Electronic Communications of the EASST

Volume 35 (2010)

Proceedings of the
10th International Workshop on
Automated Verification of Critical Systems
(AVoCS 2010)

Development of Rabin’s Choice Coordination Algorithm in Event-B
Emre Yilmaz and Thai Son Hoang

15 pages

Guest Editors: Jens Bendisposto, Michael Leuschel, Markus Roggenbach

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Development of Rabin’s Choice Coordination Algorithm in Event-B

Emre Yilmaz' and Thai Son Hoang’*

! yilmaze @ethz.ch
2 htson@inf.ethz.ch
Department of Computer Science,
ETH Zurich, Switzerland

Abstract: The paper reports our investigation on tool support for the integration of
qualitative probabilistic reasoning into Event-B. In the process, we formalise a non-
trivial algorithm, namely Rabin’s choice coordination. Our correctness reasoning
is a combination of termination proofs in terms of probabilistic convergence and
standard invariant techniques. Moreover, we describe how qualitative probabilistic
reasoning can be maintained during refinement.

Keywords: Event-B, qualitative reasoning, probabilistic termination, tool support,
Rabin’s choice coordination.

1 Introduction

In some systems, termination cannot be guaranteed for certain. Instead, a slightly weaker prop-
erty is mostly appropriate: termination with probability one. An example having such a property
is when tossing a fair coin, eventually heads will come up. In other words, the coin will turn up
heads with probability one. There are many applications in distributed systems of such a “coin
flip” and in particular for symmetry-breaking protocols [[EE0O, Rab82].

This kind of qualitative probability reasoning has been integrated into Event-B [HHO7]. Be-
sides the standard non-deterministic actions in Event-B, a new kind of actions is added, namely,
probabilistic actions where the probability for each possible alternative is neither O nor 1 (i.e.
“proper” [MMO5]). Most of the time, actions of this type behave identically to the non-deterministic
actions, except when reasoning about their termination: they are interpreted angelically (as op-
posed to demonic non-determinism). The result is a practical method for handling qualitative
reasoning that generates only proof obligations in the standard first-order logic of Event-B. In
particular, the exact probability for different alternatives can be left unspecified.

We continue our research on tool support for this extension of Event-B. In the process, we
formalise a non-trivial algorithm, namely, Rabin’s choice coordination [Rab82]. The reasoning
about the probabilistic termination of this algorithm is non-trivial, involving a lexicographic vari-
ant which needs to be carefully formalised and mechanically proved to have adequate assurance
of the correctness of the algorithm. The case study illustrates the scalability of the approach for
reasoning qualitatively in Event-B: it can be applied to more complex systems than just “coin
tossing” examples.

* This author is supported by DEPLOY — an European Commission Information and Communication Technologies
FP7 project (http://www.deploy-project.eu)

1/15 Volume 35 (2010)

mailto:yilmaze@ethz.ch
mailto:htson@inf.ethz.ch
http://www.deploy-project.eu

Development of Rabin’s Choice Coordination Algorithm in Event-B E}

Our development comprises several refinements and includes reasoning about both standard
and probabilistic termination, and deadlock-freedom. Our approach is to first establish the model
of the system without any termination arguments, then having several refinement layers dedi-
cated to proving convergence properties of events according to a lexicographic variant. Essen-
tially, with this style of development, our probabilistic termination arguments are preserved with
refinement.

Our contribution hence is a methodology for proving almost-certain termination. The main
novelty is the restrictions on refinement and additional condition on variants so that probabilistic
termination property can be established. We use Rabin’s Choice Coordination to illustrate our
approach and extend the RODIN Platform in order to support our reasoning.

The rest of the paper is structured as follows. In Section 2 we give a brief overview of the
Event-B modelling method, focusing on proofs of convergence and qualitative reasoning. Sec-
tion 3 is dedicated to the formalisation of Rabin’s choice coordination algorithm. We present the
summary of our tool support in Section 4. Finally, we draw conclusions in Section 5.

2 Qualitative Reasoning in Event-B

Event-B [Abr10] is a modelling method for formalising and developing systems whose compo-
nents can be modeled as discrete transition systems. We will not describe in detail the semantics
of Event-B here. Instead we just describe some of the proof obligations that are important for
our development.

Event-B models are organised in terms of the two basic constructs: contexts and machines.
Contexts specify the static part of a model whereas machines specify the dynamic part. Con-
texts may contain carrier sets, constants and axioms. Carrier sets are similar to types. Axioms
constrain carrier sets and constants.

We give an overview about machines in Section 2.1, then about machine refinement in Sec-
tion 2.2 and finally about convergent, and qualitative reasoning in Section 2.3.

2.1 Machines

Machines specify behavioural properties of Event-B models. Machines may contain variables,
invariants, events, and variants. Variables v define the state of a machine and are constrained by
invariants I(v). Possible state changes are described by events.

Events An event can be represented by the term “any ¢ where G(¢,v) then S(¢,v) end”, where ¢
stands for the event’s parameters, G(t,v) is the guard (the conjunction of one or more predicates)
and S(¢,v) is the action. The guard states the necessary condition under which an event may
occur, and the action describes how the state variables evolve when the event occurs. We use the
short form “when G(v) then S(v) end” when the event does not have any parameters, and we
write “begin S(v) end” when, in addition, the event’s guard equals true. A dedicated event of
the last form is used for the initialisation event (usually represented as init).

