
Electronic Communications of the EASST
Volume 33 (2010)

Proceedings of the
Fourth International Workshop on
Foundations and Techniques for

Open Source Software Certification
(OpenCert 2010)

Methodologies and Tools for OSS: Current State of the Practice

Zulqarnain Hashmi, Siraj A. Shaikh and Naveed Ikram

11 pages

Guest Editors: Luis S. Barbosa, Antonio Cerone, Siraj A. Shaikh
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Methodologies and Tools for OSS: Current State of the Practice

Zulqarnain Hashmi1, Siraj A. Shaikh2 and Naveed Ikram1

1 zulqarnain@iiu.edu.pk, naveed.ikram@iiu.edu.pk
Department of Software Engineering,

Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad, Pakistan

2 s.shaikh@coventry.ac.uk
Department of Computing and the Digital Environment,

Faculty of Engineering and Computing,
Coventry University, Coventry, United Kingdom

Abstract: Over the years, the Open Source Software (OSS) development has ma-
tured and strengthened, building on some established methodologies and tools. An
understanding of the current state of the practice, however, is still lacking. This pa-
per presents the results of a survey of the OSS developer community with a view
to gain insight of peer review, testing and release management practices, along with
the current tool sets used for testing, debugging and, buildand release management.
Such an insight is important to appreciate the obstacles to overcome to introduce cer-
tification and more rigour into the development process. It is hoped that the results
of this survey will initiate a useful discussion and allow the community to identify
further process improvement opportunities for producing better quality software.

Keywords: Open Source, Testing, Debugging, Release Management, PeerReview.

1 Introduction

Open Source Software (OSS) is becoming popular both in business communities and academic
sectors. The OSS movement has proved its worth with notable products such as Linux, Apache,
MySQL and Mozilla, to name a few.

OSS development is typically initiated by a small group of people [SFF+06] and can be dis-
tinguished from traditional development in terms of volunteers involved in the development of
software dictated by their need and interest, as opposed to adedicated team of paid developers
guided by some (usually profit-making) commercial product.Such volunteers choose when and
what they want to work on with typically a very loose heirarchy, as opposed to their paid counter-
parts. The expectation of most OSS projects is that there is less support in terms of development
tools, no or very less formal design, improper project development planning, a fixed list of deliv-
erables is not available and finally no structured testing orquality assurance of the final product.
OSS projects are also less likely to be supported by project management, metrics, estimation and
scheduling tools as there is no need for strict deadlines andbalancing budgets [RFL05, Rob02].

OSS projects have been criticised for lack of clear and open detail of development processes.
Studies on Apache and Mozilla [MFH99, MFH02, RM02] usually give an informal description

1 / 11 Volume 33 (2010)

mailto:zulqarnain@iiu.edu.pk
mailto:naveed.ikram@iiu.edu.pk
mailto:s.shaikh@coventry.ac.uk


The ECEASST Document Class

of development processes which cannot be usefully replicated.
Our observation discovers that sources of information on the community, project history, work

roles and task prescription provided on several OSS projectwebsites appear mind-numbing and
ambiguous. A need for standard and clear development practices has been acknowledged [Sca03].
Sharing clear and open description of development processes, with a view to further improvisa-
tion and reuse is certainly of great interest to the wider OSScommunity [Mic05, RM02]. Our
effort is aimed at better understanding some of the development processes and behaviour within
a set of OSS projects.

We present a survey of OSS developers. The survey is essentially descriptive in nature and
lies in cross-sectional time dimensional category. The top250 OSS projects from a variety
of domains were selected from SourceForge [Sou09] and Launchpad [Lau09] on the basis of
downloading ratings. The sampling ensured that each memberof the population has an equal
probability of being selected. Download rates do not conveyquality or success but certainly of-
fers a measure of fitness for purpose as users of OSS have actively downloaded it; it is essentially
an objective measure independent of our influence [Mic05].

