Electronic Communications of the EASST

Volume 33 (2010)

Proceedings of the
Fourth International Workshop on
Foundations and Techniques for
Open Source Software Certification
(OpenCert 2010)

Clang and Coccinelle: Synergising program analysis tools
for CERT C Secure Coding Standard certification

Mads Chr. Olesen, René Rydhof Hansen, Julia L. Lawall, Nicolas Palix

18 pages

Guest Editors: Luis S. Barbosa, Antonio Cerone, Siraj A. Shaikh

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Clang and Coccinelle: Synergising program analysis tools
for CERT C Secure Coding Standard certification

Mads Chr. Olesen', René Rydhof Hansen', Julia L. Lawall’, Nicolas Palix”

Lrrh,mchro @cs.aau.dk, http://www.cs.aau.dk
2julia,npalix @diku.dk, http://www.diku.dk

Abstract: Writing correct C programs is well-known to be hard, not least due to
the many language features intrinsic to C. Writing secure C programs is even harder
and, at times, seemingly impossible. To improve on this situation the US CERT has
developed and published a set of coding standards, the “CERT C Secure Coding
Standard”, that (in the current version) enumerates 118 rules and 182 recommenda-
tions with the aim of making C programs (more) secure. The large number of rules
and recommendations makes automated tool support essential for certifying that a
given system is in compliance with the standard.

In this paper we report on ongoing work on integrating two state of the art analysis
tools, Clang and Coccinelle, into a combined tool well suited for analysing and
certifying C programs according to, e.g., the CERT C Secure Coding standard or
the MISRA (the Motor Industry Software Reliability Assocation) C standard. We
further argue that such a tool must be highly adaptable and customisable to each
software project as well as to the certification rules required by a given standard.

Clang is the C frontend for the LLVM compiler/virtual machine project which in-
cludes a comprehensive set of static analyses and code checkers. Coccinelle is a
program transformation tool and bug-finder developed originally for the Linux ker-
nel, but has been successfully used to find bugs in other Open Source projects such
as WINE and OpenSSL.

Keywords: automated tool support, CERT C Secure Coding, certification, Clang,
Coccinelle

1 Introduction

Writing correct C programs is well-known to be hard. This is, in large part, due to the many pro-
gramming pitfalls inherent in the C language and compilers, such as low-level pointer semantics,
a very forgiving type system and few, if any, run time checks. Writing a secure C program is
even more difficult, as witnessed by the proliferation of published security vulnerabilities in C
programs: even seemingly insignificant or “small” bugs may lead to a complete compromise of
security.

In an effort to improve the quality of security critical C programs, the US CERT' organisation
is maintaining and developing a set of rules and recommendations, called the CERT C Secure

! Formerly known as the US Computer Emergency Response Team (www.cert.org)

1/18 Volume 33 (2010)

mailto:rrh,mchro@cs.aau.dk
http://www.cs.aau.dk
mailto:julia,npalix@diku.dk
http://www.diku.dk
www.cert.org

Clang and Coccinelle: The best of two worlds E}

Coding Standard (CCSCS), that programmers should observe and implement in C programs in
order to ensure at least a minimal level of security. The current version of the CCSCS enumer-
ates 118 rules and 182 recommendations covering topics ranging from proper use of C prepro-
cessor directives and array handling to memory management, error handling and concurrency.
The sheer number of rules and recommendations makes it almost impossible for a human pro-
grammer to manually guarantee, or even check, compliance with the full standard. Automated
tool support for compliance checking is therefore essential.

In this paper we describe work in progress on a prototype tool for automated CCSCS com-
pliance checking. The tool is based on the open source program analysis and program trans-
formation tool Coccinelle that has been successfully used to find bugs in the Linux kernel, the
OpenSSL cryptographic library [LBP09, LLH" 10, PLM10], and other open source infrastruc-
ture software. Coccinelle is scriptable using a combination of a domain specific language, called
SmPL for Semantic Patch Language, as well as in O’Caml and Python. The scripts specify search
patterns partly based on syntax and partly on the control flow of a program. This makes Coc-
cinelle easily adaptable to new classes of errors and new codebases with distinct API usage and
code style requirements. Coccinelle does not perform program analysis in the traditional sense,
e.g., data flow analysis or range analysis. However, for the purposes of program certification and
compliance checking such analyses are essential, both to ensure soundness of the certification
and to improve precision of the tool. For this reason we integrate the Clang Static Analyzer with
Coccinelle in order to enable Coccinelle to use the analysis (and other) information found by
Clang.

The Clang Static Analyzer is part of the C frontend for the LLVM project’. In addition to clas-
sic compiler support, it also provides general support for program analysis, using the monotone
framework, and a framework for checking source code for (security) bugs. The emphasis in the
source code checkers of the Clang project is on minimising false positives (reporting “errors”
that are not really errors) and thus is likely to miss some real error cases. To further enhance
the program analysis capabilities of Clang, in particular for inter-procedural program analyses,
we have integrated a library, called WAL * for program analysis using weighted push-down
systems (WPDS)[RSIMO5] into Clang. To enable rapid prototyping and development of new or
specialised analyses, we have implemented Python bindings for the WAL library.