The action of an event is composed of one or more assignments of the form “x := E(t,v)”
or “x :€ E(t,v)” or “x :| Q(t,v,x')”, where x are some of the variables contained in v, E(z,v)

Proc. AVoCS 2010 2/15

Eg ECEASST

is an expression, and Q(z,v,x’) is a predicate. Note that the variables on the left-hand side of the
assignments contained in the action must be disjoint. The last form refers to Q which is a before-
after predicate relating the values x (before the action) and x’ (afterwards). All assignments of an
action S(z,v) occur simultaneously, which is expressed by conjoining together their before-after
predicates. Hence each event corresponding to a before-after predicate S(z,v,V') established by
conjoining all before-after predicates associated with each assignment and y = y/, where y are
unchanged variables.

Proof Obligations Event-B defines proof obligations, which must be proved to show that ma-
chines have their specified properties. We describe below the proof obligation for invariant
preservation. Formal definitions of all proof obligations are given in [Abr10]. Invariant preser-
vation states that invariants are maintained whenever variables change their values. Obviously,
this does not hold a priori for any combination of events and invariants and therefore must be
proved. For each event, we must prove that the invariants [are re-established after the event is
carried out. More precisely, under the assumption of the invariants / and the event’s guard G, we
must prove that the invariants still hold in any possible state after the event’s execution given by
the before-after predicate S(z,v,V’).

Similar proof obligations are associated with a machine’s initialisation event. The only differ-
ence is that there is no assumption that the invariants hold. For brevity, we do not treat initial-
isation differently from ordinary machine events. The required modifications of the associated
proof obligations are straightforward. Note that in practice, by the property of conjunctivity, we
can prove the preservation of each invariant separately.

2.2 Machine Refinement

Machine refinement is a mechanism for introducing details about the dynamic properties of a
model [Abr10]. For more details on the theory of refinement, we refer the reader to the Action
System formalism [Bac89], which has inspired the development of Event-B. Here we sketch
some central proof obligations for machine refinement which are related to our development in
Section 3.

A machine CM can refine another machine AM. We refer to AM as the abstract machine and
CM as the concrete machine. The states of the abstract machine are related to the states of the
concrete machine by gluing invariants J(v,w), where v are the variables of the abstract machine
and w are the variables of the concrete machine. Typically, the gluing invariants are declared as
invariants of CM and also contain the local concrete invariants constraining only w.

Each event ea of the abstract machine is refined by a concrete event ec (later we will relax this
one-to-one constraint). For simplicity, we assume that both events have the same parameters .
Let the abstract event ea and concrete event ec be as follows.

ea = any t where G(z,v) then S(z,v) end (1)
ec = any ¢ where H(¢,w) then T (¢,w) end ()

Somewhat simplifying, we can say that ec refines ea if the guard of ec is stronger than the guard

3/15 Volume 35 (2010)

Development of Rabin’s Choice Coordination Algorithm in Event-B E}

of ea, and the gluing invariants J(v,w) establish a simulation of ec by ea.
1(v),J(v,w),H(t,w) = G(t,v) (GRD)

1v),J(v,w),H(t,w), T(t,w,w') = IS, v,V) NIV W) (SIM)

A special case of refinement (called superposition refinement) is when v is kept in the refine-
ment, i.e. v C w. In particular, if the actions are deterministic for both abstract and concrete
events, and the expressions assigned to v are equivalent, the proof obligation SIM reduces to just
proving that the gluing invariants J(v',w’) are re-established. Our reasoning in the later sections
will often use this fact. In the course of refinement, new events are often introduced into a model.
New events must be proved to refine the implicit abstract event SKIP, which does nothing.

The one-to-one correspondence between the abstract and concrete events can be relaxed.
When an abstract event ea is refined by more than one concrete events ec, we say that the abstract
event ae is split and prove that each concrete ec is a valid refinement of the abstract event. Con-
versely, several abstract events ae can be refined by one concrete ec. We say that these abstract
events are merged together.

2.3 Convergence and Qualitative Reasoning

At any stage, it may be proved that some set of events does not collectively diverge; we then call
these events convergent events. In other words, convergent events cannot take control forever
and hence one of the other events eventually occurs. To prove this, one gives a variant V, which
maps a state to a finite set. One then proves that each convergent event strictly decreases V.
Since the variant maps a state to a finite set, V induces a well-founded ordering on system states
given by strict subset-inclusion of their images under V. The corresponding proof obligation is
as follows.

I(v),G(t,v) B W -S(t,v V)=V (/) CV(v) (VAR)

As explained above, we assume that the variant is a set expression. In Event-B, a variant can
also be a natural number expression with the normal decreasing order “<” [Abr10]. Later we
will use both types of variants for our development. Note that in some cases the convergence
of some events cannot be immediately shown, but only in a later refinement. In this case, their
convergence is anticipated and we must prove that V (V') C V (v), that is, these anticipated events
do not enlarge the variant. The convergence attribute of an event is denoted by the keyword
status with three possible values: convergent, anticipated, or ordinary (for events which are
not necessarily convergent). Effectively, the use of anticipated events allows us to construct a
lexicographic variant relying on the fact that the standard convergence properties are preserved
by refinement.