The hope is that this work will allow the wider community to identify process improvement
for better quality and critical software. The importance ofquality in OSS due to development
practices has already been acknowledged [SC09]. Such an insight is important to appreciate the
obstacles to overcome to introduce certification and more rigour into the development and testing
processes. Moreover, attempts to introduce the use of formal modelling and verification within
OSS developmen practices has also been suggested [CS08], though challenges have also been
identified as to who and where to initiate such changes withinthe OSS community; addressing
such challenges is of interest to us in this paper and is essentially the next step.

1.1 Rest of this paper

The rest of this paper is organised as follows. Section2 describes some of the related work. Some
past observations and the relevant trends observed are brought to attention. Section3 discusses
the methodology adopted for this effort with particular emphasis on the choice of OSS projects
targeted for the survey. This is helpful in setting the results in the overall context. Section4
presents the results of the survey. Some trends of interest are highlighted though the majority of
the results serve to affirm traditional perceptions of the OSS community. Section5 concludes
the paper and promises some future work.

2 Related work

Organisational structures, technical roles and career opportunities within the OSS community
have been widely studied [Sca07, YK]. Traditionally software engineers have been restricted to
roles like requirements analyst, software designer, programmer or code tester. In the OSS com-
munity, roles and progression (or movement) is more sundry:volunteering roles can move up and
down amongst different paths much more gracefully, with thepossibility of lateral movements
as well. Some of the recognised roles in OSS includeproject leader, core developer or member,
active developer, passive or peripheral developer, bug fixer, bug reporter, reader/active userand

Proc. OpenCert 2010 2 / 11



ECEASST

passive user, with the likely possibility of overlap. Not all of these types of roles exist in all OSS
communities, and some communities may use different names.For example, some communities
refer to core members as maintainers. The difference between bug fixer and peripheral developer
is also rather small as peripheral developers are likely to be engaged in fixing bugs.

Several developers and users examining the source code is one of the fundamental principles
that underlies OSS. Some reports show that peer review on some OSS has been performed by
millions of developers [GBBZ03]. Such code reviews are mostly done before and after any
source code is committed to the repository [HS02], performed in a distributed, asynchronous
manner. They are certainly more extensively acknowledged and accepted as part of the organi-
sational culture in OSS than in traditional development. The developers more likely to perform
them without any directions, which although not vital, may be a sign of commitment to qual-
ity within OSS projects. It is useful in detecting flaws, defects and quality of OSS, and is well
recognised in software engineering generally for its crucial role [Ema01, HS02].

In a survey [Sta02], about 9% of OSS developers claimed the peer review of the entire source
code, whereas peer review of most of the code was pointed out by 50% of the developers. Al-
though the team members vary but the main emphasis is to maximize the ability to find bugs.
The actual task is classified to be either ad-hoc or based on some checklist. The former signifies
that the reviewers team has to examine in a perfect manners todig out imperfections without any
guidance. In order to guide and facilitate reviewers in examining all defect forms, standardized
checklist of frequent faults is considered. There is good evidence that checklist-based techniques
tend to find more defects than ad-hoc techniques [DRW03].

Testing is an essential part of the software development life cycle. Recent studies establish
the uniqueness of the OSS development model with exceptionally high user involvement and
structured approach for flaw/bug handling process, in the context of testing for OSS [OMK08].
Unit testing is the most frequent in OSS development. Pre-release testing on broader perspectives
is less common, with the idea being that the released candidate is dealt with by the users and its
flaws reported.

Pre-release testing is not commonly demonstrated and formal testing is even not implemented
for most of the OSS development [HS02, GA04]. With confidence in code peer reviewed, many
OSS developers are content with only minor testing [Sta02]. Some other sources go as far as to
claim that over 80% of OSS developers dont have any plans of testing [ZE00].

There is no specific evidence with regards to automated toolsbut debuggers are widely ac-
knowledged [ZE00]. For regression tests, about 48% of OSS projects follow baseline testing,
whereas proportion is relatively higher in mega projects [ZE03]. A study conducted on the
Apache project revealed that no system testing or regression was performed [MFH02]. Further
analysis reports that while regression test suites were available for Apache they were not actually
mandatory [Ere03]. This complements with suggestions that improvement is required in quality
assurance practices, applied processes and project success criteria [OMK08].

