
Electronic Communications of the EASST
Volume 33 (2010)

Proceedings of the
Fourth International Workshop on
Foundations and Techniques for

Open Source Software Certification
(OpenCert 2010)

Safe Integration of Annotated Components in Open Source Projects

Sérgio Areias, Daniela da Cruz, Pedro Rangel Henriques, Jorge Sousa Pinto

17 pages

Guest Editors: Luis S. Barbosa, Antonio Cerone, Siraj A. Shaikh
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Safe Integration of Annotated Components in Open Source
Projects∗

Sérgio Areias1, Daniela da Cruz1, Pedro Rangel Henriques1, Jorge Sousa Pinto1

Departamento de Informática, Universidade do Minho, Braga, Portugal1

Abstract: The decision of using existing software components versus building
from scratch custom software is one of the most complex and important choices of
the entire development/integration process. However, the reuse of software compo-
nents raises a spectrum of issues, from requirements negotiation to product selection
and integration. The correct tradeoff is reached after having analyzed advantages
and issues correlated to the reuse. Despite the reuse failures in real cases, many
efforts have been made to make this idea successful.

In this context of software reuse in open source projects, we address the problem of
reusing annotated components proposing a rigorous approach to assure the quality
of the application under construction. We introduce the concept of caller-based
slicing as a way of certifying that the integration of a component annotated with
a contract into a system will preserve the correct behavior of the former, avoiding
malfunctioning after integration.

To complement the efforts done and the benefits of slicing techniques, there is also
a need to find an efficient way to visualize the main program with the annotated
components and the slices. To take full profit of visualization, it is crucial to combine
the visualization of the control/data flow with the textual representation of source
code. To attain this objective, we extend the notions of System Dependence Graph
and Slicing Criterion to cope with annotations.

Keywords: Caller-based slicing, Annotated System Dependency Graph

1 Introduction

Reuse is a very simple an natural concept, however in practice is not so easy. According to the
literature, selection of reusable components has proven to be a difficult task [MS93]. Sometimes
this is due to the lack of maturity on supporting tools that should easily find a component on a
repository or library [SV03]. Also, non experienced developers tend to reveal difficulties when
describing the desired component in technical terms. Most of the times, this happens because
they are not sure of what they want to find [SV03, SS07]. Another barrier is concerned with
reasoning about component similarities in order to select the one that best fits in the problem
solution; usually this is an hard mental process [MS93].

Integration of reusable components has also proven to be a difficult task, since the process
of understanding and adapting components is hard, even for experienced developers [MS93].

∗ This work was supported by project CROSS, funded by FCT (PTDC/EIA-CCO/108995/2008)

1 / 17 Volume 33 (2010)

Safe Integration of Annotated Components in Open Source Projects1

Another challenge to component reuse is to certify that the integration of such component in a
open-source software system (OSS) keeps it correct. This is, to verify that the way the component
is invoked will not lead to an incorrect behavior.

A strong demand for formal methods that help programmers to develop correct programs
has been present in software engineering for some time now. The Design by Contract (DbC)
approach to software development [Mey92] facilitates modular verification and certified code
reuse. The contract for a software component (a sub-program, or commonly, a procedure) can be
regarded as a form of enriched software documentation composed of annotations (pre-conditions,
post-conditions and invariants) that fully specifies the behavior of that component. So, a well-
defined annotation can give us most of the information needed to integrate a reusable component
in a OSS, as it contains crucial information about some constraints to obtain the correct behavior
from the component.

In this context, we say that the annotations (the pre-, post-conditions and invariants that form
the contract) can be used to verify that each component invocation is valid (preserves the con-
tract); in that way, we can guarantee that a correct system will still be correct after the integration
of that component. This is the motivation for our research: to find a way to help on the safety
reuse of components.

This article introduces the concept of caller-based slicing, an algorithm that takes into ac-
count the calls to an annotated component in order to certify that it is being correctly used. To
support the idea, we also introduce GamaPolarSlicer, a tool that implements such algorithm: to
identify when an invocation is violating the component annotation; and to display a diagnostic
or guidelines to correct it.

The remainder of paper is composed of 8 sections. Section 2 is devoted to basic concepts cru-
cial to the understanding of the rest of the paper: the notions of slicing and system dependency
graph are introduced. Section 3 formalizes the definition of caller-based slicing that supports our
approach to safety reused of annotated components. Section 4 defines the concept of annotated
System Dependency Graph (SDGa), used for the visual analysis of the slices and pre-conditions
preservation. Section 5 illustrates the main idea through a concrete example. Section 6 gives a
general overview of GamaPolarSlicer, introducing its architecture, functionalities and implemen-
tation details. Section 7 discusses related work on slicing programs with annotated components
as it is the main idea behind our proposal. Section 8 discusses related work on visualization
of (sliced) programs, because we strongly believe that good visual tool is crucial for software
analysis. Then the paper is closed in Section 9.