In some cases, termination is not definite but almost certain, i.e., the probability of termination
is 1. An example is when flipping a coin, heads will eventually appear with probability one. This
type of reasoning has been introduced into Event-B in [HHO7]. According to this work, the
action of an event can be either probabilistic or non-deterministic (but not both). With respect to
most proof obligations, a probabilistic action is treated identically as a non-deterministic action.
However, it behaves angelically with respect to VAR: an event with a probabilistic action may

Proc. AVoCS 2010 4/15

Eg ECEASST

(as in contrast to must) decrease the variant V (v). The new proof obligation rule for probabilistic
events is as follows.

[(v),G(t,v) B IV -SE,vV)AV(V)CV(v) (PRV)

Note that the rule that we showed here is for an abstract convergent event. For a concrete event,
the corresponding proof obligation rule is similar with the exception that one can assume that
both abstract and gluing invariants hold.

Even though probabilistically convergent events can increase the variant V (v), it is required
that V(v) is bounded above [HHO7]. The upper bound B is a constant! and the proof obliga-
tion BND, which needs to be discharged for all anticipated events and convergent events (both
standard and probabilistic), is

I(v),G(t,v) F V(v)CB . (BND)
Finally, it is required that the possible alternatives for a probabilistic action are finite.
I(v),G(t,v) b finite({V' | S(¢,v,v")}) (FINACT)

Since events with probabilistic actions behave almost identically to standard non-deterministic
events (with the exception of convergence proof obligations), we do not introduce additional
syntax to Event-B. Instead, we have an additional value for the convergence attribute of an event,
namely probabilistic and treat such events differently when generating proof obligations.

A very important point is that in the same refinement, there could be some anticipated events,
some (standard) convergent events, and some probabilistically convergent events. However, re-
gardless of their status, they have to use the same variant.

2.4 Our Contribution

The earlier work in [HHO7] does not address the refinement of probabilistic events. Whereas
the standard convergence argument is preserved by refinement, the probabilistic convergence
argument is not maintained since a “good” choice for termination could be accidentally removed.
Forbidding refinement all together after proving probabilistic convergence is no option for us,
since we want to construct a lexicographic variant using refinement. As a result we restrict
our refinement such that the event and variable system must remain unchanged after proving
probabilistic convergence. The only allowed modifications are additional invariants. Note that
event splitting by having additional guards, e.g. in Section 3.2.4 and event merging satisfy this
condition, i.e. they preserve the probabilistic convergence proofs. This is also the key aspect of
our approach for proving probabilistic termination of an algorithm, with some additional features
as follows.

e To prove that the algorithm eventually establishes certain conditions, we follow the ap-
proach in [HKBAOO9] for reasoning about liveness properties, with the correctness argu-
ment combining appropriate proofs of event convergence (both standard and probabilistic)
and deadlock freedom. More details on this approach are described in Section 3.2.1.

' In general, this could be a non-decreasing function on the state.

5/15 Volume 35 (2010)

Development of Rabin’s Choice Coordination Algorithm in Event-B E}

e We first establish the full algorithm with several anticipated events, before converting
them to convergent or probabilistic events (taking into account the above restriction on
refinement). The use of anticipated events is first suggested in [HHO7].

o Finally, with the use of anticipated events in early refinements and later converting them to
either convergent or probabilistic events, we prove that the set of events terminates prob-
abilistically. This is the reason why we need to prove that the combining lexicographic
variant is bounded above. As a result, we require that not only the variants concerning
probabilistic events, but all other variants need to be bounded above.

We have used the RODIN Platform [ABH ' 10] for our formal development. This is an industrial-
strength tool for creating and analysing Event-B models. It includes a proof-obligation generator
and support for interactive and semi-automated theorem proving. We have extended the tool
for specifying probabilistically convergent events and generating appropriate proof obligations.
The new obligations are still in first-order logic, hence we can reuse the proof support of the
RODIN Platform without requiring any additional extension. More detailed discussions on the
tool support are in Section 4.

3 Rabin’s Choice Coordination Algorithm

Rabin’s choice coordination algorithm as explained in [Rab82] is an example of the use of prob-
ability for symmetry breaking. The choice coordination is a problem where processes Py, ..., P,
must reach a common choice out of k alternatives A1, ...,A;. It does not matter which alternative
will be chosen at the end. The protocol uses k shared variables vy, ..., v, one for each alternative.
A process P; arriving at A; can access and modify v; in one step without any interruption from
other processes. The algorithm proposed by Rabin terminates with probability 1. Our second
contribution is the formalisation of the algorithm in Event-B and the proofs of the associated
obligations using the RODIN Platform.

3.1 Description of the Problem and Algorithm

We will look at a simplified version of the problem and the corresponding algorithm as described
by Morgan et. al. [MMO5]. Instead of n processes and k alternatives we have n tourists and 2
destinations (which we call LEFT and RIGHT accordingly). We also distinguish the inside and
outside for each destination.

ENYV 1 Each tourist can be in one of the following locations: inside-left, inside-right, outside-
left, and outside-right.

Each tourist can move between the two outside locations, i.e. from outside-left to outside-right
and vice versa. Furthermore, a tourist can move from the outside to the inside of the same place,
e.g. from outside-left to inside-left.

