Electronic Communications of the EASST

Volume 35 (2010)

Proceedings of the
10th International Workshop on
Automated Verification of Critical Systems
(AVoCS 2010)

Verification of Symmetry Detection using PVS
Shamim Ripon and Alice Miller

16 pages

Guest Editors: Jens Bendisposto, Michael Leuschel, Markus Roggenbach

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

@ ECEASST

Verification of Symmetry Detection using PVS

Shamim Ripon* and Alice Miller 2

Ishamim@cs.york.ac.uk
Department of Computer Science, University of York, UK

2 alice@dcs.gla.ac.uk
Department of Computing Science, University of Glasgow, UK

Abstract: One of the major limitations of model checking is that of stapace
explosion. Symmetry reduction is a method that has beeressfidly used to alle-
viate this problem for models of systems that consist ofafdtientical components.
In earlier work, we have introduced a specification langu&yemela-Lite, which
captures the essential features of Promela but has a fdllyedesemantics. We used
hand proofs to show that a static symmetry detection tecienipveloped for this
language is sound, and suitable to be used in a symmetrytieaucol for SPIN.
One of the criticisms often levelled at verification implertations, is that they have
not been proved mechanically to be correct, i.e., no mechhformal verification
technique has been used to check the soundness of the dpphodhis paper, we
address this issue by mechanically verifying the corresstiod the symmetry detec-
tion technique. We do this by embedding the syntax and sécsasftPromela-Lite
into the theorem prover PVS and using these embeddings todbetck the con-
sistency of syntax/semantics definitions, and interalgtipeove relevant theoretical
properties.

Keywords: Symmetry, Semantics, Theorem Proving, PVS

1 Introduction

Promela-Lite[DMO08] is a specification language that captures the core featfresomela -
the input language for the SPIN model checképlD3]. Unlike Promela, Promela-Lite has a
rigorously defined semantics, making it a suitable vehioigpfoving correctness of verification
and state-space reduction techniques for Promela. Thedgegvas designed for proving correct
an automatic symmetry detection technique for Promel(8]. The technique involves the
derivation of state-space preserving automorphisms fl@next of a Promela specification, to
be exploited during search to reduce the space and timereagemts of model checking via
symmetry reductioflCEF"96, ES96 ID96]. This symmetry detection technique, basedstatic
channel diagram analysishas been implemented as part of TopSPIN, a symmetry reducti
package for the SPIN model check&n]06].

Model checking of a specification described in Promela wve®lthe construction of an as-
sociated Kripke structureCQGP99, the size of which grows exponentially as the number of

* This work is funded by EPSRC grant EP/E032354

1/16 Volume 35 (2010)

mailto:shamim@cs.york.ac.uk
mailto:alice@dcs.gla.ac.uk

Verification of Symmetry Detection using PVS @

components in the system increases. This phenomenon isnkasstate space explosionin
symmetry reduced model checkinGEEF"96, ES96 1D96], a quotientstructure is checked in-
stead of the entire Kripke structure. The quotient strugtuvhich is generally smaller than
the original Kripke structure, is constructed using the syatry in the underlying model. An
automatic symmetry detection technique for Promela isgmtesl in PMO08]. Promela-Lite is
defined to allow us to provide a formal proof of the techniquesd in this automatic symmetry
detection technique. A full grammar, type system, and ak€rigtructure semantics of Promela-
Lite have been defined ildMO08] to support the proofs of symmetry detection technique®séh
proofs have been carried out by hand.

The soundness of model checking depends critically on thecmess of underlying algo-
rithms and reduction techniques. For example, an erronggusnetry detection method may
compute state-space permutations which are not strupteserving, potentially resulting in
incorrect verification results. For this reason, it is hjgbesirable that correctness proofs for
model checking techniques, such as the proof by hand pesb@n{DMO08], are mechanically
verified. Mechanical verification is widely used as a tool &uify the syntax and the semantic
models of a language. Verification of language propertieg igentify flaws in the language,
which can be remedied to give increased confidence in theitagegdefinition. Theorem provers
are heavily used as a tool to mechanically verify languaggegties. To do this, the language
and its semantic model must be embedded into the theoreremprov

Several theorem provers, such as PYBRE93, HOL [GM93], Coq [Be97 and Isabelle
[Pau94, have rich specification languages, automated supportiéaision procedures, and
proof strategies tailored to their logics. PVS (Prototypification System) is an automated
framework for specification and verification. PVS suppoitghbr order logic, allows abstract
datatypes to model process terms, and has strong suppartiemtion mechanisms.

In this paper, inspired by other successful attempts to dnsipecification languages into
PVS [Hel06 POS04RB0Y, we show how the Promela-Lite syntax, type system and sgosan
can be embedded into PVS, and use this embedding to intexigqbirove both consistency of the
syntax/semantics definitions, and language propertiepatiicular, we concentrate on proving
theorems related to automatic symmetry detection whicle ipagviously been proved only by
hand. By demonstrating how a particular formal techniquelEmechanically verified, we lead
the way for mechanical proof to become standard in the dpusdmit of such techniques.