Release management is a vital part in OSS development. Michlmayar [Mic07] presents a
comparative study on release management to find that it can becategorised into three types, with
respect to the concerned audience and the effort required todeliver the release:developer release
for interested developers and experienced users requiringless or no effort,major or stabilised
releasesfor end users requiring more effort to deliver with considerable new features and func-
tionality, bugs fixed and tested, andminor releases or updatesfor existing users requiring a slight

3 / 11 Volume 33 (2010)



The ECEASST Document Class

effort for stabilised release [MHP07].
More generally, a feature-based strategy is adopted in which certain criteria or goals have to

be fulfilled, or, a time-based strategy with particular dates set for release and used as orientation
for release.

3 Research Design

The research method used in this study is essentially a survey which is most common for generat-
ing primary data. This survey is descriptive in nature and lies in cross-sectional time dimensional
category. The unit of analysis is essentially individuals and OSS developers are the respondents
for this survey. The main objectives of the survey are to determine the development processes
and developmental tools being used in OSS projects.

Our population is open source developers and targeted populations are developers of recog-
nised OSS initiatives. The most important source to collectinformation about the development
processes and tools used in OSS projects are OSS communitiessuch as those accessed through
SourceForgeand LaunchPad, where thousands of OSS projects are hosted across several do-
mains.

Our selected domains arebusiness intelligence and performance management, digital archiv-
ing, CMS systems, CRM, e-commerce, ERP, email client, frameworks, message boards, project
management, scheduling, site management, social networking, ticketing systemsandwiki. We
selected the top 250 OSS projects from these domains on the basis of downloading ratings from
SourceForge [Sou09] and Launchpad [Lau09]. We have chosen a systematic sampling method
where each member of the population has an equal probabilityof being selected.

Note that we use the download rate to define success. Downloads do not convey quality or
success of OSS but certainly offers a measure of fitness for purpose as users of OSS have actively
downloaded it. Downloads do provide the advantage as a measure as it is objective and dependent
on the users [Mic05].

We designed an online questionnaire consisting of 33 questions in total. We drew inspiration
from [KENU07] for questions relating to peer review and testing of software. Validity and
reliability are the main priorities in surveys. There is a need of for pilot testing to assess the
questionnaire clarity, understandability, comprehensiveness and acceptability. Surveys should
be adequately pre-tested to check that the respondents understand the meaning of the questions
or statements and to gauge whether test items are at an appropriate level of difficulty.

We validated our questionnaires by faculty members and OSS industry experts and their re-
liability was determined by getting few responses from the population. Participants were given
an opportunity to offer comments on the structure of the questions including clarity, relevance
to the objectives of the study, level of difficulty and lengthof the survey. Several changes were
made to improve the experience as per the feedback.

A detailed search was undertaken to identify projects whichexisted with the same name under
different domains. 250 projects were identified after eliminating duplications. Once the list of
OSS projects was decided, names and contact details of the respective developers were collected
(from their hosting websites). Some developers were also involved in more than one project,
which were also excluded for duplication. We restricted answers in our questionnaire for a

Proc. OpenCert 2010 4 / 11



ECEASST

specific project.

4 Results and Analysis

This section presents the results of our survey. Section4.1 discusses the profile of projects
and individuals who responded to the survey. This sets the context for the following sections
which delve into peer review practices in Section4.2, testing strategies in Section4.3, release
management in Section4.4 and the use of tools in Section4.5. Section4.6 provides a brief
analysis on the results commenting on the aspects that are ofparticular interest.

4.1 Developer and project profile

Over 58% of the total developers surveyed have more than 5 years of experience working with
OSS. Of the rest, over 18% have 3 to 5 years, over 17% have 1 to 3 years and just under 5%
of the developers have less than one year of experience working with OSS. Over 3% preferred
not to answer. Over 36% of the total developers who respondedclaimed a graduate degree,
with over 25% holding a masters degree and just under 12% holding a doctoral degree. Over
31% of the total respondents identified themselves as project leader, over 25% as core developer,
over 10% as active developer and over 9% as passive developer. Just over 7% claimed project
management and over 3% bug reporter roles. Just under 12% fell in the other category, which
included translator and community manager roles. Out of thetotal respondents, over 61% of the
developers participate only part-time participation whereas over 24% are as dedicated full-time.
A small percentage, just over 14%, described their participation as either infree time, voluntarily
or occassional.