ENYV 2 A tourist can move between the two outside locations.

ENYV 3 A tourist can move from the outside to the inside of the same place.

Proc. AVoCS 2010 6/15

Eg ECEASST

Other movements of the tourists are forbidden. In particular if a tourist enters an inside place, he
can no longer change his location.

ENV 4 A tourist in an inside place cannot change his location.

The purpose of the algorithm is to have all tourists to reach a common decision of entering the
same place, without communicating directly with each other.

FUN 5 Eventually, all tourists enter the same place.

Rabin’s choice coordination algorithm as described by Morgan et. al. in [MMO05] is as fol-
lows. Each tourist carries a notepad and he can write a number on it. Moreover, there are two
noticeboards at the outside-left and outside-right.

ALG 6 Each tourist has a notepad on which he can write a number.
ALG 7 There are noticeboards at the outside-left and outside-right.

In the beginning, number 0 is written on all tourist notepads and on the two noticeboards. Ini-
tially, each tourist independently chooses the LEFT- or RIGHT-place and goes to the outside
location of that place (i.e. outside-left or outside-right). Afterwards, a tourist at an outside loca-
tion can alternate between different locations according to the following algorithm.

ALG 8 An outside tourist alternates between different locations as follows.

o If there is any tourist inside, he enters this place.

e Otherwise, he compares the number 7 on his notepad with the number N on the notice
board.

— If N < n, the tourist goes inside.

— If N > n, the tourist replaces n with N on his notepad and goes to the outside of
other place.

— If N = n, the tourist tosses a coin. If the coin comes up head, the tourist sets N’
to N +2. Otherwise, he sets N’ to the conjugate’ of N +2. Then, he writes N’
on the notice board and his notepad and goes to the outside of the other place.

We are going to formalise this version of the problem, algorithm, and proofs from Morgan et.
al. [MMO5] in the next section. Note that we make an assumption about the tourist capability:
he/she from an outside location can “look” inside of the same place (he still cannot see the other
place, neither inside nor outside). A more realistic implementation as described in [MMO05] is to
have the first tourist entering an inside location to write some special note e.g. “Here”, on the
notice board. However, this will complicate our reasoning; hence we make this simplification.

3.2 Formal Development

In this section, we present the formal development of Rabin’s choice coordination algorithm in
Event-B°.

2 The conjugate of a number n (denoted by 7) is defined to be n+ 1 if n is even and n — 1 if n is odd.
3 The archive of the development can be found on-line at http://deploy-eprints.ecs.soton.ac.uk/232/.

7/15 Volume 35 (2010)

http://deploy-eprints.ecs.soton.ac.uk/232/

i

Development of Rabin’s Choice Coordination Algorithm in Event-B

3.2.1 Initial Model. The Sets of Inside Tourists

We assume that there is a context with a finite carrier set T representing the set of tourists. In this
initial model, we have two sets of tourists, namely /in and rin, representing those at the inside-
left and inside-right accordingly. Note that invariant inv0_3 states that at least one of the two
locations is always empty. Initially, both variables are empty sets, since all tourists are outside.

invariants: init)
. o inv0_1: linCT begln
variables: lin,rin inv02: rinCT lini— &
inv0.3: lin=9oVrin=9g rin =g
end

We have two events L_IN and R_IN to model the situation when a tourist enters the inside-left
or inside-right accordingly (ENV 3). Moreover there are no leaving events: a tourist once inside
cannot change his location (ENV 4).

L_IN R_IN
status convergent status convergent
any ¢ where any ¢ where
trl; ;n@ il; :m@ variant: T\ (lin Urin)
then then
lin:=linU{r} rin:=rinU{r}
end end

The two events are convergent, with the variant V; representing the set of tourists not inside the
two places. Note that the variant Vj is bounded above by the set of tourists 7', which is finite.

Finally, we have one ordinary event, namely final. This is an observer event (similar to those
defined in [HKBAO9]) in the sense that it does not change the state of the model, but serves to
observe a certain condition about the state of the model. The observing condition is encoded as
the guard of the event: if the event is enabled, the condition is satisfied. Here we are interested
in the fact that all tourists will end up in the same place. Note that according to invariant inv0_3,
if all tourists are in one place, the other place must be empty.

final = when rin = TV lin = T then SKIP end

Further refinements keep the event final unchanged and our goal is to prove that eventually the
event final is enabled. At the end of the development, besides the event final we have a number of
events eq,...,e,. We will prove that all events ey, ...,e, are convergent (standard or probabilis-
tically). We must prove that the event system containing ey,...,e, and final are deadlock-free.
According to the convergence argument, all events e, ..., e, will eventually converge, i.e., these
events will be disabled. Together with the deadlock-freedom argument, the only event that does
not deadlock is final, whose guard must be satisfied when all other events are disabled.

3.2.2 Refinement 1. The Sets of Outside Tourists

There are two new variables lout and rout representing the tourists outside the two places. In-
variant inv1_1 states that a tourist cannot be at two locations at the same time, and each tourist

Proc. AVoCS 2010 8/15

Eg ECEASST

must be in one of the locations*. This corresponds to the requirement ENV 1. Initially, some
tourists decide to go to the outside-left and some tourists to the outside-right.

variables: ..., lout, rout init
begin
invariants: lout, rout :| lout’ = T \ rout’
invl.1: partition(T,lin,rin,lout, rout) end

There are two new events namely L_2_R and R_2_L to model the movement of a tourist between
the two outside locations. This corresponds to the requirement ENV 2.

