
Electronic Communications of the EASST
Volume 35 (2010)

Proceedings of the
10th International Workshop on

Automated Verification of Critical Systems
(AVoCS 2010)

Automated Support for the Design and Validation of Fault Tolerant
Parameterized Systems: a case study

F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G.P. Rossi

14 pages

Guest Editors: Jens Bendisposto, Michael Leuschel, Markus Roggenbach
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Automated Support for the Design and Validation of Fault Tolerant
Parameterized Systems: a case study

F. Alberti1, S. Ghilardi2, E. Pagani2, S. Ranise1∗, and G.P. Rossi2

FBK-Irst, Trento, Italia1

Università degli Studi di Milano, Milano, Italia2

Abstract: We propose a methodology to use the infinite state model checker MCMT,
based on Satisfiability Modulo Theory techniques, for assisting in the design of fault
tolerant algorithms. To prove the practical viability of our methodology, we apply
it to formally check the agreement property of the reliable broadcast protocols of
Chandra and Toueg.

Keywords: Fault Tolerant Algorithms, Infinite state model checking, Parameter-
ized verification, Satisfiability Modulo Theories

1 Introduction

Algorithms for ensuring fault tolerance are key ingredients in many applications such as avion-
ics, networking, transportation, and industrial plants. There is an increasing demand to integrate
(formal) validation in the design process of these algorithms as they are often part of safety criti-
cal systems. When validation fails, the designer will benefit from tracking the sequence of events
that led to an incorrect state to recover the error. To productively integrate formal verification
in the design phase, tools should be able to return such error traces. Automating verification for
fault tolerant algorithms turns out to be a daunting task as they are often parametric (i.e. they are
designed to work with an arbitrary finite number of processes) so that checking that an algorithm
satisfies a certain property requires to prove it regardless of the number of processes.

In this paper, we propose the use of an infinite state model checker for safety properties, called
MODEL CHECKER MODULO THEORIES (MCMT) [4], to assist in the design of this class of al-
gorithms. MCMT is particularly suitable for this purpose because it is based on a declarative
framework in which parametric algorithms can be naturally specified, and uses the Satisfiability
Modulo Theories (SMT) technology to automate their verification. Such solvers have already
proved to be quite effective for solving SMT problems resulting from the encoding of large ver-
ification problems as witnessed by the SMT-LIB initiative (http://www.SMT-LIB.org).
The first contribution of this paper is the definition of a sub-set of the formal framework [3]
underlying MCMT, which is suitable for the specification of distributed fault tolerant algorithms
(first part of Section 2). This contribution is less obvious than it may appear at first glance. In
fact, while several available specification languages can express the same class of algorithms that
we consider in this paper (see, e.g., [12]), the available analysis techniques for these languages

∗ Partially supported by the “Automated Security Analysis of Identity and Access Management Systems (SIAM)”
project funded by Provincia Autonoma di Trento in the context of the “Team 2009 - Incoming” COFUND action of
the European Commission (FP7).

1 / 14 Volume 35 (2010)

http://www.SMT-LIB.org

Automated Support for the Validation of Fault Tolerant Systems

are not completely automated and require substantial user intervention. Worst of all, the user
should be an expert not only of the systems being verified but also of the automated techniques
employed for the analysis. Instead, one of the goals of this work is to find the right balance
between expressiveness and the possibility to design a highly automated analysis technique that
requires only high-level user interventions, of the kind an expert in the field of fault tolerant
algorithms can provide. We believe this paper makes a step in this direction.

Fault tolerant algorithms are assumed to work in an environment where certain types of failures
may happen while others are ensured not to occur. For example, the simplest of such models is
the crash failure where processes may halt at any time. A slightly more realistic model consists
of considering the possibility that a process may omit a message as well as crashing at any
time. One of the most interesting features of MCMT is to natively support the stopping failure
model [6]. The second contribution of the paper is a technique to transform the set of transitions
so as to consider more complex failure models (second part of Section 2). The underlying idea
is to add a local state variable to each process as a flag signaling if the process is faulty or not
and to refine transitions specification according to faulty/non-faulty behaviors.