2 Basic Concepts

In this section we introduce both the original concepts of slicing and system dependency graph.

2.1 Slicing

Since Weiser first proposed the notion of slicing in 1979 in his PhD thesis [Wei79], hundreds
of papers have been proposed in this area. Tens of variants have been studied, as well was al-
gorithms to compute them. Different notions of slicing have different properties and different

Proc. OpenCert 2010 2 / 17

ECEASST

applications. These notions vary from Weiser’s syntax-preserving static slicing to amorphous
slicing which is not syntax-preserving; algorithms can be based on dataflow equations, informa-
tion flow relations or dependence graphs.

Slicing was first developed to facilitate program debugging [M.93, ADS93, WL86], but it is
then found helpful in many aspects of the software development life cycle, including software
testing [Bin98, HD95], software metrics [OT93, Lak93], software maintenance [CLM96, GL91],
program comprehension [LFM96, HHF+01], component re-use [BE93, CLM95], program inte-
gration [BHR95, HPR89] and so on.

Program slicing, in its original version, is a decomposition technique that extracts from a pro-
gram the statements relevant to a particular computation. A program slice consists of the parts
of a program that potentially affect the values computed at some point of interest referred to as a
slicing criterion.

Definition 1 (Slicing Criterion) A static slicing criterion of a program P consists of a pair
C = (p,Vs), where p is a statement in P and Vs is a subset of the variables in P.

A slicing criterion C = (p,Vs) determines a projection function which selects from any state
trajectory only the ordered pairs starting with p and restricts the variable-to-value mapping func-
tion σ to only the variables in Vs.

Definition 2 (State Trajectory) Let C = (p,Vs) be a static slicing criterion of a program P and
T =< (p1,σ1), (p2,σ2), ...,(pk,σk)> a state trajectory of P on input I. ∀i,1≤ i≤ k:

Pro j′C(pi,σi) =

{
λ i f pi 6= p
< (pi,σi|Vs)> i f pi = p

where σi|Vs is σi restricted to the domain Vs, and λ is the empty string.

The extension of Pro j′ to the entire trajectory is defined as the concatenation of the result of
the application of the function to the single pairs of the trajectory:

Pro jC(T) = Pro j′C(p1,σ1)...Pro j
′
C(pk,σk)

A program slice is therefore defined behaviorally as any subset of a program which preserves
a specified projections in its behavior.

Definition 3 (Static Slicing) A static slice of a program P on a static slicing criterion C = (p,Vs)
is any syntactically correct and executable program P′ that is obtained from P by deleting zero
or more statements, and whenever P halts, on input I, with state trajectory T , then P′ also halts,
with the same input I, with the trajectory T ′, and Pro jC(T) = Pro jC(T ′).

Related work of slicing programs taking into account the annotations of a program will be
referred in Section 7.

3 / 17 Volume 33 (2010)

Safe Integration of Annotated Components in Open Source Projects2

2.2 System Dependency Graph

The use of dependency graphs to visualize the data and control flow of a program has been
widely accepted in the last years (Section 8).

Before exploring the use Dependency Graphs for visualization and comprehension, we present
below the definitions of Procedure Dependency Graph and System Dependency Graph.

Definition 4 (Procedure Dependence Graph) Given a procedure P , a Procedure Dependence
Graph, PDG, is a graph whose vertices are the individual statements and predicates (used in
the control statements) that constitute the body of P , and the edges represent control and data
dependencies among the vertices.

In the construction of the PDG, a special node, considered as a predicate, is added to the vertex
set: it is called the entry node and is decorated with the procedure name.

A control dependence edge goes from a predicate node to a statement node if that predicate
condition the execution of the statement. A data dependence edge goes from an assignment
statement node to another node if the variable assigned at the source node is used (is referred to)
in the target node.

Additionally to the natural vertices defined above, some extra assignment nodes are included
in the PDG linked by control edges to the entry node: we include an assignment node for each
formal input parameter, another one for each formal output parameter, and another one for each
returned value — these nodes are connect to all the other by data edges as stated above. More-
over, we proceed in a similar way for each call node; in that case we add assignment nodes,
linked by control edges to the call node, for each actual input/output parameter (representing the
value passing process associated with a procedure call) and also a node to receiving the returned
values.

Definition 5 (System Dependence Graph) A System Dependence Graph, SDG, is a collection
of Procedure Dependence Graphs, PDGs, (one for the main program, and one for each compo-
nent procedure) connected together by two kind of edges: control-flow edges that represent the
dependence between the caller and the callee (an edge goes from the call statement into the entry
node of the called procedure); and data-flow edges that represent parameter passing and return
values, connecting actualin,out parameter assignment nodes with formalin,out parameter assign-
ment nodes.