L.2.R R-2_L
status anticipated status anticipated
any ¢ where any ¢ where
t € lout t € rout
lin=9o rin=o
then then
rout,lout := rout U {t},lout \ {t} lout, rout := lout U {t},rout \ {t}
end end

The guards lin = @ and rin = @ state that the tourists can only alternate between the outside
locations if there is no one inside. This is a part of the algorithm described by the require-
ment ALG 8. The two new events only modify new variables rout and lout hence clearly refine
SKIP. Moreover, invariant invl_1 is preserved since the events only change the location for one
particular tourist from outside-left to outside-right and vice versa. These events are anticipated
at the moment. We will consider their convergent property in subsequent refinements.

Events L_IN and R_IN are refined accordingly to take into account the new variables. Since the
events corresponding to LEFT and RIGHT are symmetric, from now on, we present only events

corresponding to LEFT. The refinement of event L_IN is as follows.
Note that the guard strengthening proof
obligation GRD follows from the fact (abs”acltf)'-fl'l” (CO“CVEttef)'-fl'lN
. . an where an where
that a tourist can only be in one loca- f,-,,: & z,-n: &
tion at a time (invariant invl_1). The as- 1 ¢ lin t € lout
. d . he old iable li then then
signed expressions to the old variable lin lin:= linU {1} lin, lout = lin U {1} lout'\ {¢}
are the same in both abstract and con- end end

crete events. Moreover invariant invl_1
is maintained since the event merely moves a tourist from the outside-left to the inside-left.

3.2.3 Refinement 2. Rabin’s Algorithm

We introduce the two notice boards outside the places and the tourists’ notepads where they
can write some number on it. Initially, the number O is written on the notice boards and all the
notepads. This corresponds to the requirements ALG 6 and ALG 7.

invariants: init
] inv21: LeN begin
variables: ...,L.R np inv22: ReN
iv23: npeT—N L.R,np:=0,0,T x {0}
end
4 partition(S,sy,...,s,) means that subsets sy,...,s, are pairwise disjoint and their union is S.

9/15 Volume 35 (2010)

Development of Rabin’s Choice Coordination Algorithm in Event-B E}

We can now specify under which condition a tourist can move from one location to another.
Events modelling the movement of a tourist from an outside location

to an inside location, i.e., event L_IN (and similarly R_IN), are guard- LN
strengthened as follows. The guard L < np(t) V lin # & states that any t where
a tourist ¢ can move inside the left place only if the number on his L < np(t) Vlin £ &

notepad is greater than the number on the left notice board or if there then
is already someone at inside-left.

For events modelling the movement of a tourist between two outside
locations, there are two different cases. The events corresponding to the movement of a tourist
from LEFT to RIGHT are modelled by the two events L. 2_ R_EQ and L_2_R_NEQ depending
on if the number on the tourist notepad is equal or strictly smaller than the number on the notice
board. Using 7 for the conjugate number of n, the two events are as follows.

end

L-2_.R_.NEQ L2_R.EEQ
refines L 2R refines L 2R
status anticipated status anticipated
any ¢ where any ¢ where
np(t) <L np(t)=L
then then
np(t) :=L Linp :| I'e{L+2,L+2}Anp’ =np<{t—L'}
end end

The actions of the above events update the tourist notepad and the notice board accordingly. Note
that both events are refinements of the original event L_2_R, i.e, the original event is split into two
cases. Note that these events model the movement of a tourist according to the requirement ALG
8, with the exception that we use non-deterministic choice currently in L2 _R_EQ. This is an
abstraction of the actual probabilistic choice (i.e. coin tossing), which we will introduce later.

Up to this refinement model, we have modelled all requirements except FUN 5. In other
words, we have established the model of the problem and the algorithm. Subsequent refinements
are dedicated to prove the main properties of the algorithm, i.e., eventually all tourists end up in
the same place.

3.2.4 Refinements 3—-6. Convergence Proofs

Recall in the previous model, we have an ordinary event final, two convergent events, namely
L_IN and R_IN, and anticipated events L. 2_R_NEQ, L.2_.R_EQ, R.2.L_NEQ, and R.2_L_EQ. In
this section, we describe our proof of (probabilistic) convergence of the anticipated events. We
formalise the variant that has been proposed in [MMO5]. The variant is a lexicographic one, with
two layers: the outer layer (with higher priority) deals with the changes to L and R, the inner
layer (with lower priority) deals with the tourists’ movements.