Then, we propose a design methodology for parametrised and fault tolerant algorithms that
exploits the previous two contributions. Roughly, the design phases consider the specification
of the algorithm and of its safety property, the choice of the failure model in which the protocol
should operate (e.g., crash-failure or send-omission), and finally the validation through the model
checker. This schema can be easily blended with a standard incremental and iterative approach to
design. For example, the user can perform partial verifications during early development phases,
change its failure model into a more realistic one, determine invariant properties of the system
he is building, and so on, thereby getting various kinds of benefits from the automated support.
The third contribution of this paper is to apply the methodology identified above to replay the
design of the reliable broadcast algorithms of Chandra and Toueg in [14] (Section 3). The results
of MCMT confirm those of the pen-and-paper proof in the published paper showing the practical
viability of our techniques.

Related work

The specification of a parametric system S is usually given in terms of the cardinality n of a
parameter set (e.g., the set of nodes in a mutual exclusion protocol) and it is denoted with S (n).
Its verification has a long history and it can be roughly classified as one of three types. The first
approach (see, e.g., [2]) tries to find a cut-off value n for n so that the instance S (n) exposes all
the possible behaviors which are relevant for the verification of certain properties. The drawback
is that the cut-off value n is usually high and its verification turns out to be a daunting task.

The second approach is pioneered in [1]. The key idea is to symbolically represent sets of
states with constraints and use them to explore the infinite state space of S (n), where n is an
arbitrary natural number. In this method, the most important test is to understand when all the
search space has been explored. The drawback is that the test depends on the topology of the
system so that a change in the topology requires its re-implementation.

The third approach (somehow complementary to the second above) relies on predicate ab-
straction [7]. The idea is to abstract S (n) to a finite state system, to perform model checking
on it, and then to refine spurious traces (if any) by using decision procedures or SMT solvers.

Proc. AVoCS 2010 2 / 14

ECEASST

Table 1: Experimental results on some “standard” benchmarks

Default setting Best setting
Problem d #n #SMT time d #n #SMT #i time
Lamport 23 913 47574 120.62 23 248 19254 7 32.84
RickAgr 13 458 35355 187.04 13 458 35355 0 187.04
Szymanski at 23 1745 424630 540.19 9 22 2987 42 1.25
German07 26 2442 121388 145.68 26 2442 121388 0 145.68
GermanBug 16 1631 41497 49.70 16 1631 41497 0 49.70

Legenda: ’d,’ depth of the tree visited during backward search; ‘#n,’ number of nodes
in the explored search space; ‘#SMT,’ number of invocations to the SMT solver,
which is Yices (http://yices.csl.sri.com) in the current version of the
system; ‘#i,’ number of invariants synthesized by MCMT (this is listed only for the
‘Best setting’ because invariant synthesis is disabled by default); ‘time,’ total amount
of time (in seconds) taken by the tool to solve the problem on a Pentium Intel 1.73
GHz with 1 GB Sdram running Linux Gentoo.

This technique has been implemented in several tools and is often combined with interpolation
algorithms for the refinement phase. The main problem with predicate abstraction (as already
pointed out in [8]) is that it must be carefully adapted when (universal) quantification is used to
specify the transitions of the system or its properties, as is the case for the verification problems
considered in this paper.

The approach underlying MCMT1 and used in this paper is different in several respects to
the three approaches listed above. It does not attempt to find a cut-off value but rather uses
particular classes of first-order formulae to represent sets of states parametrised with respect to
two classes of algebraic structures, one for data and one for the topology (see [3] for details).
In this way, the basic operations underlying the exploration of the state space reduces to simple
logical manipulations and to the solution of SMT problems containing universal quantifiers,
which are both independent of the topology of the system (contrary to the second approach
above). The current implementation of MCMT is orthogonal to the predicate abstraction approach
since it is the state space of the original system that is considered while a primitive form of
predicate abstraction (with no refinement) is only used to synthesize invariants of the system that
are then used to prune the search space when possible (see [5] for a full account of the technique).
These features enable MCMT to efficiently solve verification problems which are considered
as benchmarks in the literature. To illustrate, we give a brief overview of the capabilities of
MCMT on some selected problems concerning parametrised and distributed systems available in
its distribution: ‘Lamport,’ ‘Rick(art-)Agr(avala),’ and ‘Szymanski at(omic)’ are parametrised
and distributed protocols for mutual exclusion (all correct), ‘German07’ and ‘GermanBug’ are
two versions (the former is correct while the latter is bugged) of a cache-coherence protocol
(we point the reader to the tool web-page for details). In Table 1, we report the performances
of the tool with two settings: ‘Default’ is when MCMT is invoked without any option and ‘Best
Setting’ is when the tool is run with non default options. In Section 3, we report the performances
of MCMT on significantly more difficult problems than those in Table 1 (compare the columns

1 Available on-line at http://www.dsi.unimi.it/˜ghilardi/mcmt

3 / 14 Volume 35 (2010)

http://yices.csl.sri.com
http://www.dsi.unimi.it/~ghilardi/mcmt

Automated Support for the Validation of Fault Tolerant Systems

marked with ‘#n’ in Table above and the row ‘# nodes’ in Table 2 to get an idea of the size of the
explored state space), thereby showing its scalability.