3 Caller-based slicing

In this section, we introduce our slicing algorithm. We start by extending the notion of static
slicing and slicing criterion to cope with the contract of a program.

Definition 6 (Annotated Slicing Criterion) An annotated slicing criterion of a program P con-
sists of a triple Ca = (a,Si,Vs), where a is an annotation of Pa (the annotated callee), Si corre-
spond to the statement of P calling Pa and Vs is a subset of the variables in P (the caller), that
are the actual parameters used in the call and constrained by α or δ .

Proc. OpenCert 2010 4 / 17

ECEASST

Definition 7 (Caller-based slicing) A caller-based slice of a program P on an annotated slicing
criterion Ca = (α,call f ,Vs) is any subprogram P ′ that is obtained from P by deleting zero or
more statements in a two-pass algorithm:

1. a first step to execute a backward slicing with the traditional slicing criterion C =(call f ,Vs)
retrieved from Ca — call f corresponds to the call statement under consideration, and Vs

corresponds to the set of variables present in the invocation call f and intervening in the
precondition formula (α) of f

2. a second step to check if the statements preceding the call f statement will lead to the
satisfaction of the callee precondition.

For the second step in the two-pass algorithm, in order to check which statements are re-
specting or violating the precondition we are using abstract interpretation, in particular symbolic
execution.

According to the original idea of James King in [Kin76], symbolic execution can be described
as “instead of supplying the normal inputs to a program (e.g. numbers) one supplies symbols
representing arbitrary values. The execution proceeds as in a normal execution except that values
may he symbolic formulas over the input symbols.”

Using symbolic execution we will be able to propagate the precondition of the function being
called through the statements preceding the call statement. In particular, to integrate symbolic
execution with our system, we are thinking to use JavaPathFinder [APV07]. JavaPathFinder is a
tool than can perform program execution with symbolic values. Moreover, JavaPathFinder can
mix concrete and symbolic execution, or switch between them. JavaPathFinder has been used
for finding counterexamples to safety properties and for test input generation.

To sum up, the main goal of our caller-based slicing algorithm is to facilitate the use of an-
notated components by discovering statements that are critical for the satisfaction of the pre-
condition, i.e., that do not verify the precondition or whose statements values can lead to its
non-satisfaction (a kind of tracing call analysis of annotated procedures).

4 Annotated System Dependency Graph (SDGa)

In this section we present the definition of Annotated System Dependency Graph, SDGa for
short, that is the internal representation that supports our slicing-based code analysis approach.

Definition 8 (Annotated System Dependence Graph) An Annotated System Dependency Graph,
SDGa, is a SDG in which some nodes of its constituent PDGs are annotated nodes.

Definition 9 (Annotated Node) Given a PDG for an annotated procedure Pa, an Annotated
Node is a pair < Si,a > where Si is a statement or predicate (control statement or entry node) in
Pa, and a is its annotation: a pre-condition α , a post-condition ω , or an invariant δ .

The differences between a traditional SDG and an SDGa are:

• Each procedure dependency graph (PDG) is decorated with a precondition as well as with
a postcondition in the entry node;

5 / 17 Volume 33 (2010)

Safe Integration of Annotated Components in Open Source Projects3

• The while nodes are also decorated with the loop invariant (or true, in case of invariant
absence);

• The call nodes include the pre- and postcondition of the procedure to be called (or true, in
case of absence); these annotations are retrieved from the respective PDG and instantiated
as explained below.

We can take advantage from the call linkage dictionary present in the SDGa (inherited from the
underlying SDG) to associate the variables used in the calling statement (the actual parameters)
with the formal parameters involved in the annotations.

Given a program and an annotated slicing criterion, we identify the node of the respective
SDGa that corresponds to the criterion (yellow node in Figure 1). After building the respective
caller-based slice, the critic statements will be highlighted in the graph, making easier to identify
the statements violating the precondition (red nodes in Figure 1).

5 An illustrative example

To illustrate the previous definitions and our proposal, consider the program listed below (Exam-
ple 1) that computes the maximum difference among student ages in a class.

Example 1 DiffAge

p u b l i c i n t Dif fAge () {
i n t min = System . I n t 3 2 . MaxValue , max = System . I n t 3 2 . MinValue , d i f f ;

System . o u t . p r i n t (” Number o f e l e m e n t s : ”) ;
i n t num = System . i n . r e a d () ;
i n t [] a = new i n t [num] ;
f o r (i n t i =0 ; i<num ; i ++) { a [i] = System . i n . r e a d () ; }

f o r (i n t i =0 ; i<a . Length ; i ++) {
max = Max(a [i] , max) ;
min = Min (a [i] , min) ;

}

d i f f = max − min ;
System . o u t . p r i n t l n (” The d i f f e r e n c e between t h e g r e a t e s t ” +

” and t h e s m a l l e s t age s i s ” + d i f f) ;
r e t u r n d i f f ;

}

This program reuses two annotated components: Min, defined in Example 2, that returns the
smallest of two positive integers; and Max, defined in Example 3, that returns the greatest of two
positive integers.