The rest of the paper is organised as follows. In Section 2 we give an overview of the CERT C
Secure Coding Standard including a brief description of the rule categories. Section 3 illustrates
how a few of the coding rules can be automatically checked using the Coccinelle tool. Section 4
describes how the Coccinelle rules can benefit from having access to program analysis informa-
tion. Section 5 discusses current work in progress, including experiments and the integration of
Clang and Coccinelle. Finally Section 7 concludes.

2 The CERT C Secure Coding Standard

The CERT C Secure Coding Standard (CCSCS) is a collection of rules and recommendations for
developing secure C programs. One version of the CCSCS was published in 2008 as [Sea08].

2 Web: http://clang.llvm.org
3 Web: http://www.cs.wisc.edu/wpis/wpds/

Proc. OpenCert 2010 2/18

http://clang.llvm.org
http://www.cs.wisc.edu/wpis/wpds/

Eg ECEASST

Code Short name Long name # of Rules # of Recomm.
01 PRE Preprocessor 4 12
02 DCL Declarations and Initialization 9 22
03 EXP Expressions 11 21
04 INT Integers 7 18
05 FLT Floating Point 8 6
06 ARR Arrays 8 3
07 STR Characters and Strings 9 12
08 MEM Memory Management 6 13
09 FIO Input Output 15 20
10 ENV Environment 3 5
11 SIG Signals 6 3
12 ERR Error Handling 4 8
13 API Application Programming Interfaces N/A 10
14 CON Concurrency 6 2
49 MSC Miscellaneous 10 23
50 POS POSIX 12 4

Figure 1: Categories in the CERT C Secure Coding Standard

However, in this paper we focus on the version currently being developed. The development
process is collaborative through the CCSCS’ web site*. The current version® of the CCSCS
consists of 118 rules and 182 recommendations. The rules and recommendations are divided
into 16 categories covering the core aspects of the C programming language. Figure 1 shows
an overview of these categories and a summary of the number of rules and recommendations in
each category.

2.1 Overview of the CCSCS

Experience shows that when programming in C, certain programming practises and language
features, e.g., language features with unspecified (or compiler dependent) behaviour result in
insecure programs or, at the very least, in programs that are hard to understand and check for
vulnerabilities. This experience is at the heart of the CCSCS. Many of the observed problems
arise when programmers rely on a specific compiler’s interpretation of behaviour that is unde-
fined in the ANSI standard for the C programming language (ANSI C99). Other problems are
caused, or at least facilitated, by the flexibility of the C language and the almost complete lack
of run-time checks.

Based on the observed problems, the US CERT has identified a number of key issues and de-
veloped a set of rules that specify both how to avoid problematic features and also constructively
how to use potentially dangerous constructs in a secure way, e.g., programming patterns for se-
curely handling dynamic allocation and de-allocation of memory. The rules in the CCSCS are

4 Web: https://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+Coding+Standard
3 Last checked 6 July 2010

3/18 Volume 33 (2010)

https://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+Coding+Standard

Clang and Coccinelle: The best of two worlds E}

almost all unambiguous, universal and generally applicable in the sense that they do not depend
on the specific application being developed. Furthermore the rules are, for the most part, for-
mulated at the level of individual source files or even parts of source files and thus require little
or no knowledge of the surrounding application or the context in which it is used. This makes
the rules potentially ideally suited for automated checking, although see Section 3 for a more
detailed discussion of this.

In addition to the above mentioned rules, the CCSCS also contains an even larger number
of recommendations. The recommendations often represent the best practise for programming
secure systems. In contrast to the rules, the recommendations are not limited to constructs that
are local to a single file or function, but may also cover more global issues such as how to handle
sensitive information, how to use and implement APIs, how to declare and access arrays, and so
forth. While most of the recommendations are still amenable to automated analysis, it may take
more work and, in particular, it will require configuring and specialising the automated tool to
the specific project being checked, e.g., by specifying which data in the program may contain
sensitive information or which macros that are considered safe or how to canonicalize file names.
A programmer is not required to follow the recommendations in order to be compliant with the
CCSCS.

The CCSCS is much too large to cover in detail here, instead we give a brief overview of the
different categories and the kind of (potential) errors they are designed to catch. In Section 3 we
focus on a few specific rules and discuss them in more detail.

2.2 Categories of the CCSCS

Preprocessor (01-PRE). The rules and recommendations in this category are concerned with
proper use of the C preprocessor. Most (large) C projects use preprocessor directives, especially
macro definitions, extensively. Since these can dramatically change the “look™ of a program, it
is very important at least to avoid the many common pitfalls enumerated in this category.

Many static analysis tools are not very good at checking these rules since they typically work
on the expanded code and thus do not even see the macros. This is unfortunate since a lot
semantic information can be gleaned from well-designed macros and their use.

Declarations and Initialization (02-DCL). The rules and recommendations in this category
mostly cover tricky semantics of the type system and variable declarations such as implicit types,
scopes, and conflicting linkage classifications.

The recommendations in this category codify good programming practises, e.g., using visually
distinct identifiers (DCL02-C) and using typedefs to improve code readability (DCL05-C). While
many of the recommendations can be automatically verified while others (like DCLO05-C) require
human interaction.

Expressions (03-EXP). The rules and recommendations in this category are concerned with
issues related to expressions, including (unspecified) evaluation orders, type conversions, sizes
of data types, general use of pointers, and so forth.

Below we show how rule EXP34-C (do not dereference null pointers) can be checked using
the Coccinelle tool.