Finally, we remark that although in this paper we consider only the verification of safety
properties, our framework supports also the parametric verification of a sub-class of liveness
properties (see again [3] for details). The implementation of this technique is left to future work.

2 Fault tolerant algorithms in MCMT

Several fault tolerant algorithms are described as systems executing a series of “rounds” (see,
e.g., [10]). A round has two phases: in the first, each process sends a message to some or all
of the other processes (messages will depend on the current state of the sending process); in the
second phase, each process changes its state according to its current state and the collection of
messages it received in the first phase. Messages are transferred instantaneously from senders to
recipients between the two phases. The processes operate in lockstep: all of them perform the
two phases of the current round, then move on to the first phase of the next round, and so on.
Each process may fail independently for a variety of reasons, that are classified according to a
certain “failure model.”

In the following, we briefly describe how to formalize this class of distributed systems and
their safety (i.e. properties of the kind “nothing bad can happen”) in the infinite state model-
checker MCMT. We focus on a small sub-set of the abstract syntax and semantics of the tool,
which is sufficient to our needs. The interested reader is pointed to [3] for a full account of
the underlying formal framework and to [4] (and the user manual, available on-line from the
web-page of MCMT) for a description of the concrete syntax and the options of the tool.

Let S be a distributed system. In MCMT, the states of S are described by a finite tuple
a= a1, . . . ,as of array variables, which maps indices to data. A safety problem for S is specified
by (i) a formula I of first-order logic characterizing the set of initial states of S ; (ii) a finite set
Tr = {τ1, . . . ,τm} of first-order formulae characterizing the transitions of S ; and (iii) a first-
order formula U describing the set of unsafe states (usually obtained by complementing the
safety property we would like S to satisfy). The verification of a safety property is reduced to
repeatedly computing the pre-image of U (i.e. the set of states from which U can be reached by
taking a transition from Tr, denoted with Pre(τ,U)) until a fix-point is reached (fix-point check)
or the intersection of the current set of backward reachable states with the set of initial states
is found to be non-empty (safety check). If a fix-point is reached and the intersection with I is
empty, then the system is safe with respect to U ; otherwise, it is unsafe. In the second case,
MCMT also returns an error trace, i.e. a sequence of transitions leading the system from an initial
to an unsafe state; thereby, MCMT can be seen as both a verifier and a debugger.

The repeated computation of pre-images and the fix-point and safety checks are known as
backward reachability procedure [1]. In MCMT, this procedure is organized so as to visit a tree
whose nodes are labelled by the formulae of the pre-images of U with respect to the transitions
in Tr. More precisely, the procedure is as follows. First, the root node is created and labelled
by U . Then, the pre-image of U w.r.t. a certain τ ∈ Tr is computed and a son of the root is
created and labelled with Pre(τ,U). Then, this process is recursively performed by considering
the new node as the root of a sub-tree. Indeed, the visit of the tree is interleaved with fix-point

Proc. AVoCS 2010 4 / 14

ECEASST

and safety checks so as to decide when the visit can be stopped. To mechanize this, MCMT puts
some constraints on the format of I, Tr, and U so that (a) the class of formulae describing the set
of backward reachable states are closed under pre-image computation and (b) both fix-point and
safety checks can be reduced to decidable logical problems, called Satisfiability Modulo Theories
(SMT) problems, for a certain class of first-order formulae (containing universal quantifiers).
Sufficient conditions to ensure (a) and (b) are precisely identified in [3] and their effect is to
restrict the class of algebraic structures that can be used in the specification of the indexes (and
the elements) in the arrays. Since (universal) quantifiers are needed to encode safety and fix-point
checks arising from the verification of practically relevant classes of systems (such as the fault
tolerant algorithms considered in this paper), the classes of structures identified above allow us
to show the decidability of the resulting SMT problems by integrating a quantifier instantiation
procedure with “standard” SMT solving techniques for quantifier-free formulae.