Outer layer We compare the values of L and R and notice how they can be varied. In order to
understand the variant at this layer, we look at the definition of conjugate numbers. We separate
the set of natural numbers into pairs: (0,1) | (2,3) | (4,5) | (6,7) | For each pair, a number
is the conjugate of the other number in the pair and vice versa. The even number of each pair

Proc. AVoCS 2010 10/15

Eg ECEASST

is also the minimum of the two. We will refer to this splitting of natural numbers later in our
reasoning. We reason about the outer variant in two refinement steps.
Refinement 3. Invariants inv3_1-5 constraint the rela-

tionship between L and R. Below, we use the notation n invariants:

to denote the minimum of » and its conjugate 77. We will not inv3.1: Vx-x € lout=np(x) <R
. inv32: Vx-x € rout=np(x) <L

go into details about proving the preservation of these invari- inv33: L-Re{-2,02)

ants, but only give some brief descriptions of them. Invari- inv3.4: L ¢ nplrout]
ant inv3_1 states that every tourist at the outside-left carries inv3.5: R ¢ npllout]
a number not greater than the right notice board. Invariant
inv3_5 states that there is no tourist at the outside-left carrying the number which is the conjugate
of the number on the right notice board. The invariants related to the tourists at the outside-right,
i.e. inv3_2 and inv3_4 are symmetric. Invariant inv3_3 states that the values of the two notice
boards cannot be “too far apart”. Referring to the splitting of natural numbers into pairs, this
invariant states that L and R must be in the same pair or in two adjacent pairs. Note that when
L=R,ie. they are in the same pair, there can be two cases, either L = R or L = R (equivalently
R = L). We can distinguish the relationship between L and R in three different cases: either
L—Re {=2,2} or L= R or L = R. Our variant is based on this relationship.

Refinement 4. For the outer variant, we define the following constant function rE as follows

axioms:
rE.1: rE€NxN-+{0,1,2}
rE2: Vi,rlwrcdom(rE) &1 —Fe {—2,0,2}
rE3: Vi,r-lleNAl=r=rE(l—r)=2
rE_4: Vl,r~l€NAl:7:>rE(l»—>r):O bound: 2
rE5: VirleNAI—Fe{-22}=rE(l—r)=1

variant: rE(L — R)

and define the variant V; as rE(L — R) with upper bound 2. We split event L 2_R_EQ into three
different cases, depending on the current value of rE(L — R).

L.2_.R.EQ-0 L.2_.R.EEQ-1 L2_.R.EEQ-2
refines L2 _R_EQ refines L2 _R.EQ refines L_2_R_EQ
status convergent status probabilistic status convergent
any ¢ where any ¢ where any ¢ where
t € lout t € lout t € lout
lin=0o lin=0o lin=9
np(t) =L np(t) =L np(t) =L
rE(L+— R) =0 rE(L—R) =1 rE(L— R) =2
then then then
end end end

We prove that L. 2_R_.EQ_0 and L_2_R_EQ_2 are convergent, and L_2_R_EQ_1 is probabilis-
tically convergent whereas L_2_R_NEQ is anticipated (which will be convergent with using the
inner variant). The convergence attribute for the events corresponding to the RIGHT are sym-
metric. First of all, we need to prove that the variant is bounded above (BND) by the declared
upper bound. This is trivial since by definition, rE(L — R) < 2. Next we show that each event
satisfies (VAR) or (PRV) depending on their convergence attribute.

For L_2_R_EQ_0, this corresponds to the case that never happens, since we have rE(L — R) =
0, i.e. L =R; hence np(t) = R. However, since t € lout and according to invariant inv3_5,
we have R ¢ np[lout], which is a contradiction. In other words, the guard of L_2_R_EQ_0 can

11/15 Volume 35 (2010)

Development of Rabin’s Choice Coordination Algorithm in Event-B E}

be used to derive L. Hence anything can be proved under the assumption of the guard of this
events, including convergence proof.

For L.2_R_.EQ_2, we have rE(L — R) =2, i.e. L =R. The action will change L to either
L+2orL+2, and keep R the same, hence the new value L' will be different from R’, hence
rE(L' — R') # 2, which is less than rE(L — R). As a result, the variant V; is decreased and
hence satisfies VAR.

For L_2_R_NEQ), it does not change the value of L or R. Hence the value of V; stays the same,
1.e. is non-increasing.

For L_2_R_EQ_1, we first have that the possible alternatives of the after states are finite (2 in
this case) and hence the event satisfies FINACT. Secondly, we prove that the event may decrease
the variant Vi, i.e., it satisfies PRV. The actual proof obligation (with some simplifications by
removing unnecessary hypotheses) is as follows.

rE(L—R) =1
Vx-x € lout=>np(x) <R
t € lout
np(t) =L
F
3 np'- L' € {L+2,L+2}Anp' =np<{t — L'} N\rE(L' -+ R) < rE(L—R)

We have from rE(L — R) = 1 that L — R € {—2,2}. In particular, from invariant inv3_1, i.e.
Vx-x € lout = np(x) < R, and from event’s guards ¢ € lout and np(t) = L, we have that L <R
and hence L — R must be —2. Referring to the splitting of natural numbers into pairs, when we
have L — R = —2, it means that L is in one pair and R is in the next higher adjacent pair. For
example, if L is either 2 or 3 then R is either 4 or 5. The meaning of the action assigning L' to
either L+2 or L+ 2 is to have L’ be in the same pair as R; hence one of the alternative will satisfy
condition L' = R. For this case, rE(L' — R) =0 < 1 = rE(L — R) As a result, we have proved
that L_2_R_EQ_I may decrease the variant V.

Inner layer The variant for the inner layer is used to prove the convergence property of events
L2 R_.NEQ and R.2_L_NEQ. This is done in two refinement steps.