Suppose that we want to study (or analyze) the call to Min in the context of DiffAge pro-
gram.

For that purpose, the slicing criterion will be: Ca = (x≥ 0&&y≥ 0,Min,{a[i],min})

Proc. OpenCert 2010 6 / 17

ECEASST

Figure 1: SDGa for a program and its role on Caller-based Slicing

7 / 17 Volume 33 (2010)

Safe Integration of Annotated Components in Open Source Projects5

With this criterion, a backward slicing process is performed taking into account the variables
present in Vs. Then, using the obtained slices, the detection of contract violations is executed. For
that, the precondition is back propagated (using symbolic execution) along the slice to verify if
it is preserved after each statement. Observing the slice corresponding to the variable a[i] (see
Example 4 below), is evident that it can not be guaranteed that all integer elements are greater
than zero; so a potential precondition violation is detected.

Example 2 Min
/∗@ requires x≥ 0 && y≥ 0
@ ensures (x > y)? \result == x : \result == y
@∗/
1: public int Min(int x, int y) {
2: int res;
3: res = x− y;
4: return ((res > 0)? y : x);
5: }

Example 3 Max
/∗@ requires x≥ 0 && y≥ 0
@ ensures (x > y)? \result == y : \result == x
@∗/
1: public int Max(int x, int y) {
2: int res;
3: res = x− y;
4: return ((res > 0)? x : y);
5: }

Example 4 Backward Slice for a[i]

i n t [] a = new i n t [num] ;
f o r (i n t i =0 ; i<num ; i ++) { a [i] = System . i n . r e a d () ; }
f o r (i n t i =0 ; i<a . Length ; i ++) {

max = Max(a [i] , max) ;
min = Min (a [i] , min) ; }

All the contract violations detected will be reported during the next step. In the example above,
the user will receive an warning alerting to the possibility of calling Min with negative numbers
(what does not respect the precondition).

As referred, in order to visualize the contracts that are violated and the critical statements, we
display the SDGa with such entities colored in red (see Figure 1). The role of the SDGa will be
crucial not only to understand the data and control flow of a program as well as to understand
the impact of the annotations and their violations.

Proc. OpenCert 2010 8 / 17

ECEASST

6 GamaPolarSlicer

In this section, we introduce GamaPolarSlicer, a tool that we are building to implement our
ideas; it will become available to open source communities, as soon as possible. This project is
being developed in the context of the CROSS project — An Infrastructure for Certification and
Re-engineering of Open Source Software at Universidade do Minho4.

First we describe the architecture of the tool, and then we give some technical details about its
implementation.

6.1 Architecture

As referred previously, our goal is to ease the incorporation process of an annotated component
into an existent system. This integration should be smooth, in the sense of that it should not turn
a correct system into an incorrect one.

To achieve this goal, it is necessary:

• to verify the component correctness with respect to its contract (using a traditional Veri-
fication Condition Generator, already incorporated in GamaSlicer [CHP10b], available at
http://gamaepl.di.uminho.pt/gamaslicer);

• to verify if the actual calling context preserves the precondition;

• to verify if the component’s output, specified by its postcondition, agrees with the value
expected by the caller, i.e., if the returned value is properly handled in the caller context.

The chosen architecture is based on the classical structure of a language processor. Figure 2
shows GamaPolarSlicer architecture.

• Source Code — the input to analyze.

• Lexical Analysis, Syntactic Analysis, Semantic Analysis — the Lexical layer converts
the input into symbols that will be later used in the identifiers table. The Syntactic layer
uses the result of the Lexical layer above and analyzes it to identify the syntactic structure
of it. The Semantic layer adds the semantic information to the result from the Syntactic
layer. It is in this layer that the identifier table is built.

• Invocations Repository — is where all invocations found on the input are stored in order
to be used later as support to the slicing process.

• Annotated Components Repository — is where all components with a formal specifica-
tion (precondition and postcondition at least) are stored. It is used in the slicing process
only to filter the invocations (from the invocation repository) without any annotation. Has
an important role when verifying if the invocation respects component’s contract.

• Identifiers Table — has an important role on this type of programs as always. All symbols
and associated semantic found during the analysis phase are stored here. It will be one of
the backbones of all structures supporting the auxiliary calculations.