Before formally describing the format of I, U , and Tr used in this paper, we informally charac-
terize it as corresponding to a sub-set of the logic underlying UCLID [9]. UCLID logic contains
uninterpreted functions (to represent arrays), λ -expressions (to model updates of the arrays),
equality and (linear) ordering (to specify the guards of the updates). The two arithmetic oper-
ators used in UCLID (namely, successor and predecessor functions) are not used here. As in
UCLID, we allow for the situation where data stored in an array can be used to dereference the
same array or others. Because of the use of this last feature (which turns out to be very useful
for the specification of the algorithms in [14]), the termination of the backward reachability pro-
cedure is not guaranteed because the sufficient conditions for termination identified in [3] are
not satisfied. However, on the algorithms in [14], we were able to have termination as discussed
in Section 3. We now formally describe the format of I, U , and Tr that allows us to naturally
specify parametric fault tolerant algorithms.
Specifying fault tolerant algorithms. Array variables are typed, i.e. indices and data must have
a type. Indices represent the identifiers of processes and their type is a fixed (but unknown) finite
subset of the natural numbers, denoted by INDEX. In this way, the topology of the system is
that of a set of processes that can be distinguished via their identifiers, which can be compared
w.r.t. equality. If more complex topologies are needed (e.g., identifiers must be sorted according
to an order because one of the processes must be elected as coordinator according to a certain
ascending order), MCMT supports the specification of richer index types, such as linear orders,
graphs, and forests. Data can take values over a wide range of types, such as integers, Booleans,
process identifiers, and program counters. In fact, MCMT accepts all these types and also user-
defined ones. For the goals of this work and to simplify the exposition, in the following, we
assume that the type of data is always that of integers (denoted with Z). If a is an array variable
and i is an index variable, then a[i] denotes the value of the local variable a of process i. It is
possible to encode a shared variable b among the processes by considering b as an array variable
but requiring that ∀i, j.(b[i] = b[j]).2

2 The MCMT specification language (even if restricted as in this paper) is quite general and expressive. As
such, it can cover very heterogeneous problems. The examples here and below refer just to the formalization of
our case studies from Section 3; we hope they can help the reader to get acquainted with our formal language.
The MCMT files with the complete specifications of all algorithms considered in this paper can be downloaded at
http://www.falberti.it/reliableBroadcast.

5 / 14 Volume 35 (2010)

http://www.falberti.it/reliableBroadcast

Automated Support for the Validation of Fault Tolerant Systems

Example 1 The specification of fault tolerant algorithms includes a bounded number of rounds
of executions before the algorithm terminates. Hence, if, e.g., the algorithm comprises only
three rounds, then we can introduce in MCMT the following array variable round, mapping
indices to integers storing the value of the current round of execution of the fault tolerant algo-
rithm. The variable round is shared so that we also assume that ∀i, j.(round[i] = round[j]).
Furthermore, since the number of rounds is bounded to 3, we can also assume that ∀i.(1 ≤
round[i]∧round[i] ≤ 3). MCMT accepts the specification of this kind of constraints on array
variables.

Before continuing, we need to introduce the following notion. A constraint is a conjunction of
formulae of the kind t ./ u, where ./∈ {>,≥,<,≤,=, 6=} and t,u are either (i) integer constants
(such as 0,3,7) or (ii) expressions of the form il or ak[il], where ak is an array variable among
the state variables in a = a1, . . . ,as and il is an index variable. We reserve the letters C,D, . . . for
constraints and the notation C(i) means that at most the index variables in i may occur in C.

The formula specifying the set of initial states is of the form In(a) := ∀i.C(i), where C is a
constraint, usually containing expressions of the form ak[i] = v for v a constant value and ak an
array variable among the state variables in a = a1, . . . ,as; C might constrain a subset of the state
variables in a to assume certain values, while leaving unspecified the values of the others.

Example 2 At the beginning of the algorithm, no process of the system has yet decided on
the value of the message being broadcast (state[i] = false), no one is or has been the coor-
dinator (coord[i] = false, aCoord[i] = false), no message request has been sent by any pro-
cess (request[i] = false) and the system is at the beginning of the first round (round[i] = 1,
done[i] = false). This can be formalized as follows:

In := ∀i.
(
round[i] = 1 ∧ state[i] = false ∧ coord[i] = false ∧
aCoord[i] = false ∧ done[i] = false ∧ request[i] = false

)
.