The rest of the paper is organised as follows. Se@igives a brief overview of the Promela-
Lite language and illustrates the language features usirexample specification of a resource
allocation system. SectioBishows the embeddings of the Promela-Lite syntax, typesttand
type system into PVS. In sectichwe introduce the static channel diagra8CD associated
with a specification, and define the automorphism group ofipkérstructure and of aBCD
We state the main theorem to be mechanically proved in tlpempaamely the Correspondence
Theorem. The proof of this theorem is supported by a seridsnofmas. We show how each
of these lemmas are proved in PVS and how they are used in ¢lo¢ @ff the correspondence
theorem in Sectiod. After discussing related work in Sectid@) we give our conclusions in
Section?.

Proc. AVoCS 2010 2/16

@ ECEASST

2 Promela-Lite

A specification in Promela usually consists of a series dballwariables and channel declara-
tions, and process type declarations, along with an iigéiibn processi ni t . Properties to
be verified are specified either by usiagsert statements within specifications, or \id L
properties. Promela-LiteMO08] includes some core features of Promela such as paranesteriz
processes, channels (first class) and global variablemynbiis some types such as enumerated
types, records, arrays, and rendezvous channels. Unliked?a, a full grammar and type system
along with a Kripke structure semantics of Promela-Litechagen defined.

The syntax of Promela-Lite (see Fif). is defined in PMO08] using the standard BNF form
(e.g. [ASUSE). A channel declaratioshan c = [a] of {T} defines a buffered channel with
typechan{T} (whereT is a comma separated list of types). Note that all channelstatic —
their names cannot be reassigned. A Promela-Lite proctypparameterized process definition.
A statement has the fornat om ¢ {(guard) - >(update-list‘; '}, where(guard) is a boolean
expression over variables arwpdate-lisi‘; ’ is sequence of updates of variables and channels
separated by semicolons. A special referemaé! is defined to denote an undefined channel
reference and can be used as a default value.i Tin¢ process consists of a sequence ah
statements within an atomic block. Note that in Figa list statement of the forrffoo-list)‘ +’
consists of ar-separated sequence of tyffeo), wherex € {*; ",*, ’",": : ' }.

In Fig. 2 we present an example specification (frddM08]) of a message passing system. It
consists of threserverprocesses, siglient processes and thrémad-balancemrocesses. A par-
ticularclienthas been blocked by the system, indicated by the glpidalariableblocked client
A load-balancemrocess continuously receives requests semlibyt processes. A request con-
sists of two parts: the identity of@ient (derived from its_pi d variable), and the input channel
of theclient If the message originates from the blockd@nt then theload-balancerreturns
the value 0, indicating that the request has been deniecer@ige theload-balancerforwards
the name of the input channel of the giveient to theserverwith the shortest queue of incom-
ing messages (choosing non-deterministically betwssmes which share the shortest queue
length). On receiving alientchannel name, serveruses it to send the value 1 to tbkent

3 Embedding Promela-Lite

We mechanise the language in two phases. First we define files, tgyntax and type system
of the language. The PVS type checker checks the definitipastpf the language terms and
ensures that the type system is well-defined. We then defmedmantics and other related
definitions that are needed for our major theorem. Finally,define and prove this theorem in
PVS using these definitions and following the hand proofdiglied in earlier work DMO8].

3.1 Types

The language has primitive typeg (integers) angbid (process ids). The basic channel type has
the formchan{T }, whereT denotes a comma separated list of types. Intuitively, tafniion
allows the channel type to be recursively defined as a listpeg, including the channel type.

3/16 Volume 35 (2010)

Verification of Symmetry Detection using PVS @

spec) = (channel)* (global)* (proctype)™ (init)
channel) := (chantype) (name) = [(number) 1 of { (type-list, ,") } ;
global) ::= (type) (name) = (number) ;

proctype) == (name) ((param-list, ;)7) { do (statement-list, ::’) od }

statement) ::= atomic { (quard) -> (update-list, ;) }

(
(
(
(
(param) =:= (type) (name)
(
(
(
(

init) ::= init {atomic (rum-list,) }

run) = run (name) ((arg-list, ,)") ;

guard) = (expr) < (expr) (expr) ::= (name)
(where b € {==, I=,<,<=,>,>=}) | (number)
nfull ({name)) _pid
nempty ((name)) null

| |

| |

| ! {guard) | len ((name))

| (guard) && (guard) | ((expr))

| (guard)|| (guard) | (expr) o (expr) (where o € {+, -, *})
| ((guard))

kip (arg) == (name)
(expr) | (number)
(name-list, °, | null

(

(name) == an alpha-numeric string

(number) ::= a positive integer

Figure 1: Syntax of Promela-Lite.

To encode a language in PVS we must define the available typleslanguage. The primitive
types ofi nt andpi d can be easily defined in PVS. However, due to the recursiveaaf the
channel, all types are defined aBATATYPE in PVS. The type syntax of Promela-Lite and the
PVS definition is shown in Fig3. A type, Nane, is defined to represent variable names. We
define a function to map a variable name to its type. It allogvioudentify the type of a variable
and use an appropriate semantic definition.