Proc. OpenCert 2010 4/18

Eg ECEASST

Integers (04-INT). The rules and recommendations in this category are concerned with issues
related to proper handling of integers. The main emphasis for the rules is on avoiding overflows
and wrap-around for very large or very small integer values. Automated checking for these rules
can be difficult since that may require sophisticated data flow or interval analysis. Alternatively,
a tool can instead check that a program includes sufficient checking in the program itself to avoid
the dangerous situations. In some cases it is possible to use Coccinelle to automatically insert the
proper checks. However, inserting such checks automatically would seem to violate the point of
a security certification.

The recommendations are similarly concerned with conversions, limits and sizes of the inte-
ger types. Like the rules in this category, automated checking of the recommendations can be
difficult and require sophisticated analysis.

Floating Point (05-FLP). the rules and recommendations in this category are concerned with
issues relating to proper handling of floating point types: loss of precision, proper use of math-
ematical functions, and type conversion. Automated checking is at least as difficult as for the
integer case.

Arrays (06-ARR). The rules and recommendations in this category focus on avoiding out of
bounds array indexing and pointer access to arrays. Automated checking is likely to require
pointer analysis in order to ensure correctness and to minimise false positives.

Characters and Strings (07-STR). The rules and recommendations in this category are con-
cerned with: ensuring that strings are null terminated, proper size calculation of strings, and
bounds checking for strings.

Memory Management (08-MEM). The rules and recommendations in this category cover
some of the many pitfalls surrounding dynamic memory allocation, including not accessing freed
memory, do not “double free” memory, only freeing dynamically allocated memory and so forth.
Implementing memory management correctly is notoriously difficult and even small bugs in this
category are likely to result in a security vulnerability, e.g., a buffer overflow or a null pointer
dereference. Below we discuss rule MEM30-C (do not access freed memory) in more detail and
show how it can be checked using Coccinelle.

Input Output (09-FIO). The rules and recommendations in this category are mainly con-
cerned with the proper use of library functions for (file) input and output, including proper
opening and closing of files, creation of temporary files, as well as secure creation of format
strings.

Environment (10-ENV). The rules and recommendations in this category are concerned with
proper handling of the execution environment, i.e., environment variables, and calls to external
command processors are covered by the rules and recommendations in the ENV category.

5/18 Volume 33 (2010)

Clang and Coccinelle: The best of two worlds E}

Signals (11-SIG). The rules and recommendations in this category are concerned with raising
and handling signals in a secure manner, including ensuring that signal handlers do not call
longjmp () and do not modify or access shared objects.

Error Handling (12-ERR). The rules and recommendations in this category are concerned
with detecting and handling errors and proper handling of the er rno variable. Examples include
not modifying the e r rno variable and not relying on indeterminate values of errno. Below we
discuss the rule ERR33-C (detect and handle errors) in more detail and examine how Coccinelle
can be used to check this rule. Note that this rule is different from most other rules in that it
is actually application dependent since errors are detected and handled differently in different
applications. Consequently, in order for an automated tool to support checking of this rule, it
must be possible to customise and adapt the tool to a specific project’s error handling strategy.

Application Programming Interface (13-API). In the version of CCSCS currently under de-
velopment, this category has no rules, only recommendations, since proper API design is highly
application specific. Similar to the error handling (ERR) category above, automated tool support
requires a very adaptable tool.

Concurrency (14-CON). The rules and recommendations in this category are general obser-
vations concerning concurrent programming such as avoiding race conditions and deadlocks (by
locking in a predefined order).

Miscellaneous (49-MSC). The rules and recommendations in this category are those that do
not fit into any other category, e.g., it is recommended to compile cleanly at high warning levels
(MSCO00-C) and it is a rule that a non-void function’s flow of control never reaches the end of
the function (MSC37-C). Below we discuss rule MSC37-C (ensure that control never reaches
the end of a non-void function) in more detail and show how this rule can be checked using
Coccinelle.

POSIX (50-POS). The rules and recommendations in this category cover compliance with and
proper use of POSIX. In particular things to avoid doing with POSIX, such as calling vfork ()
and not using signals to terminate threads.

3 Compliance Checking with Coccinelle

In this section we discuss how four rules, from the CCSCS categories presented in the previous
section, can be checked using the Coccinelle tool. Before going into the details of the individual
rules, we briefly introduce Coccinelle; for lack of space we cannot give a thorough introduction
to Coccinelle and the languages used to script it, instead we refer to previous work [LBP*09,
BDH™09, PLHMOS].

The Coccinelle tool was originally developed to provide support for documenting and au-
tomating updates to Linux device drivers necessitated by a change in the underlying API, the

Proc. OpenCert 2010 6/18

Eg ECEASST

so-called collateral evolutions [PLHMOS]. Finding the right place to perform collateral evolu-
tions in a large code base requires a highly configurable and efficient engine for code searching.
In Coccinelle this engine is based on model checking of a specialised modal logic, called CTL-
VW, over program models [BDH*09] enabling search not only for specific syntactic patterns but
also for control flow patterns. Individual program searches (and transformations) are specified
in a domain specific language, called SmPL (for Semantic Patch Language), designed to be sim-
ilar to the unified patch format widely used by Linux kernel developers and other open source
developers. Such program searches are called semantic patches or even Coccinelle scripts. The
combination of easy configurability and efficient search capabilities makes Coccinelle an excel-
lent tool for searching for code patterns that may lead to potential bugs or violations of coding
standards. It has been successfully used to search for bugs in open source infrastructure soft-
ware such as the Linux kernel and the OpenSSL cryptographic library [LBP 09, LLH" 10]. The
Coccinelle tool is released under the GNU GPLv2 open source license.