The formula specifying the set of unsafe states is of the form U(a) := ∃i1 · · ·∃in. C(i1, . . . , in).

Example 3 The key safety property for our algorithms is agreement expressing the fact that if
any two distinct processes have decided on the value of the message being broadcast, then the
value is the same. The complement of this property is represented by the following formula

U(a) := ∃i1, i2.(i1 6= i2∧
(

state[i1] = true∧state[i2] = true∧
decisionValue[i1] 6= decisionValue[i2]

)
),

which characterizes all the states whose array variables state and decisionValue contain
at least two distinct indices i1 and i2 such that the values of state at the two indices are true and
the values of decisionValue at the two indices are distinct. Notice the use of the word “at
least” in the previous sentence which suggests the idea that formulae in the above format repre-
sent all those states (potentially infinitely many) that contain at least the processes identified by
the existentially quantified variables and that satisfy the constraints in the conjunction following
the quantifier.

The formula specifying a transition τ(a,a′) ∈ Tr (as usual, a primed state variable indicates

Proc. AVoCS 2010 6 / 14

ECEASST

the value of the variable after the execution of the transition) may have one of the two forms3

∃i1.(C(i1) ∧ ∀`.D(i1, `) ∧
∧s

k=1 a′k = λ j.Updk(j, i1)), (1)

∃i1, i2.(C(i1, i2) ∧ ∀`.D(i1, i2, `) ∧
∧s

k=1 a′k = λ j.Updk(j, i1, i2)), (2)

where the updates Updk(j, i1),Updk(j, i1, i2) are functions defined by cases

F(i, j) := case of {C1(i, j) : t1; · · ·Cr(i, j) : tr};

where the constraints C1, . . . ,Ck are exhaustive and mutually exclusive4 and t1, . . . , tr are numeri-
cal constants or expressions of the forms il, j,ak[il],ak[j] (in other words, the function λ j.F(i, j)
maps j to the value t1 if C1 holds, the value t2 if C2 holds, etc.). The intuitive reading of (1)
and (2) is the following. For a transition to fire, a guard must be satisfied. The guard consists of a
local condition C and a global condition D, i.e. a process i1 must awake (satisfying condition C)
or two distinct processes i1, i2 must synchronize and all (other) processes must satisfy condition
D (notice that one or both components can be tautological, because the empty conjunction true is
a constraint). When the guard is satisfied, the transition fires and the array variables a= a1, . . . ,as

are updated according to the case-defined functions Upd1, . . . ,Upds.

Example 4 For a process, going from one round (say the first) to the next (the second) can be
formalized as follows:

∃i1.

 round[i1] = 1∧request[i1] = true∧coord[i1] = true∧
∀`.(done[`] = true)∧
round′ = λ j.case of{(j = i1) : 2; (j 6= i1) : 2}

 ,

i.e. if the current round is one, process i1 has already received a request, it is the coordinator,
and all processes have finished the execution of the round, then the shared variable round is set
to two. Implicitly, the other state variables are not changed, i.e. α ′ = α for each α 6= round
in a is added to the formula above. Notice that the update of round maintains the invariant
∀i, j.(round[i] = round[j]) introduced in Example 1.

At this point, the reader may be skeptical about the usability of first-order logic as a specifica-
tion language. The goal of the above discussion is only to present the formal framework for the
specification of fault tolerant algorithms used by MCMT precisely and concisely, not to argue for
its adoption as an appropriate specification language. Rather, we regard it as a target language for
translators from higher level (and more natural) specification languages. In fact, we developed
one of such a language to carry out the experience described in Section 3.

Failure Models and MCMT. Besides the fault tolerant algorithm itself, the second key ingre-
dient in the specification of a fault tolerant system is the environment in which the algorithm is
assumed to work. The environment should specify how and when the processes in the system

3 Notice that at most two existentially quantified variables occur in (1) and (2). This is enough for the protocols
in [14] and experience shows that they are sufficient for the specification of many classes of systems as witnessed by
the example problems in the distribution of MCMT.
4 I.e. the formulae ¬(

∨r
i=1 Ci) and C j ∧Ci (for i 6= j) are all unsatisfiable.