4 More details about this project can be found in http://wiki.di.uminho.pt/twiki/bin/view/Research/CROSS/WebHome

9 / 17 Volume 33 (2010)

http://gamaepl.di.uminho.pt/gamaslicer
http://wiki.di.uminho.pt/twiki/bin/view/Research/CROSS/WebHome

Safe Integration of Annotated Components in Open Source Projects6

Figure 2: GammaPolarSlicer Architecture

Proc. OpenCert 2010 10 / 17

ECEASST

• Annotated System Dependency Graph — is the intermediate structure chosen to apply
the slicing.

• Caller-based Slicing — uses both invocations repository and annotated components repos-
itory to extract the parameters to execute the slicing for each invoked annotated compo-
nent. The resulting slice is a SDGa this a subgraph of the original SDGa.

• Contract Verification — using the slice that resulted from the layer above, and using the
component contract, this layer analyzes every node on the slice and verifies in all of them
if and verifies in all of them if every precondition (belonging to the contract annotation) is
satisfied.

• Output Report — presents to the user a view of all violations found during the whole
process; we plan to include, in the future, a diagnosis of each violation and suggestions
to overcome it. At moment the output is just textual, but we are working on a graph
visualization and navigation module to display the SDGa as preview in Figure 1. Providing
a visual output is, in our opinion, a fundamental feature of our analyzing tool.

6.2 Implementation

To address all the ideas, approaches and techniques presented in this paper, it was necessary to
choose the most suitable technologies and environments to support the development.

To address the design-by-contract approach we decided to use the Java Modeling Language
(JML) 7. JML is a formal behavior interface specification language, based on design-by-contract
paradigm, that allows code annotations in Java programs [LC04].

JML is quite useful as allows to describe how the code should behave when running it [LC04].
Preconditions, postconditions and invariants are examples of formal specifications that JML pro-
vides.

As the goal of the tool is not to create a development environment but to enhance an existing
one, we decided to implement it as an Eclipse 8 plugin.

The major reasons that led to this decision were: the large community and support. Eclipse
is one of the most popular frameworks to develop Java applications and thus a perfect tool to
test our goal; the fact that it includes a great environment to develop new plugins. The Plugin
Development Environment (PDE) 9 that allows a faster and intuitive way to develop Eclipse
plugins; has a built-in support for JML, freeing us from checking the validity of such annotations.

However, the parser generated for Java/JML grammar exceeded the limit of bytes allowed to
a Java class (65535 bytes). Thus, this limitation led us to abandon the idea of the Eclipse plugin
and implement GamaPolarSlicer using Windows Forms and C# (using the .NET framework).

A scratch of the first version of GamaPolarSlicer prototype is depicted in Figure 3.

7 http://www.cs.ucf.edu/ leavens/JML/
8 http://www.eclipse.org/
9 http://www.eclipse.org/pde/

11 / 17 Volume 33 (2010)

Safe Integration of Annotated Components in Open Source Projects10

Figure 3: GamaPolarSlicer prototype

7 Related Work — Slicing

In this section we review the published work on the area of slicing annotated programs, as those
contribution actually motivate the present proposal. Although the works referred use the annota-
tions to slice a program, the concrete goal of such works differs from ours. The main difference is
that we do not assume that all the procedures in a program are annotated and correct with respect
to these contracts. We are assuming that only the procedure being integrated is annotated.

In [CH96], Comuzzi et al present a variant of program slicing called p-slice or predicate slice,
using Dijkstra’s weakest preconditions (wp) to determine which statements will affect a specific
predicate. Slicing rules for assignment, conditional, and repetition statements were developed.
They presented also an algorithm to compute the minimum slice.

In [CLYK01], Chung et al present a slicing technique that takes the specification into account.
They argue that the information present in the specification helps to produce more precise slices
by removing statements that are not relevant to the specification for the slice. Their technique is
based on the weakest pre-condition (the same present in p-slice) and strongest post-condition —
they present algorithms for both slicing strategies, backward and forward.

Comuzzi et al [CH96], and Chung et al [CLYK01], provide algorithms for code analysis en-
abling to identify suspicious commands (commands that do not contribute to the postcondition
validity).

In [HHF+01], Harman et al propose a generalization of conditioned slicing called pre/post
conditioned slicing. The basic idea is to use the pre-condition and the negation of the post-
condition in the conditioned slicing, combining both forward and backward conditioning. This
type of program slicing is based on the following rule: “Statements are removed if they cannot
lead to the satisfaction of the negation of the post condition, when executed in an initial state

Proc. OpenCert 2010 12 / 17

ECEASST

which satisfies the pre-condition”. In case of a program which correctly implements the pre- and
post-condition, all statements from the program will be removed. Otherwise, those statements
that do not respect the conditions are left, corresponding to statements that potentially break the
conditions (are either incorrect or which are innocent but cannot be detected to be so by slicing).
The result of this work can be applied as a correctness verification for the annotated procedure.