3.1 DCL32-C: Guarantee that mutually visible identifiers are unique

The ANSI C99 standard for the C programming language specifies that at least 63 initial charac-
ters are significant in an identifier. Thus, identifiers that are share a 63 character long prefix may
be considered identical by the compiler. The DCL32-C rule requires that all (in scope) identifiers
are unique, i.e., must differ within the first 63 characters.

Below a Coccinelle semantic patch is shown that simply searches for all variable declarations.
This simple search forms the heart of the semantic patch used to search for potential violations
of the DCL32-C rule:

@@
type T;
identifier id;
@@

T id;

Observe that this is very similar to what a variable declaration looks like in a C program.

In Figure 2 the full semantic patch is shown. It simply collects all identifiers of length 63 or
more and warns if there are (potential) violations of the rule. The rule does not take the scope
of the declared identifiers into account and thus may give rise to unnecessary warnings (false
positives). However, since identifiers of length 63 or more are rarely used this is unlikely to be a
problem in practise. If, for a specific project, it turns out to be a problem, the semantic patch can
be extended to take more scope information into account. The semantic patch includes a simple
O’Caml script (lines 11 to 21) that collects all the found identifiers (of length 63 or more) and
adds them to a hash table. Before adding an identifer to the hash table, it is checked for collisions,
and thus potential violations, and a warning is printed if there are (potential) collisions (line 18).

The basic semantic patch searching for declarations has been augmented with a position meta-
variable denoted @pos (line 9). The position meta-variable is bound to the position (line and
column number) of each match.

7/18 Volume 33 (2010)

o - Y N I SR

Clang and Coccinelle: The best of two worlds Eﬁ

@ initialize:ocaml @
let idhash = Hashtbl.create 128

@ decl @
type T;
identifier id;
position pos;
@@

T id@pos;

@ script:ocaml @
p << decl.pos;
x << decl.id;
@@
if (String.length(x)) >= 63 then

let sid = String.sub x 0 63 in

let _ = if (Hashtbl.mem idhash sid) then

print_endline (warn p "DCL32-C" "Found_long, (%d) _identifier /'%s’"
(String.length(x)) x)
else () in
Hashtbl.add idhash sid (x,p)

Figure 2: Coccinelle script to find “long” identifiers.

3.2 EXP34-C: Do not dereference null pointers

In the CCSCS, the rationale for this rule is that attempts to dereference null pointers result in
undefined behaviour. In recent years, attackers and vulnerability researchers have had great
success at leveraging null pointer dereferences into full blown security vulnerabilities, making
this rule very important for application security. The current version of the CCSCS contains an
example involving the Linux kernel and the tun virtual network driver.

One potential source of null pointers, as noted in the CCSCS examples, is when memory al-
location functions, e.g., malloc (), calloc (), and realloc (), fail and return null. If the
return value from allocation functions is not properly checked for failure, and handled accord-
ingly, there is a high risk that a program will eventually, or can be made to, dereference a null
pointer.

Using Coccinelle to find such code patterns is straightforward. In Figure 3 the corresponding
semantic patch is shown: we first look for calls to the relevant allocation functions (lines 8 to 14).
The possible allocation functions are specified using the disjunction pattern (denoted by “(’, ‘|’
and °)’) that succeeds if either of the alternatives (separated by ‘|”) match. Following that, the
script looks for a control flow path, represented by . . .’, where the identifier (x) is not assigned
to, i.e., a path where it is not modified (line 15), and where the identifier is not tested for “null-
ness” (line 16). The latter is in order to cut down on the number false positives. Here the *. . .
WHEN != x = E’andthe ‘WHEN != if(E == NULL) S1 else S2’ means along any
control flow path where assignment to x does not occur, i.e., any control flow path where x
is not modified and which contains no null test on x. Finally, we look for a dereference of x
(lines 17 to 23), again using the disjunction pattern to specify three common ways to dereference
a pointer: as a pointer (line 18), as an array (line 20), or for field member access (line 22).

2

Proc. OpenCert 2010 8/18

o - Y I NI SR

Eg ECEASST

@e

identifier x;
expression E,El;
type T1;
identifier fld;
statement S1, S2;

@@
(

x = (Tl) malloc(...)
\

x = (T1l) calloc(...)
\

x = (Tl) realloc(...)
)

. WHEN != x = E
WHEN != if(E == NULL) S1 else S2

(

*X
\

x[El]
\

x—>fld

Figure 3: Coccinelle script to find dereferencing of null pointers.

Note that, even though the semantic patch specifies that there can be no conditionals with a
condition on the form ‘E==NULL’ (in line 16), Coccinelle will automatically also match varia-
tions of this condition such as ‘NULL==E’, and ‘! E’. This feature is called isomorphisms and is
a general, customisable, and scriptable feature of Coccinelle designed to handle syntactic vari-
ations of the same semantic concept, in this case, comparing a variable to the NULL pointer.
Isomorphisms, while not strictly necessary, represent a large reduction in the amount of work a
programmer has to do when developing a semantic patch. Isomorphisms are also useful in de-
veloping patches that are more complete (cover more cases) since corner and special cases need
only be handled once.