7 / 14 Volume 35 (2010)

Automated Support for the Validation of Fault Tolerant Systems

may fail: in [14], a taxonomy of failure models is proposed. In the following, we consider two
such models. In the crash failure model (CFM), a process may fail by halting prematurely at any
time; it behaves correctly until it halts and after that it does nothing, i.e.—in practice—it disap-
pears from the protocol. CFM has been widely adopted in the literature under different names
(e.g., it is called stopping failure model in [10]). In the send omission failure model (SOFM), a
process may crash or may omit to send some of the messages it should send according to the algo-
rithm. SOFM is more realistic than CFM in that it considers message losses because of network
congestion or misbehavior. In both models, failure is ascribed to processes, that are considered
faulty for the whole execution of the algorithm; non-faulty processes are called correct.

Example 5 For reliable broadcast [14], there is a group G of processes, and a message m sent
to the group by one of its members. The members of G decide about the delivery of m so as
to satisfy the following safety property, called agreement: if a correct process delivers m, then
all correct processes must also deliver m. Notice that agreement is unambiguously defined only
when a failure model is chosen since ‘correct’ is the complement of ‘faulty,’ which, in turn, is
defined by the failure model.

We discuss how failure models are dealt with by MCMT. The tool implicitly adopts the CFM
so that faulty processes are those that are crashed. In this model, all universally and existentially
quantified variables occurring in the formulae In,U , and the transitions (1), (2) above are implic-
itly assumed to range over correct (i.e. non-crashed) processes (w.r.t. the CFM). This means that
∃i.ϕ(i) must be read as “there exists a non-crashed process i such that ϕ” and that ∀i.ϕ(i) as “for
all non-crashed process i, it happens that ϕ ,” where ϕ is a formula satisfying the requirements
explained above.

Example 6 The correct reading of the formula for the agreement property of Example 3 is:
‘there exists two distinct and non-crashed processes i1 and i2 such that the values of state at i1
and i2 are true and the values of decisionValue at i1 and i2 are distinct.’

The fact that a process can fail at any time in the CFM is modelled in MCMT by automatically
adding a suitable transition τcrash to the set Tr of transitions specified by the user. Interestingly,
the presence of τcrash complicates the intuitive reading of formulae (1) and (2) for transitions.
In fact, this makes it possible to fire a transition without the need to check the global condition
D. This is possible by applying τcrash to all those processes not satisfying D so that they are all
faulty and the universally quantified variable in D does not range over them any more. For a
formal account of the way MCMT handles the CFM, the reader is pointed to [6].

While MCMT provides native support for the CFM, the handling of the SOFM is more com-
plex. In fact, it is necessary to add a new array state variable faulty mapping indices to
Booleans such that faulty[i] is false (true) when the process i is correct (faulty, resp.) w.r.t.
the SOFM. Indeed, the new variable must be mentioned in the safety properties to be checked
and explicitly updated in the set Tr of transitions specified by the user so as to model the situ-
ation when the process executing a transition is correct or faulty. Notice that crash failures will
still be implicitly handled by MCMT as explained above; hence, we need to explicitly take into
consideration only the send omission failures.

Proc. AVoCS 2010 8 / 14

ECEASST

Example 7 The agreement property in Example 3 should be written as follows when consider-
ing the SOFM:

∃i1, i2.(i1 6= i2∧

 state[i1] = true∧faulty[i1] = false∧
state[i2] = true∧faulty[i2] = false∧

decisionValue[i1] 6= decisionValue[i2]

),

where it is explicitly required that the two processes i1 and i2 are correct (i.e. the flag faulty
is false at both i1 and i2).

Let us consider the reliable broadcast algorithms of [14], where a transition in the first round
models the situation where the undecided processes (i.e. state[i1] = false) send a request to
the coordinator:

∃i1, i2.(i1 6= i2∧

 round[i1] = 1∧done[i1] = false∧state[i1] = false∧
coord[i2] = true∧request′ = λ j.true∧
done′ = λ j.case of{(j = i1) : true; (j 6= i1) : done[j]}

),

where the array variables are those introduced in Examples 1 and 2. This formula alone correctly
captures the behavior of the transition only if we adopt the CFM. In fact, if we use the SOFM,
the formula above only captures the case when the sending of the request to process i2 (the
coordinator) from a process i1 is successful. To specify the situation when this is not the case,
we must add the following transition:

∃i1, i2.(i1 6= i2∧

 round[i1] = 1∧done[i1] = false = state[i1]∧coord[i2] = true∧
faulty′ = λ j.case of{(j = i1) : true; (j 6= i1) : faulty[j]}∧
done′ = λ j.case of{(j = i1) : true; (j 6= i1) : done[j]}

),

modelling that process i1 is faulty since it fails to send the request to i2.