3.2 Syntax

Proofs about a language with a BNF style syntax definitioarofequire induction over the terms
of the language. The syntax definition can be directly endagsing abstract datatypes. PVS
generates an induction scheme for the abstract datatype®p&rtyp on terms can be proved by
showing that it holds for all atoms and that it holds for aleagtors if it holds for the subterms.
First, we define a datatypes for an expressexpf) and for a guardquar d), each contain-

Proc. AVoCS 2010 4116

ﬁ ECEASST

chan sel = [3] of {chan{int}};

chan se2 = [3] of {chan{int}};

chan se3 = [3] of {chan{int}};

chan bl = [1] of {pid,chan{int}};

chan b2 = [1] of {pid,chan{int}};

chan b3 = [1] of {pid,chan{int}};

chan cl1 = [1] of {int}; chan cl2 = [1] of {int};
chan cl3 = [1] of {int}; chan cl4 = [1] of {int};
chan cl5 = [1] of {int}; chan cl6 = [1] of {int};

pid bl ocked_client =9

proctype | oadbal ancer (chan{pid, chan{int}} in;
chan{int} client_link; pid client_id; int pc) {

do
:: atomic { pc==1 && nenpty(in) -> in?client_id,client_link; pc =2}
atomi c { pc==2 && client_id!=blocked_client ->pc = 3}
atom ¢ { pc==2 && client_id==bl ocked_client && nfull(client_link)
->client_link!O; pc = 4}
atomic { pc==3 && len(sel)<=len(se2) && len(sel)<=len(se3) & & nfull(sel)
-> sellclient_link; pc =4}
atomi ¢ { pc==3 && len(se2)<=len(sel) && | en(se2)<=len(se3) & & nfull(se2)
-> se2lclient_link; pc =4}
atomic { pc==3 && len(se3)<=len(sel) && | en(se3)<=len(se2) & & nfull (se3)
-> se3lclient_link; pc = 4}
:: atomic { pc==4 -> client_id = 0; client_link = null; pc =11}
od

}

proctype server(chan{chan{int}} in; chan{int} client_link; int pc) {
do
atom c { pc==1 && nenpty(in) -> in?client_link; pc =2}
atomc { pc==2 && nfull(client_link) -> client_link!1l;, pc = 3}
atomc { pc==3 -> client_link = null; pc =1}
od
}

proctype client(chan{int} in; chan{pid,chan{int}} Ib; int response; int pc) {
do

atomc { pc==1 && nfull(Ib) ->1b!_pid,in; pc =2}
atomi ¢ { pc==2 && nenpty(in) -> in?response; pc = 3 }
atomc { pc==3 -> response = -1; pc =1}
od
}
init {
atom c {
run server(sel,null,1); run server(se2,null,2); run server(se3,null,3)
run | oadbal ancer (I b1, null,0,1); run |oadbal ancer(lb2,null,0,1);
run | oadbal ancer (I b3, null, 0, 1)
run client(cl1,1bl,-1,1); run client(cl2,1bl,-1,1); run client(cl3,1b2,-1,1)
run client(cl4,1b2,-1,1); run client(cl5,1b3,-1,1); run client(cl6,1b3,-1,1)
}
}

Figure 2: Promela-Lite specification of a load-balancingtem.

5/16 Volume 35 (2010)

Verification of Symmetry Detection using PVS @

(type = int pid : TYPE={n:int]|0<=n AND n<=MAX}
| pid Types : DATATYPE
| (chantypé BEG N
int(i:int): int?
(chantype ::= pd(p: pid) : pid?
(recursive’chan { (type-list, %, ’)} channel (chlen: int,
type_list:list[Types]): chan?
END Types
Nanme : TYPE

typeof : [Names -> Types]
Figure 3: Promela-Lite type syntax and PVS definition

ing constructors, accessors and recognizers. lgtiaa d datatype, constructors are defined for
boolean operators, and relational operators. The definitio (expr) > (expr) is divided into

two parts: one forcke {==, ! =}), and another forcke {<, <=, >, >=}). Later in the type
system definition, we show how these two definitions are usedrately. In the definition of
guard, two constructors are defined to check the status ofaneh Of ul | , nenpty). An
update (pdat e) consists of &ki p, an assignment, or a read/write from/to a channel (denoted
? and ! respectively). The PVS definitionsefpr , guar d andupdat e are shown in Fig4.
Note that we do not use the symbots™or “ <” directly as they cause a typing conflict in PVS.

expr: DATATYPE guard : DATATYPE
BEG N BEG N
+(el,e2: expr) : plus? rel (el,e2:expr): rel?
-(el,e2: expr) : mnus? eq(el, e2:expr) : eq?
x(el,e2: expr) : star? Nt (g: guar d) . not?
nane(n: Nanes) : nane? /\ (g1, g2:guard): and?
I en(nm Nanes) : len? \/ (g1,92:guard): or?
nul : nul? nfull (n: Narmes) : nfull?
num(n: int) : nun® nenpty(n: Nanmes): nenpty?
pid(p: pid) : pd? END guard
END expr
updat e : DATATYPE
BEG N
skip : skip?
assi gn(x: Nanes, e:expr) . assign?
cin(c: Nanes, nanelist:list[Nanmes]) : cin?
cout (c: Names, exprlist: list[expr]): cout?
END updat e

Figure 4: Syntax of expression, guard and update in PVS

3.3 Type System

Promela-Lite typing rules are defined following the notatised in Car97 and ensure that the
language terms are well-formed. A Promela-Lite specificat¥ is well-typed if its statements

Proc. AVoCS 2010 6/16

ﬁ ECEASST

and declarations are well-formed according to these rulgping rules forexpr, guar d and
updat e in PVS are shown in Fi§.