While the semantic patch in Figure 3 will catch many common violations of rule EXP34-C,
it cannot catch all possible violations. First of all, null pointers may come from many other
places than the memory allocation functions, e.g., user defined functions and library functions.
In principle it is of course possible to manually extend the semantic patch with all the functions
possibly returning a null pointer, however, this quickly becomes unwieldy. Another drawback of
the semantic patch, as shown, is that it currently overlooks violations occuring after a null test.
It is possible to manually refine the semantic patch to take more tests into account in a proper
way. In [LBP"09] a more comprehensive Coccinelle approach to dereferencing of null pointers
is described. This approach covers not only standard allocations functions, but basically any
function returning null. In addition, care is taken to consider null tests and handle them properly.

Another alternative would be if the semantic patch could make use of information from a data-
flow analysis. That way it would not be necessary to explicitly cover all syntactic possibilities for
null testing or dereferencing. In Section 4 we describe our current work on integrating analysis

9/18 Volume 33 (2010)

® N R W =

I35 R0 =320

Clang and Coccinelle: The best of two worlds Eﬁ

@e
identifier x;
expression E,El;
function f;
identifier fld;
ag

free(x);

. WHEN != x = E

x[E1l]

x->fld

Figure 4: Coccinelle script to find potential access to deallocated memory.

information into Coccinelle scripts.

3.3 MEM30-C: Do not access freed memory

In the C programming language, as in most programming languages, using the value of a pointer
to memory that has been deallocated, with the free () function, results in undefined behaviour.
In practise, reading from deallocated memory may result in crashes, leaks of information, and
exploitable security vulnerabilities. Rule MEM30-C ensures that deallocated memory will not be
accessed. The problem underlying this rule is very similar to that described in rule EXP34-C (do
not dereference null pointers): instead of focusing on null pointers, this rule covers all pointers
that have been freed.

In Figure 4 a Coccinelle script covering some of the simple(r) cases of this rule is shown. The
script first looks for any identifier (declared in line 2) that occurs as an argument to the free ()
function (line 7). Following that, the script looks for a control flow path where the identifier (x)
is not assigned to, i.e., a path where it is not modified (line 8). Finally, using the disjunction
search pattern (denoted by ‘(’, ‘|’, and °)”) that succeeds if either of the alternatives (separated
by ‘) match, the script looks for a use of the identifier that results in the actual violation. Here
four common uses are covered: used as an argument to a function (line 10), dereferenced as a
pointer (line 12) or an array (line 14), and dereferenced for member field access (line 16).

3.4 ERR33-C: Detect and handle errors

The lack of proper exceptions in the C programming language means that error conditions have
to be explicitly encoded and communicated to other parts of the program. Most often a run-time
error in a given C function will be communicated by returning an error value, frequently -1
or NULL. Ignoring an error condition is highly likely to lead to unexpected and/or undefined
behaviour, it is therefore essential that the return value is always checked for all calls to a function

Proc. OpenCert 2010 10/18

Eg ECEASST

@ voidfunc @
function FN;
position voidpos;
@@

void FN@voidpos(...) {

}

@ func disable ret exists @
type T;

expression E;

function FN;

position pos != voidfunc.voidpos;
@@
T FN@pos(...) {
. WHEN != return E;

}

Figure 5: Coccinelle script to find non-void functions without a return statement.

that may return an error value and that any error condition is handled properly. Rule ERR33-C
formalises this requirement.

This rule differs from most of the other rules in the CCSCS in that it is almost entirely applica-
tion dependent, since it is up to each application or software project to decide how, specifically,
error conditions are signalled, what error values are used, what they mean, and how they must be
checked and handled. It is therefore impossible to come up with a single, or even a few, rules that
will cover the entire spectrum of possibilities. Thus, for a tool to be useful and effective it must
be very customisable in order to adapt it to project specific code styles and policies. We believe
that the specialised semantic patch language (SmPL) used in Coccinelle provides an excellent,
and highly adaptable, platform for developing project specific rule checkers.

As an example of how Coccinelle can be customised for project specific error handling stan-
dards, we show in [LLH" 10] how Coccinelle was used to find several bugs in some error han-
dling code in the OpenSSL cryptographic library. Coccinelle has also been used to find flaws in
the error handling of the Linux kernel [LBP'09].

3.5 MSC37-C: Ensure that control never reaches the end of a non-void function

Non-void functions are required to return a value, using the return statement. It results in
undefined behaviour to use the return value of a non-void function where control flow reaches
the end of the function, i.e., without having explicitly returned a value. For this reason the
CCSCS requires that all control flows in a non-void function must end in a (non-empty) return
statement.

Figure 5 shows a semantic patch that finds non-void functions with a control flow path not
ending in a non-empty return statement. The overall strategy for this search is to first find all
void functions (line 1 to 7), i.e., functions that are not supposed to return a value, in order
to rule them out in our search. Next, we find all function declarations except for the functions
we have earlier identified as void functions (line 13). Once such a function is found, we start

11/18 Volume 33 (2010)

o - T N NI SR

Clang and Coccinelle: The best of two worlds E}

looking for a control flow path that does not contain a return statement (line 16).

