todtsrspectives on Free and Open Source
Software pp. 245-264, 2005.

C. R. Reis, R. P. de Mattos Fortes. An overview of thitvgare engineering process
and tools in the mozilla projeciVorkshop on OSS Development, Newcastle upon
Tyne, UK pp. 162-182, 2002.

J. E. Robbins. Adopting OSS methods by adopting @88&.t2nd Workshop on
Open Source Software Engineering (co-located with 24tbriational Conference
on Software Engineering) Orlando, Florid2002.

S. A. Shaikh, A. Cerone. Towards a metric for Open S@8oftware Quality. In
Barbosa et al. (eds.Foundations and Techniques for Open Source Certification
2009 Electronic Communication of the European Association affv@are Science
and Technology (ECEASST) 20. 2009.

W. Scacchi. Issues and Experiences in Modeling Gmemce Software Develop-
ment Processes. In Proceedings of the 3rd ICSE workshop on Open Source Soft-
ware EngineeringPp. 121-125. 2003.

W. Scacchi. Free/Open Source Software Developm&scent Research Results
and Emerging Oppurtunitie®roceedings of the the 6th joint meeting of the Euro-
pean software engineering conference and the ACM SIGSORpasium on The
foundations of software engineering007.

W. Scacchi, J. Feller, B. Fitzgerald, S. Hissam, K. LakhaJnderstanding
Free/Open Source Software Development Proce&atware Process: Improve-
ment and Practicd1(2):95-105, 2006.

SourceForge Home padpip://sourceforge.net2009.
http://sourceforge.net/

J. Stark. Peer reviews as a quality managementitpehin open-source software
development projectsEuropean Conference on Software Qualipp. 340-350,
2002.

Y. Ye, K. Kishida. Toward an understanding of the motizen Open Source Software

developersProceedings of the 25th International Conference on Soé\Eagineer-
ing, pp. 364-374.

L. Zhao, S. Elbaum. A survey on quality related atiéd& in open sourceACM
SIGSOFT Software Engineering Natpp. 53-57, 2000.

L. Zhao, S. Elbaum. Quality assurance under the opernce development model.
The Journal of Systems and Softw&665-75, 2003.

11711

Volume 33 (2010)

http://sourceforge.net/
http://sourceforge.net/

	Introduction
	Rest of this paper

	Related work
	Research Design
	Results and Analysis
	Developer and project profile
	Peer Review
	Testing
	Release management
	Tools
	Version Control
	Issue Tracking
	Testing tools
	Peer Review
	Build System
	Documentation System
	Integrated Development Environment

	Analysis

	Conclusion
	Future work