Each expression iexpr is type checked, ensuring it is well-typed according to thrig
rules. For example, the arithmetic expressigrel, e2) returns an nt value if the constituent
expressionsgl ande?2, are of type nt .

chktype_expr (e: expr,t: Types): RECURSI VE bool =
CASES e OF
+(el, e2): EXISTS (t1l:Types): int?(tl) AND
chktype_expr(el, t1l) AND
chktype_expr(e2, t1) AND int?(t),

nul : chan?(t),
pid(p): pid?(t),

num(nun): int?(t),

nane(n): (int?(types(n)) AND int?(t)) OR
(pid?(types(n)) AND pid?(t)) OR
(chan?(types(n)) AND chan?(t)),

len(nn): chan?(types(nnm)) AND int?(t),

ENDCASES

MEASURE e BY <<

chktype_guard(g: guard) : RECURSI VE bool =
CASES g OF
rel (el,e2): EXI STS (t:Types): int?(t)AND
chktype_expr(el,t) AND
chktype_expr(e2,t),
eq(el, e2) : EXISTS (t: Types)
chktype_expr(el,t) AND
chktype_expr(e2,t),
Nt (g1) : chktype_guard(gl),
I\ (g1,92) : chktype_guard(gl) AND
chktype_guard(g2),
\/(gl,92) : chktype_guard(gl) AND
chktype_guard(g2),
nfull (n) : chan?(types(n)),
nenpty(n) : chan?(types(n))
ENDCASES
MEASURE g BY <<

chktype_updat e(u: update) : bool =

CASES u OF
ski p : TRUE,
assign(x,e) : EXISTS (t: Types):

chktype_expr(e,t) ANDt = types(x) AND
NOT(chan?(types(x))),
cout (ch, expl st): chan?(types(ch)) AND
conpare_list(type_list(types(ch)), explst),
cin(ch,nmist) : chan?(types(ch)) AND chlen(types(ch)) > 0 AND
not chan(nane2type(nmist)) AND
conpare_list(type_list(types(ch)),nnlist) AND
cons?(nmist) AND diff(nnlist)
ENDCASES

Figure 5: Typing rules for expression and guard and updatersents in PVS

The typing rules foiguar d include bothexpr andguar d and we use the type system of

7116 Volume 35 (2010)

Verification of Symmetry Detection using PVS @

expr in the definition. Two typing rules are defined for relatiooglerators:r el (el, e2)
where the only allowed type isnt , andeq(el, e2) where any typeT) is allowed.

The boolean functiomonpar e_l i st is defined within the PVS channel write definition
(cout) to ensure that the types of the expressions to be wrigeio the channel are the same as
that of the channel. The functiom®t chan anddi f f are defined for a channel read to ensure
that the variablesx] to be updated are different and not of tyg®an

The other language terms can be defined using these defiitt@n example, the type system
for a statement(fuard) - > (update-list, ; ')) can be defined using the type systems of both
guar d andupdat e.

4 The Automorphism Theorem

In this section we define a Kripke structure, a static chadisgram and automorphism groups
of both. We then give the main theorem to be mechanicallygapmamely the Correspondence
theorem, which relates these two automorphism groups (@orem specification).

Definition 1 A Kripke structure is a tupleZ = (S S,R) where:
e Sis afinite set of states
e § C Sis a set of initial states
e RC Sx Sis a transition relation.

A path in.# from a states € Sis an infinite sequence of statas= 5,51,%,... wheresy =s,
such that for all > 0, (s_1,5) € R. A states € Sis reachableif there is a patts, 51, ...,S,... in
A wheregy € §. A transition(s,t) € Ris reachableif sis a reachable state.

Definition 2 Let .# = (S S,R) be a Kripke structure. Amautomorphisnof .# is a permu-
tation a : S— Swhich preserves the transition relatioR) @nd set of initial states. That s
satisfies:

e Forallste S (st)e R= (a(s),a(t)) eR

e a(5) e forall e S.

In fact, we will assume that there is only one initial state, % = {s}.

The static channel diagran{SCD(#?)) of a Promela-Lite specification®) is a graphical
structure extracted by syntactic inspection of the spetifio and it can be seen as a static
approximation of the communication structure for the Seation.

The static channel diagram is defined in PVS as a colouredhg@psisting of a set of vertices
and a set of edges. The vertices consist of a sgid¥ and a set of channels. The edges are
constructed by taking one vertex from each of these sets.afileeda colouring function to add
colours to bothpids and channels so thpids of the same proctype have the same colour and
channels of the same type have the same colour.

pidset: TYPE = set[pid]

chset: TYPE = set[chan]

vertices: TYPE+ = [pidset, chset]
edge: TYPE = [# pd: pid, ch: chan #]

Proc. AVoCS 2010 8/16

@ ECEASST

edges : TYPE = setof[edge]

graph: TYPE+ [vertices, edges]

SCD: TYPE = {g: graph | FORALL (e:edge): g'2(e) | MPLIES
(g"1)"1(pd(e)) AND (g'1)°2(ch(e))}

Definition 3 Letl = (V,E,Y) be a coloured digraph wheléis a colouring of(V,E) anda a
permutation olV. Thena is anautomorphisnof I if the following conditions are satisfied:

e Forall(u,v) €E, (a(u),a(v)) €eE

e Forallve V, Y(v) =Y(a(v)).