In [CHP10a], Cruz et al propose the contract-based slicing notion. Given any specification-
based slicing algorithm (working at the level of commands), a contract-based slice can be calcu-
lated by slicing the code of each individual procedure independently with respect to its contract
(called an open slice), or taking into consideration the calling contexts of each procedure inside
a program (called a closed slice).

8 Related Work — Visualization of (sliced) programs

As in this paper we also focus on the visualization of programs with annotated components, and
their slices that trace the calls with respect to the called preconditions, we devote this section
to review the contributions on the area of slice visualization that more directly influence our
proposal.

In [BE94], Ball et al. present SeeSlice, an interactive browsing tool to better visualize the data
generated by slicing tools. The SeeSlice interface facilitates the visualization by making slices
fully visible to user, even if they cross the boundaries of procedures and files.

In [GO97], Gallagher et al. propose an approach in order to reduce the visualization com-
plexity by using decomposition slices. A decomposition slice is a kind of slice that depends only
on a variable (or a set of variables) and does not consider the location of the statement (a tradi-
tional slice depends on both a variable and a statement in a program). The decomposition slice
visualization implemented in Surgeon’s Assistant [Gal96] visualizes the inclusion hierarchy as a
graph using the VCG (Visualization of Compiler Graphs) [San95].

In [88101], Deng et al present Program Slice Browser, an interactive and integrated tool which
main goal is to extract useful information from a complex program slice. Some of the features
of such tool are: adaptable layout for convenient display of a slice; multi-level slice abstractions;
integration with other visualization components, and capabilities to support interaction and cross-
referencing within different views of the software.

In [Kri04], Krinke presents a declarative approach to layout Program Dependence Graphs
(PDG) that generates comprehensible graphs of small to medium size procedures. The authors
discussed how a layout for PDG can be generated to enable an appealing presentation. The PDG
and the computed slices are shown in a graphical way. This graphical representation is combined
with the textual form, as the authors argue that is much more effective than the graphical one. The
authors also solved the problem of loss of locality in a slice, using a distance-limited approach;
they try to answer research questions such as: 1) why a statement is included in the slice?, and
2) how strong is the influence of the statement on the criterion?

In [Bal04], Balmas presents an approach to decompose System Dependence Graphs in order
to have graphs of manageable size: groups of nodes are collapsed into one node. The sys-
tem implemented provides three possible decompositions to be browsed and analyzed through a
graphical interface: nodes belonging to the same procedure; nodes belonging to the same loop;

13 / 17 Volume 33 (2010)

Safe Integration of Annotated Components in Open Source Projects11

nodes belonging to the two previous ones.

9 Conclusion

As can be seen along the paper, the motivation for our research is to apply slicing, a well known
technique in the area of source code analysis, to create a tool that aids programmers to build
correct open source programs reusing annotated procedures.

The tool under construction, GamaPolarSlicer, was described in Section 6. Its architecture
relies upon the traditional compiler structure; on one hand, this enables the automatic generation
of the tool core blocks, from the language attribute grammar; on the other hand, it follows an
approach in which our research team has a large knowhow (apart from many DSL compilers,
we developed a lot of Program Comprehension tools: Alma, Alma2, WebAppViewer, BORS,
and SVS). The new and complementary blocks of GamaPolarSlicer implement slice and graph-
traversal algorithms that have a sound basis, as described in Sections 2, 3, and 4; this allows us
to be confident in there straight-forward implementation.

GamaPolarSlicer will be included in Gama project (for more details see http://gamaepl.di.
uminho.pt/gama/index.html). This project aims at mixing specification-based slicing algorithms
with program verification algorithms to analyze annotated programs developed under Contract-
base Design approach. GamaSlicer is the first tool built under this project for intra-procedural
analysis that is available at http://gamaepl.di.uminho.pt/gamaslicer/.

We believe that this set of tools will save time and make safer the process of build open-source
software systems.

Bibliography

[88101] Program Slice Browser. In IWPC ’01: Proceedings of the 9th International Work-
shop on Program Comprehension. P. 50. IEEE Computer Society, Washington, DC,
USA, 2001.

[ADS93] H. Agrawal, R. A. DeMillo, E. H. Spafford. Debugging with Dynamic Slicing and
Backtracking. Software - Practice and Experience 23(6):589–616, 1993.
citeseer.ist.psu.edu/agrawal93debugging.html

[APV07] S. Anand, C. S. Păsăreanu, W. Visser. JPF-SE: a symbolic execution extension to
Java PathFinder. In TACAS’07: Proceedings of the 13th international conference
on Tools and algorithms for the construction and analysis of systems. Pp. 134–138.
Springer-Verlag, Berlin, Heidelberg, 2007.