It is possible to mechanize the task of adding transitions modelling the failures due to the
omission of sending messages so that the designer is only required to specify the set of transitions
for the correct processes. To give an intuition of how this is possible, it is sufficient to notice
that we can add decorations to the transitions specifying which state variables are affected by the
action of sending a message and who is the process sending it.

Integrating MCMT in the design of fault tolerant algorithms. We propose the following
methodology for the design of parametric and fault tolerant algorithms (see also Figure 1). The
designer first specifies the initial states, the transitions Tr, and the complement U of the safety
property that the system should satisfy. Then, he selects one of the possible failure models (e.g.,
CFM or SOFM). Once U , I and Tr have been processed so as to take into consideration the
chosen failure model, MCMT is invoked. If the tool returns ‘safe’, then the designer can change
the failure model, experiment with variants and refinements of the algorithms, or consider a new
safety property. Otherwise, if the tool returns ‘unsafe’, the designer can analyze the error trace
so as to locate the problem in the transitions or in the property that has been submitted to the
model checker. This methodology can be naturally integrated with iterative approaches to the
design of algorithms.

9 / 14 Volume 35 (2010)

Automated Support for the Validation of Fault Tolerant Systems

Property and
CFM

SOFM

Property
(e.g., Agreement)

System Tr
Transition

Choose Failure Model

MCMT

Tr extended
with

transitions
modelling FM

Safe/Unsafe

(error trace if the case)

...

Modified

Figure 1: The methodology for designing fault tolerant algorithms

3 Case Study: Chandra and Toueg Algorithms

As a proof of concept of our proposed technique, we report our experience in applying it to the
design and validation of the distributed algorithms proposed in [14] to solve the reliable broad-
cast problem. The safety property to be satisfied is the Agreement property hinted in Example 5.
The algorithms are parametric in the number of processes participating in the protocol. In par-
ticular, we consider a group consisting of n processes communicating through reliable links of a
fully connected network, where n > 0 is fixed but unknown.

In [14], the reliable broadcast problem is solved for the two failure models considered in
Section 2 and a more general model, that we do not consider here. The algorithms in [14] are
round-based – as described at the beginning of Section 2 – and they are presented incrementally.
First, an algorithm for the simplest failure model is presented, and its correctness is proven. Then,
the authors show misbehaviors that are possible when adopting the algorithm in the SOFM.
Subsequently, a modified version of the algorithm is proposed – and its correctness proven –
in the more complex model. No automated formal method is used, just informal reasoning in
natural language.

As we have already observed at the end of Section 2, our methodology nicely blends with
an iterative design approach followed by the authors of [14]. The starting point for the CFM
in [14] is a simple algorithm called Algorithm 1 (see Algorithm 1 without the highlighted parts
for details). The algorithm has been formalized in a high-level specification language that is
automatically translated to the input syntax of MCMT, which is the concrete counterpart of the
framework described in Section 2. The formal specification consists of nearly 140 lines of text.
Communication is represented by updating the process variables following the reception of a
message. Besides the transitions formalizing some part of the pseudo-code of the algorithm,
some transitions have been added so as to (i) allow progress of the system in case no requests are
received in Round 1; (ii) describe the switching to a new coordinator either at the end of Round 4
for the current one, or when the current coordinator crashes; (iii) specify the behavior of already
decided processes. The safety of the algorithm w.r.t. the agreement property (as formalized in
Example 3, i.e. when CFM is assumed) is quickly established by MCMT (see first column, second
line of Table 2). Once the correctness of the algorithm in the CFM has been established, the
authors of [14] argue that the same algorithm is unsafe in the SOFM. To show this, they produce
an error trace involving two coordinators, where a faulty (but not crashed) coordinator c1 first

Proc. AVoCS 2010 10 / 14

ECEASST

Algorithm 1 Pseudo-code for Algorithms 1, 1e, and 2
Initialization:

if (p is the sender)
then estimatep← m; coord idp← 0;

else estimatep←⊥; coord idp←−1;
statep← undecided;

End Initialization

for c← 1,2, ..., f +1 do // Process c becomes coordinator for four rounds
Round 1:

All undecided processes p send request (estimatep, coord idp) to c;
if (c does not receive any request) then it skips rounds 2 to 4;

else estimatec← estimatep with largest coord idp;
Round 2:

c multicasts estimatec;
All undecided processes p that receive estimatec do

estimatep← estimatec and coord idp← c ;