When asked about information provision and dissemination for their OSS projects, over 96%
of the respondents claimed that their project has a dedicated website. Of other similar resources,
over 91% identified announcements, over 87% provide some form of user documentation and
just over 81% mentioned a feature list advertised for the project. Mailing lists, tutorials and
to-do lists were also identified by well over 50% of the respondents. Some other avenues for
communications identified included code collaborator, repositories, forums and case studies pro-
vided for the users.

For internal communication a variety of resources were identified including mailing lists (by
over 76%), threaded discussion forums (60%), IRC/chat/instant messaging (over 55%), news-
groups (over 17%), community digests (just under 13%) and other resources such as XMPP, bug
trackers, wiki sites and micro blogging (over 16%).

The authority to commit code varies from project to project,with the majority allowing core
developers (just under 92%) to commit. Over 60% mentioned active developers and over a
quarter mentioned passive developers with the ability to commit.

4.2 Peer Review

The survey reveals that software testing and release management are far more prevalent than
code review, with over 87% confirming that some form of testing and release management is
carried out on the OSS project they are involved in. Only over61% of the respondents claimed

5 / 11 Volume 33 (2010)



The ECEASST Document Class

any code review for the software they are involved with. Thisis somewhat surprising as almost
40% of the respondents did not claim any code review on their projects.

Of those who did affirm code review, over a third claimed that reviews are performed before
any source code is committed to the code base. Around 30% alsoconfirmed that some review is
performed randomly and before product release.

An important element of code review is inspection of code written by others. Over a quarter
of those surveyed affirmed that they regularly review other’s code with just over 30% claiming
occasional review of other’s code. Ony under 10% said they have never reviewed source code
written by others. This reflects very well highlighting a strong ethos of evaluation and self-
regulation amongst the section of the OSS community.

4.3 Testing

There is strong evidence that developers have the primary responsibility for testing according to
the 93% of the respondents. Testing is also left to users on over half of the projects. Dedicated
individuals for quality and assurance are also identified byover 27% of the respondents. Over
42% of the projects are said to have some formal testing procedure.

The type of testing carried out is of interest here: nearly 45% of the respondents identified a
black box approach to testing, with a similar 40% identifying a white box approach. For unit
tests, over 35% of the developers mentionedstatement testing, over 21% mentionedpath/branch
testing, over 17% mentionedloop testingand just under 6% claimingmutation testing. A range
of testing techniques are adopted by OSS projects. When offered to identify multiple techniques,
survey respondents affirmed functional testing is adopted by over 67% of the projects, with some
form of system testing by over 42%, regression testing by over 42%, integration testing by just
under 39% and acceptance testing by under 19%.

Over two-thirds of the projects affirmed a continuous schedule for testing, with over a third
also claiming pre-release testing. Post-release testing was also highlighted by around 10% of the
projects. Only under a quarter of the projects keep any form of statistical testing for future use
and analysis.

4.4 Release management

Clear and consistent release procedures are important if anOSS project is to provide a coordi-
nated and timely delivery. Our survey reveals over half of the project leaders to have complete
release authority with under 20% of the projects also allowing core developers to have authority
over release. Some projects also identified dedicated release or product managers having release
authority.

Of the projects surveyed, just under 30% release every six months, with 11% releasing every
quarter and a similar percentage every year. Nearly half of the projects releasewhen ready, with
just over 15% releasing onfixed dates, a similar number releasingoften and earlyand only under
10% releasing forfixed features.

The decision to release is as important as the frequency: over 55% of our respondents affirmed
that core team consensus is the basis for release. Almost a third also rely on single release
authority’s decision, with a similar number also citing market demands, committers’ consensus

Proc. OpenCert 2010 6 / 11



ECEASST

and zero bug reporting in beta release also as contributing factors.

4.5 Tools

In this section the most commonly tools identified by the survey respondents are highlighted.
This is helpful as it offers some insight into the choice of tools for OSS.