Observe that the head of the latter search pattern (line 9) not only contains the name of the
search pattern (func) but also a directive to Coccinelle that it should disable the use of the
‘ret’-isomorphism (cf. the discussion of isomorphisms in Section 3.2) in order to avoid un-
wanted, potential interference from the isomorphism system. The header also specifies that the
current rule should look for the existence of a control flow path with the required property, rather
than checking for the property along all control flow paths, since we have a potential violation if
there is even a single control flow path without a return statement.

The problem caught by the above semantic patch is inherently syntactic and control flow based,
and thus very well suited for Coccinelle searches. Furthermore, checking for violations can be
done in a universal and application independent way.

4 Adding Program Analysis Information

From the discussion in the previous section of the categories and how specific rules can be
checked using Coccinelle, it should be clear that while Coccinelle is useful for compliance
checking it would beneift greatly from having access to proper program analysis information,
e.g., for more precise and comprehensive tracking of potential null pointers. Such information
could also be used to make checkers more succinct and efficient because fewer syntactic cases
need to be covered. In the following we will illustrate both uses as well as how we intend to make
program analysis information available for use in semantic patches. In Section 4.2 we show how
such information can be obtained through the Clang tool and we discuss the current status of our
integration of Clang into Coccinelle.

4.1 Pointer Analysis: Tracking NULL Pointers and Aliases

Consider the rule EXP34-C (do not dereference null pointers). Here the problem is to find
all expressions that may potentially dereference a null pointer. With access to pointer analysis
information, every expression that may result in a null pointer can be found and tagged. Note
that this is independent of how an expression may result in a null pointer, i.e., it is no longer
necessary to explicitly track information only from allocation functions in the semantic patch,
since this is handled by the analysis.

Below we show how such analysis information could be incorporated into a semantic patch.
The following semantic patch is intended to illustrate one possible way to make analyis informa-
tion available to semantic patches:

@a

identifier x, fld;
expression E1;
analysis[null] NINF;
@@

(*x@NINF

| xX@NINF[E1]

| X@NINF->fld

)

Proc. OpenCert 2010 12/18

[< R T SO VCR N R

o - Y N NI SR

Eg ECEASST

The main thing to note in the above semantic patch is the ‘analysis’ declaration (line 4) that
declares a meta-variable, called NINF. This meta-variable is then used in much the same way
as position meta-variables: by “tagging” an expression with the ‘NINF’ meta-variable, e.g., like
‘x’ in line 7, only expressions that match the syntax (in this case an array) and that may also
result in a null pointer are matched by the semantic patch.

Taking this a step further, we can also use analysis information to find all (sub-)expressions
that are potential dereferences and then simply search for all expressions that are both tagged as
potentially dereferencing and also as potentially resulting in a null pointer. Here a dereferencing
expression is taken to mean an expression that may in any way do a pointer dereference:

ag
expression E;
analysis[deref] DEREEF;
analysis[null] NINF;
@e

E@DEREF @NINF

Since pointers in C may be aliases for the same location in memory, it is important that the
pointer analysis not only tracks potential null pointers but also tracks all potentially aliasing
pointers. This is often called a alias analysis or a points-to analysis. Such analysis information
would be useful in many other situations, e.g., in the rule MEM30-C (do not access freed mem-
ory) where access may occur through an alias. The following semantic patch (with alias analysis
information available) would capture this situation (see below for an explanation):

@e
identifier x, Vy;
expression E,El;
function f;
identifier fld;
analysis[alias] xyalias;
@@

free (x@xyalias);

. WHEN != y@xyalias = E

(

f(...,y@xyalias,...)
I

xy@xyalias
|

y@xyalias[El]
I

y@xyalias—->fld
)

The idea in the above semantic patch is that we first declare an analysis meta-variable in line 6
(called ‘xyalias’). Then, in line 8, we match a call to ‘free ()’ on an identifier ‘x’ and bind
the xyalias meta-variable to any available alias analysis information for x. Following that
we match any assignments to and use of any identifier v that is an alias for x (represented by
y@xyaliasinlines 9, 11, 13, 15, and 17).

4.2 Integrating Clang and Coccinelle

In the following we describe how program analysis information, such as described in the above
section, can be computed using the Clang tool and discuss the current status of our integration of

13/18 Volume 33 (2010)

® N R W =

W = = s e e e e e
S © ® 9O UL A WLWRN = O ©

Clang and Coccinelle: The best of two worlds Eﬁ

Clang and Coccinelle.

Clang was chosen as the main program analysis engine for Coccinelle for several reasons: it is
open source, it is being (very) actively developed, it has good support for writing new analyses,
it provides a robust and proven infrastructure for manipulating C programs, and so forth.

The current version of our implementation of a Coccinelle/Clang integration is a “proof of
concept” where the main emphasis has been on making the two tools work together and less on
adding language features to the semantic patch language. As a result, it is not possible to use
the ‘analysis’ declaration illustrated in the semantic patches in the last section. Instead we
use positions, as implemented by the ‘position’ meta-variables, to look up relevant analysis
information. Below we show how this works using Python scripting in the semantic patch:

@ initialize:python @

read in analysis information generated by Clang into
Python dictionaries: DEREF and NINF indexed by positions

@ expr @
expression E;
position pos;
@@

E@pos

@ script:python @
p << expr.pos
Qe

lookup DEREF and NINF status in Clang data
if not (DEREF[p] and NINF[p]):

remove the match
else:

accept the match and continue

Currently we first run Clang on the source files in order to compute program analysis information.
This information is then stored in a file that may subsequently be read by a semantic patch.
However, it would be possible to start Clang from within the semantic patch, again using either
O’Caml or Python scripting.