[Bal04] F. Balmas. Displaying dependence graphs: a hierarchical approach. J. Softw. Maint.
Evol. 16(3):151–185, 2004.
doi:http://dx.doi.org/10.1002/smr.291

[BE93] J. Beck, D. Eichmann. Program and interface slicing for reverse engineering. In ICSE
’93: Proceedings of the 15th international conference on Software Engineering.
Pp. 509–518. IEEE Computer Society Press, Los Alamitos, CA, USA, 1993.

Proc. OpenCert 2010 14 / 17

http://gamaepl.di.uminho.pt/gama/index.html
http://gamaepl.di.uminho.pt/gama/index.html
http://gamaepl.di.uminho.pt/gamaslicer/
citeseer.ist.psu.edu/agrawal93debugging.html
http://dx.doi.org/http://dx.doi.org/10.1002/smr.291

ECEASST

[BE94] T. Ball, S. G. Eick. Visualizing Program Slices. In VL. Pp. 288–295. 1994.

[BHR95] D. Binkley, S. Horwitz, T. Reps. Program integration for languages with procedure
calls. ACM Trans. Softw. Eng. Methodol. 4(1):3–35, 1995.
doi:http://doi.acm.org/10.1145/201055.201056

[Bin98] D. Binkley. The Application of Program Slicing to Regression Testing. Information
and Software Technology 40(11-12):583–594, 1998.
citeseer.ist.psu.edu/binkley99application.html

[CH96] J. J. Comuzzi, J. M. Hart. Program Slicing Using Weakest Preconditions. In FME
’96: Proceedings of the Third International Symposium of Formal Methods Eu-
rope on Industrial Benefit and Advances in Formal Methods. Pp. 557–575. Springer-
Verlag, London, UK, 1996.

[CHP10a] D. da Cruz, P. R. Henriques, J. S. Pinto. Contract-Based Slicing. In Proceedings
of the Fourth Workshop on Formal Languages and Analysis of Contract-Oriented
Software (FLACOS’10). 2010. to appear.

[CHP10b] D. da Cruz, P. R. Henriques, J. S. Pinto. Gamaslicer: an Online Laboratory for Pro-
gram Verification and Analysis. In Proceedings of the 10th Workshop on Language
Descriptions Tools and Applications (LDTA’10). 2010.

[CLM95] A. Cimitile, A. D. Lucia, M. Munro. Identifying reusable functions using specifi-
cation driven program slicing: a case study. In ICSM ’95: Proceedings of the In-
ternational Conference on Software Maintenance. P. 124. IEEE Computer Society,
Washington, DC, USA, 1995.

[CLM96] A. Cimitile, A. D. Lucia, M. Munro. A specification driven slicing process for
identifying reusable functions. Journal of Software Maintenance 8(3):145–178,
1996.
doi:http://dx.doi.org/10.1002/(SICI)1096-908X(199605)8:3¡145::AID-
SMR127¿3.3.CO;2-0

[CLYK01] I. S. Chung, W. K. Lee, G. S. Yoon, Y. R. Kwon. Program slicing based on specifica-
tion. In SAC ’01: Proceedings of the 2001 ACM symposium on Applied computing.
Pp. 605–609. ACM, New York, NY, USA, 2001.
doi:http://doi.acm.org/10.1145/372202.372784

[Gal96] K. Gallagher. Visual Impact Analysis. In ICSM ’96: Proceedings of the 1996 Inter-
national Conference on Software Maintenance. Pp. 52–58. IEEE Computer Society,
Washington, DC, USA, 1996.

[GL91] K. B. Gallagher, J. R. Lyle. Using Program Slicing in Software Maintenance. IEEE
Transactions on Software Engineering 17(8):751–761, 1991.
citeseer.ist.psu.edu/gallagher91using.html

15 / 17 Volume 33 (2010)

http://dx.doi.org/http://doi.acm.org/10.1145/201055.201056
citeseer.ist.psu.edu/binkley99application.html
http://dx.doi.org/http://dx.doi.org/10.1002/(SICI)1096-908X(199605)8:3<145::AID-SMR127>3.3.CO;2-0
http://dx.doi.org/http://dx.doi.org/10.1002/(SICI)1096-908X(199605)8:3<145::AID-SMR127>3.3.CO;2-0
http://dx.doi.org/http://doi.acm.org/10.1145/372202.372784
citeseer.ist.psu.edu/gallagher91using.html

Safe Integration of Annotated Components in Open Source Projects12

[GO97] K. Gallagher, L. O’Brien. Reducing Visualization Complexity using Decomposition
Slices. In Proc. Software Visualisation Work. Pp. 113–118. Department of Computer
Science, Flinders University, Adelaide, Australia, 11–12 Dezembro 1997.