4.5.1 Version Control

Version control systems are undoubtedly crucial for OSS development as they allow management
of changes to source code and documents. Our survey reveals Subversion as the most common
version control system used, followed by Git and CVS. Some other choices are Mercurial, Bazaar
and Darcs. Only Git and Mercurial are distributed systems asin providing no central source base
and different branches holding different parts of the code.

TortoiseSVN is the most popular client for those who have affirmed the use of Subversion.
RapidSVN, Textmate SVN and KDESvn are some of the other clients identified.

4.5.2 Issue Tracking

Issue tracking systems allow individual or groups of developers to keep track of outstanding bugs
or issues effectively. Mantis, Bugzilla and Trac are the most popular issue tracking systems iden-
tified in our survey. Issue trackers provided by Sourceforge, Google, Codeplex and Launchpad
are also identified. Other similar systems mentioned include JIRA, FogBugz, Roundup, Zentrack
and YouTrack, demonstrating a very wide variety of systems in use.

4.5.3 Testing tools

A huge variety of tools supporting testing are identified in our survey including JUnit, easy-
mock, PhpUnit, CTest, DUnit, Litmus, nosetests, Python UnitTest, QUnit, Selenium, Hudson,
buildbot, NUnit, MsTests, ReSharper, TestDriven, NCover,Zope Unit testing, Ruby unit test,
Squish (Froglogic), NUnit, MbUnit, GNU autotools, Pootle,scalacheck, Maven Invoker Plugin,
MyTAP and GTest. There is no clear pattern for a single most popular tool, perhaps due to the
nature of the activity involved.

4.5.4 Peer Review

Smart Bear Code Collaborator, Fisheye, Bugzilla, Eclipse and Pootle are some of the most pop-
ular tools identified.

4.5.5 Build System

A wide variety of build systems are identified including Ant,Make, Automake, CMake, Gnu Au-
totools, Tinderbox, Hudson, Bamboo, NAnt, MsBuild, Maven,SBT (Scala-based Simple Build
Tool), XCode, Python setuptools, Buildout, buildbot, Module::Build, Rake (Ruby), TeamCity,
PEAR (PHP Extension and Application Repository) and Eclipse.

7 / 11 Volume 33 (2010)



The ECEASST Document Class

4.5.6 Documentation System

The most common documentation system identified in the survey is Doxygen, which offers sup-
port for both on-line and off-line documentation from a set of source files. Other tools identified
include Epydoc and Sphinx (for generating API documentation for Python), Javadoc (for gener-
ating API documentation in HTML format from source code), Sandcastle, DocProject, Delph-
iCodeToDoc, phpDocumentor (phpDoc) and RDoc.

4.5.7 Integrated Development Environment

Eclipse has been recognised as the most common development platform amongst the community
surveyed. Other notable tools mentioned include CodeLite,VisualStudio, ReSharper, Quanta
HTML editor, TextMate, Kate, Delphi, Lazarus, Komodo IDE, Notepad++, Qt Creator, Vim,
Emacs, Xcode, NetBeans, Eclipse-Pydev and PyPaPi.

4.6 Analysis

With over half the respondents having over 5 years of experience with OSS, our survey is in-
formed by an extensively experienced group of individuals.With nearly a two-third of the com-
munity contribution being as part-time, this reflects on thevoluntary yet dedicated nature of
participation by the sampled OSS community. A majority of the respondents were either project
leaders or core developers with a graduate degree.

Needless to say, most projects claim to have some procedure in place for controlling changes
to software and supporting document. Most of them allow coredevelopers to commit code with
nearly two-third also allowing active developers to commit. This is critical because it implies that
any significant changes that need to be brought in to improve developmental processes, would
not only require a consent on behalf of the core developers ofthe project but also depend on their
adoption of new practice as well.

When it comes to testing, unit testing is most common with a strong focus on functional
testing. Nearly 50% of the projects are also using some form of documented test cases. This
sends a strong hint as to where more rigour and assurance measures could be incorporated in
OSS development in general. Strict and specific testing for critical functionality could be the key
here to associate any standard evaluation of the software and any certification that may follow.

Note that projects that have adopted some formal testing procedure are also the ones where
release management is an integral part of the project.