Refinement 5. We prove that L_2_R_NEQ converges and R_.2_L_NEQ is anticipated with the
variant V, defined to be {r | np(t) < L}, i.e. the set of tourists carrying a number strictly smaller
than on the left notice board. Event L_2_R_NEQ changes the value of a tourist notepad from
strictly less than to equal to L; hence it decreases V,>. Event R_2_L_NEQ increase the value of a
tourist notepad; hence it cannot increase V;.

Refinement 6. In the second step, we prove that R.2_L_NEQ converges with a symmetric
variant V3 that is {z | np(t) < R}. Our proof follows similar reasoning as above.

Note that both variant V;, and V3 are bounded above by the finite set of tourists 7.

3.2.5 Refinement 7. Deadlock-freedom
invariants:
In this final refinement, we merge the events that inv7_1: Vx-x € lin=np(x) <R
. . . inv7.2: Vx-x€rin=np(x)<L
have been split earlier together, i.e., L. 2_R_EQ and invI3: lin# o= (3xxelinAnp(x) > L)
R_2_L_EQ. Combining the convergent attribute of inv7.3: rin# @ = (3x-x € rin Anp(x) > R)

Proc. AVoCS 2010 12/15

Eg ECEASST

the sub-events, we have now that these two events are probabilistically convergent. We add a
theorem to prove that our system at this point is deadlock-free, i.e. the disjunction of all guards
always holds. In order to prove the theorem, we need the following additional invariants about
the set of tourists inside the two places.

Together with the proof of convergence earlier, we can now ensure that our system satisfies the
requirement FUN 5. Our reasoning is based on the approach in [HKBAQ9] and is as follows. At
the last model, we have the following events: event final which is ordinary, events L_IN, R_IN,
L.2_.R_.NEQ, R.2_L_NEQ which are convergent and events L_2_R_EQ and R_2_L_EQ which are
probabilistically convergent. Because of the convergence proof, we ensure that together the set of
convergence events (standard and probabilistic) will terminate (being disabled) with probability
1. Moreover, because of the deadlock-freedom proof, when the convergent events are disabled,
event final is the only one left, and must be enabled, i.e., all tourists are in the same place.

3.2.6 Proof Statistics

Model Total | Auto.(%) | Man.(%)

.. . Initial model 6 6(100%) | O(N/A)

The statistics for our proofs are in Table 1. A large Ist Refinement 8 | 7(88%) | 1(12%)

number of manual proofs are in the models for 2nd Refinement 191 15(79%) | 4(21%)

. . Outer variant 68 | 45(66%) | 23(34%)

proving the outer variants and deadlock-freedom, Inner variant 7 | a(57%) | 3(43%)

since we need several additional supporting invari- Deadlock freedom | 32 | 22(69%) | 10(31%)

ants. In particular, in order to prove obligations Total 140 | 99(71%) | 41(29%)
related to the outer variant, we split the events Table 1: Proof statistics

L2 R.EQ and R2_L_EQ into different cases. As a result, we have more proof obligations,
which are simpler to prove. As an alternative, we can do the split while proving, i.e. to do proof
by cases, without splitting the events. This will reduce the number of proof obligations. How-
ever, it hides the termination argument inside the proofs and they become more complicated.
Our development is more intuitive, with the correctness being easier to observe by splitting the
events accordingly. Finally, most of the manual proofs deal with arithmetic reasoning related to
the modulo operator (as a consequent of the use of conjugate number), sometimes involve doing
case distinctions, which are known to be difficult for automated provers.

4 Tool Support

We have implemented a plug-in to the RODIN Platform [ABH" 10] for supporting the genera-
tion of proof obligations for proving probabilistic termination. The summary of the work is as
follows. More details are given in [Yil10].

Probabilistic attribute: An event can be marked as probabilistic. A probabilistic event is only
treated differently from a standard event when it comes to convergence proof obligation.

Bound element: A new modelling element is added for declaring the upper bound.
Static Checking: The conditions below are checked for a model containing probabilistic events.

1. The variant V (declared as usual) is either of the type integer or some set.

2. There is exactly one bound for a model where the probabilistic converge is proved.
The bound element B must be of the same typed as the declared variant.

13/15 Volume 35 (2010)

Development of Rabin’s Choice Coordination Algorithm in Event-B E}

3. Every probabilistic event must be refined by a probabilistic event.

4. Merging a probabilistic event and a convergent event results in a probabilistic event.

Proof Obligations: Given a model, the following additional proof obligations are generated for
proving probabilistic convergence property.

1. The variant is always bounded above by the declared bound. (BND)
2. The variant might be decreased by the probabilistic events. (PRV)
3. The bound must be finite if it is a set. (BFN)

4. The bound must be well-defined. (BWD)

5 Conclusion and Future Work

We have presented a method for reasoning about termination with probability one using refine-
ment as an extension of the work in [HHO7]. We have developed Rabin’s choice coordination
algorithm [Rab82] in Event-B. In particular, we have formalised the lexicographical variant as
presented in [MMO05]. We extended the RODIN Platform [ABH " 10] for supporting the genera-
tion of appropriate proof obligations concerning with this type of reasoning, and proved all the
obligations using the proof support of the RODIN Platform [ABH" 10].