4.3 Clang and WPDSs

While Clang provides a good framework supporting the implementation of checkers and pro-
gram analyses in various forms, e.g., using the monotone framework, they must be programmed
directly in C++ and require recompiling the entire Clang tool. In order to make analysis de-
velopment more flexible and convenient we have added a library for program analysis using
weighted push-down systems (WPDS). This allows for program analyses to be specified at the
more abstract level of WPDSs. We have also implemented Python bindings for the WPDS library
enabling rapid prototyping of analyses without recompilation of Clang.

We have extended Clang with the analysis framework of WPDSs, using the library WALIi. This
enables us to model the control-flow from Clang as a push-down system, and plug-in different
weight domains. Weight domains for different analyses have been presented [RLKO7], such
as affine-relations analysis, generalised gen-kill analysis and may-aliasing pointer analysis. We
have used the gen-kill weight domain to implement a reaching definitions analysis within Clang,

Proc. OpenCert 2010 14/18

O ® NN AW N =

Eg ECEASST

and plan to implement a pointer analysis as well. The analysis result can then be pre-processed
in Coccinelle scripts, as illustrated above, e.g., to get maybe-null analysis information. The
benefit of using Clang is that the control-flow graph of the program is readily available, with
some infeasible paths automatically pruned.

The analysis is written as a special analysis pass that constructs the WPDS, assigns weights,
and perform a query for each function. The analysis results (annotated weighted finite automata)
are output, and subsequently interpreted by the concrete Coccinelle script when analysis infor-
mation is needed. Currently the Python scripting interface is used with some additional support
code for calling Clang and interpreting the output.

4.4 Current Work

The information that we have integrated at this point is the reaching definitions analysis. The
output from Clang is a textual representation of the solved WFA, an example of one line of this
output is:

(p , (uninit_use.c , (5, 9)) , accept) <\S.(S - {NULL}) U
{ (simple:a@uninit_use.c:3:9@uninit_use.c:4:9,1) }>

All lines are split into their components:

From state of the WPDS, which will be the state p in most cases.
Symbol in this case “(uninit_use.c, (5, 9)) indicating the program point.
To state which will be the accepting state accept.

The weight associated with this transition, which is the program analysis information associated
with the program point.

The weight again needs to be parsed, in this case into its gen and kill set. In the above example the
kill set is empty, and the gen set adds a definition point of the variable simple:a@uninit_use.c:3:9,
namely that it can be defined at uninit_use.c:4:9.

Variables are named from: the function they are defined in, their identifier and the position
they are defined at. All positions are made up of: a file name, line number and column number.

Finally, a dictionary data structure is constructed such that the reaching definitions for a vari-
able at a program point can be looked up.

One use is to look for uninitialised variables being used, where the basic semantic patch is:

@ uninituse @
type T; identifier I;
position defloc, useloc;
identifier FN;
@@
// look for declarations with no assignment
T@defloc I;
. when any

//which are then used
(

FN@useloc(...,I,...);
|

I@useloc

)

15/18 Volume 33 (2010)

Clang and Coccinelle: The best of two worlds E}

Before being able to use a location from Coccinelle we have to account for small differences in
how locations are presented in the CFG of Clang and Coccinelle, e.g. precisely where a variable
is defined:

int a;

"~ Clang define location
" Coccinelle define location

Another example is that the use found might be part of a larger expression, so we will have to
find the location of the entire expression. Currently we simply map a Coccinelle location to the
closest Clang location on the same line.

We can then discard false positive matches, based on whether the data can actually flow from
the found definition to the found use, in a somewhat cleaner way than specifying all possible
ways the variable could have been modified. The approach of course becomes much more pow-
erful when including analysis information from a pointer analysis.

S Work in Progress

In this section we discuss the current status and work-in-progress for using Coccinelle to check
for CCSCS compliance. In particular we we discuss compliance checking of the full standard
for real world software projects.

5.1 Compliance Checking Real World Software

Coccinelle has already been used successfully to find numerous bugs in the Linux kernel, the
OpenSSL library, and other open source projects used in the “real world”. Especially the experi-
ence with bug finding in the Linux kernel shows that the approach scales well even to very large
software projects.

One of the biggest problems when checking such large projects, is the number of false posi-
tives, i.e., warnings of potential violations that turn out not to be violations. Here the customis-
ability of Coccinelle has turned out to be a great tool for reducing the number of false positives,
since it enables a programmer to refine the semantic patches to take the project specific code
styles into account that give rise to the most false positives.

The integration of program analysis information, e.g., obtained from Clang, will enable a code
search to take (more) semantic information into account and will thus reduce the number of false
positives further.

5.2 Implementing Checkers for the Full Standard

While we have only detailed the implementation of Coccinelle checkers for four of the 118 rules
in the CCSCS, we have implemented checkers for approximately 25 rules and plan to implement
Coccinelle checkers for all the CCSCS rules that are suitably application independent. For rules
that are application dependent, such as rule ERR33-C (discussed in Section 3.4), it may be
possible to provide an “abstract” semantic patch that can be instantiated with project specific
details similar to the approach taken in [LLH" 10].