An automorphism of the static channel diagram is an autohismp of a coloured graph. To
define the automorphism we define a bijection for the vertitbg vertices consist of bottids
and channels and bijections are defined for them both.

p_perm TYPE = (bijective?[pid, pid])
c_perm TYPE = (bijective?[chan, chan])
Aut omor ph(Q: TYPE = {g: SCD | FORALL (p,c,eQ):
G 2(eg) AND pd(eg)=p AND ch(eg)=c | MPLIES
EXI STS (pp, cp):
g'2((#pd := pp(p), ch := cp(c)#)) AND
col or (p) col or (pp(p)) AND
col or(c) color(cp(c)) }
Al pha(p) : TYPE ={ pl: pid |
EXI STS (g: SCD, ag: Aut onor ph(g), pp):
(g"1)"1(p) AND (ag'1)‘1(p) AND pl = pp(p)}
%W& i mlar definition is also defined for channel

Given an expressiog guardg, updateu and statemergof .27, the permutations (e), a(g), a(u)
anda (s) are obtained by replacing each occurrence of static chavameé andid literal with
its respective permutations.

The automorphisms of a Kripke structu# form a group under the composition of mappings
denotedAut(.#). In a model of a concurrent system with many replicated mees Kripke
structure automorphisms typically involve the permutatid process identifiers throughout all
states of the model. There is a groGpwhich permutes the set of process identifiers, and an
action of G on S. G partitions the state s&into equivalence classes calletbits. A quotient
Kripke structure.#Zs can be constructed by using a representative from each orhie state
space of the quotient model is usually smaller than themaigitate space making it convenient
to verify larger structures.

This paper does not concern symmetry reduction, rather ¢tection of symmetry (to be
later used in reduction). Symmetry reduction involves aeplg sets of symmetrically equiva-
lent states by a single representative state. Details d@étmique of symmetry reduction can be
found in [CEF"96, ES96 ID96]. Our symmetry detection technique is based on a correspon-
dence between the automorphisms of the static channeladiegnd automorphisms of the un-
derlying Kripke structure. By showing this correspondeneecan establish that the symmetries
detected by analysing static channel diagram (using caatipoal graph theoretic tools like, for
example, NAUTY McK9Q]) infer the symmetries in the Kripke structure and theseragtnies
can be used for reduced model checking. In this paper, wesghev/following theorem:

9/16 Volume 35 (2010)

Verification of Symmetry Detection using PVS @

Theorem 1 Let & be a Promela-Lite specification, ard e Aut(SCD(#?)) and letp be the
permutation representation of A8CD(Z?)). If a is valid for & thenp(a) € Aut(.#).

Note that an automorphism is said to walid for & if it maps &2 to an equivalent speci-
fication, i.e. one that is identical up to ordering of (andhivi) statements. The proof of the
theorem uses four supporting lemmas. The mechanical petiesrupon giving definitions of
these lemmas in PVS, which are shown in the following section

5 Proof Mechanisation

In this section we give a flavour of our proof mechanizatiootéd\that for space reasons several
details are omitted e.g. the (rather complex) PVS definibiba states, and the action of a static
channel diagram automorphism on s, a(s), together with some subcases of lemmas. Full
details can be obtained from the authors.

5.1 Expressions

Let e be an expression in a proctype The result of evaluating for process (of typep) at a
statesis denoteceval (s, e).

Lemmal Leta € Aut(SCD(Z”)) and let e be an expression .
If e :int then
evahi(s,e) = eval 4 (a(s),a(e))

and if e: pid or e: chan{T} then
evahi(a(s),a(e)) = a(evals,e))

To prove the lemma it is required to evaluate expressiongpefint, pid or chan The rules
for evaluating expressions are shown in Fg.

eval;
evakh;

(s,x) = aif (x=a) € s(i.e. xis a global variable)
(s,c) = cif cis a static channel name oul |
eval; (s,a) =aifaeZ
evabi(s,_pi d) =i
evahi(s,| en(c)) =kif cis a static channel an@ € s (0 < k < cap(c))
evalb; (slen(null)) (p[]x—c)es
evalp (s,eroey) =evahj(s,e) oevahi(s e) (Whereo € {+,—,x}).

Figure 6: Promela-Lite expression evaluation

For expressions of typat the proof of Lemmeél is a direct implication of permutation over
expressions. For arithmetic expressions the results hoidduction, e.g., whee = e; + &, we
show that,

evapi(s, (e1+&)) = evahq()(a(s),(a(er) +a(e)))

Proc. AVoCS 2010 10/ 16

@ ECEASST

We define a lemma for the addition operation for expressidimgoe int.

arith_lemma : LEMVA
eval uate(s,i)(+(el,e2)) =
eval uat e(al pha(s), al pha(i)) (+(al pha(el), al pha(e2)))

It is fairly straight forward to prove this lemma in PVS. Howee, the proofs fopid andchan
are more complex. The lemmas for other expressions areasimil
5.2 Guard Statements

In the following, the relatiors |=p; g states that a guarglis satisfied for a procegxi) at the
states.