It is interesting to observe that nearly all OSS projects usean wide range of communication
tools and strategies with nearly all having a dedicated website. Feature lists, mailing lists, user
and developer documentation are some of the other most common mechanisms in use. This
demonstrates the need for effective and efficient communication that the disparate set of users
employ to contribute to the success of OSS.

For the purposes of change of developmental practices and adoption of more rigorous means,
our survey results offers to identify a starting point. It isthe experienced members of the com-
munity that are best placed to bring about this change. This may appear counterintuitive as
developers who are in set their ways are least likely to be agents of change. The results, however,
reveal that it is indeed the most experienced (those with over 5 years of experience) of developers

Proc. OpenCert 2010 8 / 11



ECEASST

who perform peer review, and are responsible for testing on their projects, and have the ability to
commit code and authority to release. Of those with lesser experience, a very small proportion
fall in this category.

5 Conclusion

The work presented in this paper came out of a desire to understand the OSS developer com-
munity better and the state of current development practices. The accuracy of the survey results
presented in this paper is undoubtedly subject to the surveydesign and the target population. It
serves however to provide a snapshot which is both useful andindicative of further inquiry.

The motivation behind this work follows from earlier work [CS08] that encourages a more
rigorous approach to software development and testing within the OSS community. Any such
change therefore has to be brought about carefully. The results of this paper serve to highlight a
prevailing structure of OSS projects, which should be takenadvantage of. The leadership for any
such initiative should also ideally come from within the community. This will facilitate adoption
and better stands to influence the younger and future generations of developers who are to follow.

5.1 Future work

The target population for this survey has provided with a rich sample of the community some
of whom could be targeted for further inquiry. Following thesurvey, we are currently in the
process of setting up a shorter follow-up survey to explore the perceptions of formal methods
and more rigorous methods alike for adoption by the community. Aspects of software modelling
and verification, assurance and certification will be explored. We hope to report on the results of
this follow-up survey soon. These results will undoubtedlyprovide us with a platform for more
concrete proposals for change.

Acknowledgements: The authors would like to thank Shahida Bibi at International Islamic
University for her assistance with data collection for thispaper.

Bibliography

[CS08] A. Cerone, S. A. Shaikh. Incorporating Formal Methods in the Open Source Soft-
ware Development Process. InInternational Workshops on Foundations and Tech-
niques bringing together Free/Libre Open Source Software and Formal Methods
(FLOSS-FM 2008) & 2nd International Workshop on Foundations and Techniques
for Open Source Software Certification (OpenCert 2008). UNU-IIST Research Re-
port 398, pp. 26–34. 2008.

[DRW03] A. Dunsmore, M. Roper, M. Wood. The development and evaluation of three di-
verse techniques for object-oriented code inspection.IEEE transactions on software
engineering29(8):677–686, 2003.

9 / 11 Volume 33 (2010)



The ECEASST Document Class

[Ema01] K. E. Emam. Software Inspection Best Practices.Agile Project Management Advi-
sory Service2(9), 2001.

[Ere03] J. R. Erenkrantz. Release management within open source projects.Proceedings of
the Third Workshop on Open Source Software Engineering, Portland, Oregon, 2003.

[GA04] C. Gacek, B. Arief. The Many Meanings of Open Source.IEEE Software21(1):34–
40, 2004.

[GBBZ03] S. Greiner, B. Boskovic, J. Brest, V. Zumer. Security issues in information systems
based on open source technologies.EUROCON, 2003.

[HS02] T. Halloran, W. Scherlis. High quality and open source software practices.2nd Work-
shop on Open Source Software Engineering, International Conference on Software
Engineering, pp. 19–25, 2002.

[KENU07] G. Koru, K. E. Emam, A. Neisa, M. Umarji. A Survey of Quality Assurance Prac-
tices in Biomedical Open Source Software Projects.Journal of Medical Internet
Research9(2):e8, May 2007.

[Lau09] LaunchPad Home page.https://launchpad.net/, 2009.
https://launchpad.net/

[MFH99] A. Mockus, R. Fielding, J. Herbsleb. A Case Study of Open Source Software Devel-
opment: The Apache Server.Proceedings of the 22nd International Conference on
Software Engineering (ICSE), Los Angeles, CA, pp. 263–272, 1999.