We intend to make the complete set of checkers available for download as open source.

Proc. OpenCert 2010 16/18

Eg ECEASST

6 Related Work

The past decade has seen the development and release of numerous compile time tools for pro-
gram navigation, bug finding and code style checking for programs written in C, as well as many
other languages. These tools include the MC tool [ECCHOO] (later used as basis for the com-
mercial tool Coverity Prevent). Similar to Coccinelle, the MC tool is a bug finder that can be
adapted to specific projects, however the source code for MC has never been released.

Splint [LEO1] and Flawfinder [Whe06] are two examples of Open Source bug finders. Both
are able to check for a relatively small set of bugs. Both are somewhat adaptable but requires
either (light-weight) annotation of the source code or Python programming.

While several commercial static analysis tools support compliance checking® for a wide spec-
trum of coding standard, including the CCSCS, we are not aware of any Open Source bug finder
tools working towards this goal.

7 Conclusion

In this paper we have shown that the Coccinelle tool is very well suited for checking some of the
rules comprising the CERT C Secure Coding Standard. We have further argued that integrating
program analysis information would facilitate even more comprehensive, more expressible, and
even more flexible semantic patches to be written.

Bibliography

[BDH'09] J. Brunel, D. Doligez, R. R. Hansen, J. L. Lawall, G. Muller. A foundation for flow-
based program matching: using temporal logic and model checking. In Shao and
Pierce (eds.), Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2009. Pp. 114-126. ACM, Savannah, GA,
USA, Jan. 2009.

[ECCHOO0] D. R. Engler, B. Chelf, A. Chou, S. Hallem. Checking System Rules Using System-
Specific, Programmer-Written Compiler Extensions. In Fourth USENIX Symposium

on Operating Systems Design and Implementation (OSDI). Pp. 1-16. San Diego,
CA, Oct. 2000.

[LBPT09] J.L.Lawall, J. Brunel, N. Palix, R. R. Hansen, H. Stuart, G. Muller. WYSIWIB: A
declarative approach to finding API protocols and bugs in Linux code. In Proceed-
ings of the 2009 IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2009. Pp. 43-52. IEEE, Estoril, Lisbon, Portugal, June/July 2009.

[LEO1] D. Larochelle, D. Evans. Statically Detecting Likely Buffer Overflow Vulnerabili-
ties. In Proc. of the 10th USENIX Security Symposium. USENIX, Washington D.C.,
USA, Aug. 2001.
http://Iclint.cs.virginia.edu/

6 See the CCSCS web page for details on tool support.

17/18 Volume 33 (2010)

http://lclint.cs.virginia.edu/

Clang and Coccinelle: The best of two worlds Eﬁ

[LLHT10]

[PLHMOS]

[PLM10]

[RLKO7]

[RSIMO5]

[Sea08]

[Whe06]

J. L. Lawall, B. Laurie, R. R. Hansen, N. Palix, G. Muller. Finding Error Handling
Bugs in OpenSSL Using Coccinelle. In Eighth European Dependable Computing
Conference, EDCC-8. Pp. 191-196. IEEE Computer Society, Valencia, Spain, Apr.
2010.

Y. Padioleau, J. L. Lawall, R. R. Hansen, G. Muller. Documenting and automating
collateral evolutions in linux device drivers. In Sventek and Hand (eds.), Proceedings
of the 2008 EuroSys Conference. Pp. 247-260. ACM, Glasgow, Scotland, UK, Apr.
2008.

N. Palix, J. L. Lawall, G. Muller. Tracking code patterns over multiple software
versions with Herodotos. In Jézéquel and Siidholt (eds.), Proceedings of the 9th
International Conference on Aspect-Oriented Software Development, AOSD 2010.
Pp. 169-180. ACM, Rennes and Saint-Malo, France, Mar. 2010.

T. Reps, A. Lal, N. Kidd. Program analysis using weighted pushdown systems. In
Proceedings of the 27th international conference on Foundations of software tech-
nology and theoretical computer science, FSTTCS 07. Pp. 23-51. Springer-Verlag,
2007.

T. Reps, S. Schwoon, S. Jha, D. Melski. Weighted pushdown systems and their ap-
plication to interprocedural dataflow analysis. Science of Computer Programming
58(1-2):206-263, 2005.

R. C. Seacord. The CERT C Secure Coding Standard. Addison-Wesley, 2008.

D. Wheeler. Flawfinder Home Page. Web page: http://www.dwheeler.com/
flawfinder/, Oct. 2006.
http://www.dwheeler.com/flawfinder/

Proc. OpenCert 2010 18/18

http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/
http://www.dwheeler.com/flawfinder/

	Introduction
	The CERT C Secure Coding Standard
	Overview of the CCSCS
	Categories of the CCSCS

	Compliance Checking with Coccinelle
	DCL32-C: Guarantee that mutually visible identifiers are unique
	EXP34-C: Do not dereference null pointers
	MEM30-C: Do not access freed memory
	ERR33-C: Detect and handle errors
	MSC37-C: Ensure that control never reaches the end of a non-void function

	Adding Program Analysis Information
	Pointer Analysis: Tracking NULL Pointers and Aliases
	Integrating Clang and Coccinelle
	Clang and WPDSs
	Current Work

	Work in Progress
	Compliance Checking Real World Software
	Implementing Checkers for the Full Standard

	Related Work
	Conclusion