[HD95] M. Harman, S. Danicic. Using Program Slicing to Simplify Testing. Software Test-
ing, Verification & Reliability 5(3):143–162, 1995.
citeseer.ist.psu.edu/100763.html

[HHF+01] M. Harman, R. Hierons, C. Fox, S. Danicic, J. Howroyd. Pre/Post Conditioned Slic-
ing. icsm 00:138, 2001.
doi:http://doi.ieeecomputersociety.org/10.1109/ICSM.2001.972724

[HPR89] S. Horwitz, J. Prins, T. Reps. Integrating noninterfering versions of programs. ACM
Trans. Program. Lang. Syst. 11(3):345–387, 1989.
doi:http://doi.acm.org/10.1145/65979.65980

[Kin76] J. C. King. Symbolic execution and program testing. Commun. ACM 19(7):385–394,
1976.
doi:http://doi.acm.org/10.1145/360248.360252

[Kri04] J. Krinke. Visualization of Program Dependence and Slices. In ICSM ’04: Proceed-
ings of the 20th IEEE International Conference on Software Maintenance. Pp. 168–
177. IEEE Computer Society, Washington, DC, USA, 2004.

[Lak93] A. Lakhotia. Rule-based approach to computing module cohesion. In ICSE ’93: Pro-
ceedings of the 15th international conference on Software Engineering. Pp. 35–44.
IEEE Computer Society Press, Los Alamitos, CA, USA, 1993.

[LC04] G. T. Leavens, Y. Cheon. Design by Contract with JML. 2004.

[LFM96] A. D. Lucia, A. R. Fasolino, M. Munro. Understanding Function Behaviors through
Program Slicing. In Proceedings of the 4th Workshop on Program Comprehension.
Pp. 9–18. 1996.
citeseer.ist.psu.edu/delucia96understanding.html

[M.93] K. M. Interprocedural dynamic slicing with applications to debugging and testing.
PhD thesis, Linkoping University, Sweden, 1993.

[Mey92] B. Meyer. Applying ”Design by Contract”. Computer 25(10):40–51, 1992.
doi:http://dx.doi.org/10.1109/2.161279

[MS93] N. A. M. Maiden, A. G. Sutcliffe. People-oriented Software Reuse: the Very
Thought. In Advances in Software Reuse - Second International Workshop on Soft-
ware Reusability. Pp. 176–185. IEEE Computer Society Press, 1993.

[OT93] L. Ottenstein, J. Thuss. Slice based metrics for estimating cohesion. 1993.
citeseer.ist.psu.edu/ott93slice.html

Proc. OpenCert 2010 16 / 17

citeseer.ist.psu.edu/100763.html
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICSM.2001.972724
http://dx.doi.org/http://doi.acm.org/10.1145/65979.65980
http://dx.doi.org/http://doi.acm.org/10.1145/360248.360252
citeseer.ist.psu.edu/delucia96understanding.html
http://dx.doi.org/http://dx.doi.org/10.1109/2.161279
citeseer.ist.psu.edu/ott93slice.html

ECEASST

[San95] G. Sander. Graph Layout through the VCG Tool. In GD ’94: Proceedings of the
DIMACS International Workshop on Graph Drawing. Pp. 194–205. Springer-Verlag,
London, UK, 1995.

[SS07] S. G. Shiva, L. A. Shala. Software Reuse: Research and Practice. In ITNG. Pp. 603–
609. IEEE Computer Society, 2007.
http://dblp.uni-trier.de/db/conf/itng/itng2007.html#ShivaS07

[SV03] K. Sherif, A. Vinze. Barriers to adoption of software reuse a qualitative study. Inf.
Manage. 41(2):159–175, 2003.
doi:http://dx.doi.org/10.1016/S0378-7206(03)00045-4

[Wei79] M. D. Weiser. Program slices: formal, psychological, and practical investigations of
an automatic program abstraction method. PhD thesis, Ann Arbor, MI, USA, 1979.

[WL86] M. Weiser, J. Lyle. Experiments on slicing-based debugging aids. In Papers pre-
sented at the first workshop on empirical studies of programmers on Empirical stud-
ies of programmers. Pp. 187–197. Ablex Publishing Corp., Norwood, NJ, USA,
1986.

17 / 17 Volume 33 (2010)

http://dblp.uni-trier.de/db/conf/itng/itng2007.html#ShivaS07
http://dx.doi.org/http://dx.doi.org/10.1016/S0378-7206(03)00045-4

	Introduction
	Basic Concepts
	Slicing
	System Dependency Graph

	Caller-based slicing
	Annotated System Dependency Graph (SDGa)
	An illustrative example
	GamaPolarSlicer
	Architecture
	Implementation

	Related Work — Slicing
	Related Work — Visualization of (sliced) programs
	Conclusion