The example of Rabin’s choice coordination is also used in [Hoa05, Chapter 3] as an example
for reasoning about almost certain termination using classical B. The main difference between
the two developments is that in classical B one ends up with a sequential program which is a
model of the algorithm. Our development in Event-B gives us a model of a fully distributed
system. Moreover, the formalisation of lexicographic variants is suited better for Event-B since
in classical B one can only have a single natural number variant. As a result, the lexicographic
variant has to be encoded (unnaturally) into a natural number variant, which leads to more com-
plicated proofs.

Using our newly developed tool support, we have modelled other examples for proving ter-
mination including contention resolution [HHO7] and duelling cowboys [Hoa05, Chapter 6]. In
the future, we will integrate the reasoning about contention resolution with the development
of the Firewire protocol [ACMO3] and the full k-version of Rabin’s Choice Coordination algo-
rithm [Rab82]. In particular, for the latter example, the model of the algorithm will be straight-
forward with each event having an additional parameter representing a particular alternative (cur-
rently the alternative is “hard-coded” as LEFT and RIGHT and we have separate events for each
alternative). However the challenge will be on finding the right lexicographic variant for proving
probabilistic termination of the algorithm using our tool.

We have presented our development involving several refinements, which involves reasoning
about both standard and probabilistic terminations and deadlock-freedom. However, we only
use superposition refinement. In particular, when dealing with convergent proofs, we merely
keep the models the same, and the various refinements are there to accommodate the lexico-
graphic variant. For this reason, i.e., having the same model through out, our reasoning about
probabilistic termination is preserved. This is a very strong assumption, and it could reduce the
effectiveness of using refinement. However, in general, standard refinement does not preserve

Proc. AVoCS 2010 14 /15

Eg ECEASST

this type of reasoning: a valid standard refinement can accidentally remove the choice that leads
to possible termination. The argument becomes more complicated with data refinement, i.e.,
when one replaces some abstract variables by some new concrete variables. In order to relax the
restriction on having the same model through out, additional proof obligation(s) will be needed
to guarantee that our reasoning at the abstract level about probabilistic convergence remains valid
at the concrete level. We regard this as possible future work.

Acknowledgements: We thank J-R. Abrial, D. Basin, A. Fiirst, S. Hallerstede, M. Schmalz
and anonymous reviewers for their constructive comments on the paper.

Bibliography

[ABH"10] J.-R. Abrial, M. Butler, S. Hallerstede, T. Hoang, F. Mehta, L. Voisin. RODIN:
An Open Toolset for Modelling and Reasoning in Event-B. Internation Journal on
Software Tools for Technology Transfer (STTT), Apr. 2010.

[Abr10] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, May 2010.

[ACMO3] J.-R. Abrial, D. Cansell, D. Méry. A Mechanically Proved and Incremental Devel-
opment of IEEE 1394 Tree Identify Protocol. Formal Asp. Comput. 14(3):215-227,
2003.

[Bac89] R.-J. Back. Refinement Calculus II: Parallel and Reactive Programs. In deBakker
et al. (eds.), Stepwise Refinement of Distributed Systems. LNCS 430, pp. 67-93.
Springer-Verlag, Mook, The Netherlands, May 1989.

[HHO7] S. Hallerstede, T. Hoang. Qualitative Probabilistic Modelling in Event-B. In David
and Gibbons (eds.), IFM 2007: Integrated Formal Methods. LNCS 4591, pp. 293—
312. Springer Verlag, Oxford, U.K., July 2007.

[HKBAO9] T. Hoang, H. Kuruma, D. Basin, J.-R. Abrial. Developing topology discovery in
Event-B. Sci. Comput. Program. 74(11-12):879-899, 2009.

[HoaO5] T. Hoang. The Development of a Probabilistic B-Method and a Supporting Toolkit.
PhD thesis, The University of New South Wales, July 2005.

[IEEOQO] IEEE. IEEE Std 1394a-2000 High Performance Serial Bus — Amendment 1. 2000.

[MMO5] C.Morgan, A. Mclver. Abstraction, Refinement and Proof for Probabilistic Systems.
Springer Verlag, 2005.

[Rab82] M. Rabin. The Choice Coordination Problem. Acta Informatica, 17:121-134, 1982.

[Yil10] E. Yilmaz. Tool Support for Qualitative Reasoning in Event-B. Master’s thesis,
Department of Computer Science, ETH Zurich, Switzerland, Aug. 2010. http:
/le-collection.ethbib.ethz.ch/view/eth:16777q=Yilmaz.

15/15 Volume 35 (2010)

http://e-collection.ethbib.ethz.ch/view/eth:1677?q=Yilmaz
http://e-collection.ethbib.ethz.ch/view/eth:1677?q=Yilmaz

	Introduction
	Qualitative Reasoning in Event-B
	Machines
	Machine Refinement
	Convergence and Qualitative Reasoning
	Our Contribution

	Rabin's Choice Coordination Algorithm
	Description of the Problem and Algorithm
	Formal Development
	Initial Model. The Sets of Inside Tourists
	Refinement 1. The Sets of Outside Tourists
	Refinement 2. Rabin's Algorithm
	Refinements 3–6. Convergence Proofs
	Refinement 7. Deadlock-freedom
	Proof Statistics

	Tool Support
	Conclusion and Future Work