[MFH02] A. Mockus, R. Fielding, J. D. Herbsleb. Two Case Studies of Open Source Software
Development: Apache and Mozilla.ACM Transactions on Software Engineering
and Methodology11(3):309–346, 2002.

[MHP07] M. Michlmayr, F. Hunt, D. Probert. Release management in free software projects:
Practices and problems.IFIP International Federation for Information Processing,
Open Source Development, Adoption and Innovation234:295–300, 2007.

[Mic05] M. Michlmayr. Software Process Maturity and the Success of Free Software
Projects.Software Engineering: Evolution and Emerging Technologies 130:3–14,
2005.

[Mic07] M. Michlmayr. Quality Improvement in Volunteer Free and Open Source Software
Projects – Exploring the Impact of Release Managemen. PhD thesis, University of
Cambridge, UK, 2007.

[OMK08] T. Otte, R. Moreton, H. D. Knoell. Applied Quality Assurance Methods under the
Open Source Development Model.IEEE 32nd International Computer Software and
Applications Conference (COMPSAC), pp. 1247–1252, 2008.

Proc. OpenCert 2010 10 / 11

https://launchpad.net/
https://launchpad.net/


ECEASST

[RFL05] J. Robbins, H. Fitzgerald, S. Lakhani. Adopting Open Source Software Engineering
(OSSE) Practices by Adopting OSSE Tools.Perspectives on Free and Open Source
Software, pp. 245–264, 2005.

[RM02] C. R. Reis, R. P. de Mattos Fortes. An overview of the software engineering process
and tools in the mozilla project.Workshop on OSS Development, Newcastle upon
Tyne, UK, pp. 162–182, 2002.

[Rob02] J. E. Robbins. Adopting OSS methods by adopting OSS tools. 2nd Workshop on
Open Source Software Engineering (co-located with 24th International Conference
on Software Engineering) Orlando, Florida, 2002.

[SC09] S. A. Shaikh, A. Cerone. Towards a metric for Open Source Software Quality. In
Barbosa et al. (eds.),Foundations and Techniques for Open Source Certification
2009. Electronic Communication of the European Association of Software Science
and Technology (ECEASST) 20. 2009.

[Sca03] W. Scacchi. Issues and Experiences in Modeling OpenSource Software Develop-
ment Processes. InIn Proceedings of the 3rd ICSE workshop on Open Source Soft-
ware Engineering. Pp. 121–125. 2003.

[Sca07] W. Scacchi. Free/Open Source Software Development: Recent Research Results
and Emerging Oppurtunities.Proceedings of the the 6th joint meeting of the Euro-
pean software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, 2007.

[SFF+06] W. Scacchi, J. Feller, B. Fitzgerald, S. Hissam, K. Lakhani. Understanding
Free/Open Source Software Development Processes.Software Process: Improve-
ment and Practice11(2):95–105, 2006.

[Sou09] SourceForge Home page.http://sourceforge.net/, 2009.
http://sourceforge.net/

[Sta02] J. Stark. Peer reviews as a quality management technique in open-source software
development projects.European Conference on Software Quality, pp. 340–350,
2002.

[YK] Y. Ye, K. Kishida. Toward an understanding of the motivation Open Source Software
developers.Proceedings of the 25th International Conference on Software Engineer-
ing, pp. 364–374.

[ZE00] L. Zhao, S. Elbaum. A survey on quality related activities in open source.ACM
SIGSOFT Software Engineering Notes, pp. 53–57, 2000.

[ZE03] L. Zhao, S. Elbaum. Quality assurance under the open source development model.
The Journal of Systems and Software66:65–75, 2003.

11 / 11 Volume 33 (2010)

http://sourceforge.net/
http://sourceforge.net/

	Introduction
	Rest of this paper

	Related work
	Research Design
	Results and Analysis
	Developer and project profile
	Peer Review
	Testing
	Release management
	Tools
	Version Control
	Issue Tracking
	Testing tools
	Peer Review
	Build System
	Documentation System
	Integrated Development Environment

	Analysis

	Conclusion
	Future work