Lemma2 |If o € Aut(SCD(#?)) and g is a guard inZ then

SEpi 9 < a(s) Fpag) a(9)

Promela-Lite guards consist of a boolean combination gb@sdional formulas. The defini-
tion of the relatiors =, g is shown in Fig.7.

o skpje1 e < eval(ser) xevali(s e) (Wherex € {==,1 =, <,<=,> >=1})

e skpinfull(c) < (c=[a1,8,...,dy)) € sandcap(c) > m, wherec is a static channel
e Sk=pinenpty(c) < (c=[a,dy,...,8n|) € sandm> 0, wherec is a static channel

e sk=pinfull (x)/nenpty(x) < (pi].x=c) € sands=p; nf ul | (c)/nenpt y(c),

o sk=pi ! giff sSf4pi g

* Si=pi 01&&0; iff Sk=pi 1 andsf=p; g2

e sk=pi 01| | Q2iff Sf=pi g1 0rsk=pi G2

e skpi(Q) iff sk=p 0.

Figure 7: Satisfaction of guards

The proof of this lemma uses the proof of LemtaNe prove Lemma with PVS for each
type of guard statement. As an example, consider the gases; <t &), wheree; ande, are
expressions of typpid. For such a guard, we formulate the following equation froemima2.

SEpiexe & a(s) Fpag) a(er) = a(e)

For a guard consisting of boolean operators, @g- g1&& g, we formulate the following
equation:

SEpi 01&&0, & A(S) Fpa) a(01) &&a(g2)
Both guard statements are defined as follows:

eqlema : LEMVA
Guard?(eq(el,e2))(i,s) =
Guar d?(eq(al pha(el), al pha(e2))) (al pha(i), al pha(s))
andl ema : LEMVA
Guard?(/\(gl,g2))(i,s) =
Guard?(/\ (al pha(gl), al pha(g2))) (al pha(i), al pha(s))

11/16 Volume 35 (2010)

Verification of Symmetry Detection using PVS

E

5.3 Update Statements

Hereexeg,(s,u) denotes the result of applying an updat® states. A statement is said to be

well-defined if the application condition of the statemensufficient to ensure that the update

(or sequence of updates) results in a well-defined state.

Lemma 3 Let u be an update o, a € Aut(SCI(#?)) and s a state such that exsa) is

well-defined. Then exgg)(a(s),a(u)) = a(exeg;(s,u)).

To prove LemmaB, first we define the update execution rules. The update eracutles are

described in Tablé. We prove Lemm& by proving it for each type of update statement. The

proof forski p is immediate.

Table 1: Update execution rules

u Conditions on s Resulting state exec, (s, u)
‘skip’ none s
‘v=¢ (var(z)=a)€s (s \ {(var(z) = a)})U
{(var(z) = evalyi(s,)}
‘cler, e, (¢ =la1,az,...,am]) €5 (s\ {(c=[a1,az2,...,an])})U
..,er’ §=pinfull(c) {(c=la1,a2,...,am, (evaly, (s, er),
evaly i (s, e2),...,evaly (s, ex))])}
‘etmy, g, (c=[(a1,1, 01,2, .., a1%), (s\ {(c= [(a1 1,012, -5 1%), G2, . - -,
"axk’ a2;"'aam]) €s (’U(ZT(LL’l)) (UGT(IQ) = b2 ’
s nompey(o) or(m) =)
orz) =b) € Uffe = (o)) 0r (o) =),
(1<j<k) (var(as) = ang)er. s (var(z,) = an1)}
‘rley, e, (plilz=c)€s execy i(s,‘cler, es, ..., e;") (if well-defined)
cey ek
‘wray, x, (plil.x =c¢) € execy (s, c?x, 12, .., x") (if well-defined)
cey Ik’

Rules interpreted in the context of procésan instantiation of proctype

Assignment: For an assignment statement of the fopm= e), wherex is a variable ane an

expression, we prove the following:

exegq (i) (a(s),a(x=e)) = a(exepi(sx=e))

Following the update rule for an assignment statement ineTabwe define a function for

updat e and the following lemma in PVS.

updat e_assgn : LEMVA
exec(al pha(s), al pha(i), al pha(assign(x,e))) =
al pha(exec(s,i,assign(x,e)))

Channel Write: Letey,ey,...,e be the expressions whose values are to be written to a channel

Proc. AVoCS 2010

12/16

@ ECEASST

X in a states.

exeg qi)(a(s), ' a(x)! a(er),a(e),...,a(&)) = a(exegi(s Xeye,... €))
In PVS, we define the rules for writing to a channel and defiegdiowing lemma:

update chw : LEMVA
exec(al pha(s), al pha(i), al pha(c_nm, al pha(ex_Ist)) =
al pha(exec(s,i, c_nm ex_lst))

Channel Read:Let xg,X», ..., X be the variables to be assigned values reading from a channel
in a states.

exeq qi) (a(s), a(X)?x1, Xz, ..., %) = a(exeg;(s X?x,X2,..., X))
After defining the rules for reading from channel we defineftewing lemma:

update_read: LEMVA
exec(al pha(s), al pha(i), alpha(c_nm, v Ist)) =
al pha(exec(s,i, c_nm v_Ist))

The following lemma shows the result of applying a sequelficpdate statements, Uy, . .., Ux
in a states. This can be proved using Lemra

Lemma 4 Let u,Uy,...,U be updates of”?, a € Aut(SCD(Z?)) and s be a state such that
exeg,;(s,ug; Uz; ...; Uk) is well-defined. Then

exeq, q () (a(s),a(ur); a(uz); ...; a(u)) = a(exeg;(s,uy; Up; -..; Ux))

Proof of Theorem.. According to Definition2, we must show that any automorphismpre-
serves transitions and fixes the initial state.

If (s,t) € Rthen there is a process with picduch thatproctypéi) = p (for some proctype
p), and a statemerttin p such that the guard afholds for process at s, and execution of the
updates ofz by process at s leads to staté. Sincea(2?) = & the statementr(z) (possibly
re-arranged) also appears in proctypeBy Lemmaz2, the guard ofa (z) holds for processi (i)
ata(s), and by Lemmal, execution of the updates af(z) by processx (i) at a(s) leads to state
a(t). Therefore(a(s),a(t)) € R. Proof thata fixes the initial state is omitted here. O

We define a transition involving jpid variable and the transition preservation property in PVS:

step(s,t): bool = EXISTS (i : pid, z : Statenent):
statement _in_proc(i)(z) AND
Guard?(guard(z))(i,s) AND
t = exec(s, i, updates(z))
Aut onmor ph: THEOREM
step(s,t) => step(al pha(s), al pha(t))

This property is proved by using Lemr2aand Lemmat.
Similar cases involving local variables and channels arited

13/16 Volume 35 (2010)

Verification of Symmetry Detection using PVS @

5.4 PVS vs other provers

The most difficult aspect of the presented work was that ofeztdimg the language constructs
and semantics into the prover. There were various posmbilhere, we chose a way that was
convenient for our particular proofs.

In any proof, one of the main purposes is to decompose theigmabne or more simpler
subgoals and find suitable proof steps for each of them. Weheaddvantage of having access
to existing hand proofs, which indicated ways to decompbeeptoof of Theoreml. It would
have been feasible to use an alternative prover in a simitgr \EEach prover has its own way
of defining language terms automation facility. PVS progidetomated support for combining
proof steps, which would have had to have been performedithdilly using other provers.

6 Related Work

Promela-Lite and hand proofs of the Automorphism Theoreenpaiesented injMO08]. No
previous work has been carried out to embed Promela-Litetirearem prover or mechanise
these proofs.

In [TBL10] the soundness of symmetry reduction for model checkingdsequl using the in
the B-Method Pbr96] and its associated tools. They do not consider symmetgctieh as we
do, but their work represents one of the few examples wheeefammal technique is used to
verify another.

In [Hel0g, the formal semantics of a specification language Ocsidnisezlded into PVS. A
parallel approach is taken where the language is embeddasifny both shallow and deep em-
bedding. Language syntax and corresponding semanticsrdredeled using deep embedding.
A simple specification is embedded using shallow embeddiraprrespondence proof is shown
between the two embeddings. The syntax is embedded usingstia@ datatype mechanism
and semantics are defined recursively to return a value Weeause a similar approach.

The specification languagg, is a First-Order Dynamic Logic of Fork Algebra. IRPS04,
the semantics of the language is embedded into the PVS thgm®ver allowing for the con-
struction of specifications and readable proofs of variauperties of the specifications. The
steps taken to embed the syntax and the semantics, and theegeaf the theorem prover have
informed our work.

7 Conclusions and Future Directions

We have shown how a mechanical formal verification approachbe used in practice to verify
a formal method - a symmetry detection technique for modetkimg. Our purpose was to gain
confidence in our symmetry detection technique and to finésilile mechanisation technique
with which to prove properties of a language, thereby miging the need for hand proofs.

We have presented a case study, namely the proof of a conadmpoe theorem supported
by two significant lemmas for the modelling language Prorhétie. With the strong datatype
support of PVS, such as abstract datatypes and predicaigeabpwe have succinctly defined
the syntax and type system of the language. The formulafi@ach lemma requires additional

Proc. AVoCS 2010 14/ 16

@ ECEASST

definitions and, crucially, a clear understanding of thatesl semantics. In the hand proof it
is easy to be imprecise about various definitions, and typinipe rules. The mechanisation
forces us to be strict about definitions and datatypes. Gffieprocess of performing a proof is
more instructive than getting a final yes/no answer. We haee the theorem prover as a proof
checker. To do this it is necessary to fully understand thearing steps of the theorem prover.

We have followed a systematic approach where we have defirgeslyntax, the type system
and the semantics of the language. Our embedding approachecaasily adapted to other
languages. The main challenge of defining any language ioaeim prover is to properly embed
the semantics. Our experience from this work suggests liegaverification of such language
properties for a similar language can be achieved with aredde amount of effort.

Mechanical proof should be applied to check the soundneasvefification implementation
during developmentOur current goal is to use the structure of our mechanicabfpio prove
the soundness of a symmetry detection technique for a nesifispéion language for symmetric
probabilistic systemsqM10.

Bibliography

[Abro6] J. R. Abrial. The B-Book: Assigning Programs to MeaninGambridge University
Press, 1996.

[ARW10] Proceedings of the 17th workshop on Automated Reasoning/(20.0) London,
UK, March 2010.

[ASU86] A. V. Aho, R. Sethi, J. D. UllmanCompilers — Principles, Techniques, and Tools
Addison-Wesley, 1986.

[Be97] B. Barras, et al. The Coq Proof Assistant Referenceudb: Version 6.1. Technical
report 0203, INRIA, August 1997.

[Car97] L. Cardelli.The Computer Science and Engineering Handb@apter Type Sys-
tems, pp. 2208—-2236. CRC Press, Boca Raton, 1997.

[CEF96] E. Clarke, R. Enders, T. Filkorn, , S. Jha. Exploiting syetry in temporal logic
model checkingFormal Methods in System Desi§(il-2):77-104, 1996.

[CGP99] E. M. Clarke, O. Grumberg, D. A. Pelddodel CheckingMIT Press, 1999.

[DMO06] A. F. Donaldson, A. Miller. A Computational Group Toketic Symmetry Reduction
Package for the Spin Model Checker. AMAST'06 LNCS 4019, pp. 374-380.
Springer, 2006.

[DMO08] A.F.Donaldson, A. Miller. Automatic Symmetry Detiémn for PromelaJournal of
Automated Reasoningfl:251-293, 2008.

[Don07] A. Donaldson Automatic Techniques for Detecting and Exploiting Synmynigtr
Model Checking PhD thesis, Department of Computing Science, University o
Glasgow, UK, 2007.

15/16 Volume 35 (2010)

Verification of Symmetry Detection using PVS @

[ES96]

[GMO93]

[Hel06]
[Hol03]

[ID96]

[McK90]

[ORS92]

[0S93]

[Pau94]
[PM10]

[POS04]

[RAM 93]

[RBOS]

[RBOY]

[SO99]

[TBL10]

E. Emerson, A. Sistla. Symmetry and model checliogmal Methods in System
Design9(1-2):105-131, 1996.

M. Gordon, T. MelhamIntroduction to HOL: A Theorem Proving Environment for
Higher Order Logic Cambridge University Press, 1993.

J. Helin. Combining Deep and Shallow EmbeddirgNTCS164(2):61-79, 2006.

G. J. HolzmanThe SPIN model checker: Primer and Reference Manhddlison-
Wesley, 2003.

C. Ip, D. Dill. Better verification through symmetrjformal Methods in System
Design9:41-75, 1996.

B. McKay. nauty user’s guide (version 1.5). Technical report TR-CS-9082s-
tralian National University, Computer Science Departm&8@go0.

S. Owre, J. Rushby, N. Shankar. PVS: A Prototypefiéation System. In Kapur
(ed.),CADE’92 LNAI 607, pp. 748-752. Springer-Verlag, June 1992.

S. Owre, N. Shanker. Abstract datatypes in PVS. Tieahreport SRI-CSL-93-9R,
SRl International, Menlo Park, CA, December 1993. Extezigivevised June 1997.

L. Paulsorisabelle: A Generic Theorem ProvémMNCS 828. Springer-Verlag, 1994.

C. Power, A. Miller. An approach to probabilistic symetry reduction. Pp. 32—33 in
[ARW10].

C. L. Pombo, S. Owre, N. Shankar. A Semantic Embeddirthe Ag Dynamic
Logic in PVS. Technical report SRI-CSL-02-04, SRI Inteioaél, Menlo Park,
CA, Oct. 2004.

R. Boulton, A. Gordon, M.J.C. Gordon, J. Herbert, J. vasstel. Experience with
embedding hardware description languages in HOLTRCD'93 Pp. 129-156.
North-Holland, 1993.

S. H. Ripon, M. J. Butler. PVS Embedding of cCSP SelcaMtodels and their
Relationship. In Calder and Miller (edsAYoCS’08 Pp. 128-142. 2008.

S. H. Ripon, M. J. Butler. PVS Embedding of cCSP SeigaMiodels and their
RelationshipENTCS250:103 118, 2009.

N. Shankar, S. Owre. Principles and Pragmatics ofyputy in PVS. In Bert et al.
(eds.) WADT '99 LNCS 1827, pp. 37-52. Springer-Verlag, September 15-98.19

E. Turner, M. Butler, M. Leuschel. A Refinement-Bdsgorrectness Proof of Sym-
metry Reduced Model Checking. Proceedings ABZ'201Q.NCS, pp. 231-244.
Springer-Verlag, 2010.

Proc. AVoCS 2010 16/ 16

	Introduction
	Promela-Lite
	Embedding Promela-Lite
	Types
	Syntax
	Type System

	The Automorphism Theorem
	Proof Mechanisation
	Expressions
	Guard Statements
	Update Statements
	PVS vs other provers

	Related Work
	Conclusions and Future Directions