Round 3:
All undecided processes p that do not receive estimatec send(NACK) to c;

Round 4:
if (c does not receive any NACK) then c multicasts Decide; else c HALTS;

All undecided processes p that receive Decide do
decisionp← estimatep;
statep← DECIDED;

end for

omits to send his estimate estimate1 to a process c2 that will become the next coordinator c2, and
then sends a decide to at least one correct process p. At this point, c2 becomes the coordinator
and sends its estimate estimate2 to an undecided correct process q; the following sending of a
’decide’ message from c2 to q brings the system in an inconsistent state. We tried to do the same
following our methodology. First, we selected the SOFM and produced the new set of transitions,
as discussed in Example 7. Second, the complement of the agreement property is modified so as
to take into account the newly introduced state variable, again as discussed in Example 7. Finally,
MCMT is invoked on the resulting safety problem and it quickly concludes the unsafety of the
system with an error trace. For better readability, we have manually transformed the error trace
found by the tool into the message sequence chart shown in Figure 2. The trace found by MCMT

consists of eleven transitions and it involves only one coordinator instead of two as in [14]. Since
each time a new coordinator is elected, the algorithm re-starts from round 1, our trace is shorter
than the one illustrated in [14] where two processes played the role of coordinator.

By analyzing the error trace, the authors of [14] suggest to add a state variable nack (for
negative acknowledgment), used in the additional Round 3 and the if statement in Round 4
(highlighted part in Algorithm 1). Clearly, processes may fail in sending nacks. In order
to describe this new algorithm, that will be called in the following ‘Algorithm 1e’, six new

11 / 14 Volume 35 (2010)

Automated Support for the Validation of Fault Tolerant Systems

Table 2: MCMT performances

Algo. 1, CFM Algo. 1, SOFM Algo. 1e, SOFM Algo. 2, SOFM
Safe (agreement) Yes No No Yes
time (sec) 1.18 17.66 1,709.93 4,719.51
state vars 8 9 11 15
transitions 13 13+3 16+6 22+6
nodes 113 464 9,679 11,158
SMT calls 2,792 20,009 1,338,058 2,558,986
Length unsafe trace × 11 33 ×
invariants × × × 19 (+7)

Timings are obtained on an Intel Core Duo 2.66 GHz with 2 GB, running Debian Linux.

transitions are needed corresponding both to the behaviors of correct and faulty processes that
need to send a negative acknowledgment. (In the formalization, besides nack, another state
variable is added to keep track of the fact that a process has received the estimate from the
coordinator; this is why the number of state variables are eleven in column 3, line 3 of Table 2.)
As argued in the original paper, this refinement of the algorithm to comply with the SOFM is
found to be unsafe by MCMT (although it takes a significantly longer time to discover this as can
be seen by comparing the values at line two of Table 2). The error trace comprises 33 transitions
and, after a manual analysis, it is possible to see that it corresponds to the execution described
in [14] in natural language.

As a further step toward the design of a correct algorithm for the reliable broadcast problem,
[14] proposed that processes send more information with their requests, namely, the estimate
they currently hold and the identity of the coordinator from which it has been received. The
current coordinator does not impose its own decision; rather, it adopts and circulates the estimate
associated with the most recent coordinator (highlighted parts in Initialization, Rounds 1 and 2
of Algorithm 1). The formalization consists of 15 state variables and 28 transitions (six of
which are introduced to model send omission failures), see last column of Table 2. The up-
front verification of agreement for this new version of the algorithm is quite problematic: MCMT

runs for many hours without finding a fix-point. Even the invariant synthesis capabilities of the

Figure 2: Error trace produced by MCMT for algorithm 1 in the SOFM

Proc. AVoCS 2010 12 / 14

ECEASST

tool [5] do not help here, although they have been proved quite effective in pruning the search
space for the verification of other systems, see [5]. However, the possibility to interact with the
tool by proving simpler properties (that an expert in fault tolerant algorithms is able to identify)
and then telling MCMT to exploit them for proving more difficult ones is the key to the result
recorded in the last column of Table 2. The inclusion of invariants does not affect the validity of
the final result of the verification process, since invariants are verified by the tool before being
used for the validation of other properties. Seven invariants suggested by the designer have been
included, that were quite simple properties that do not require any deep understanding of the
algorithm (e.g., “there is only one coordinator at a time”). The use of these invariants (plus 19
more automatically found by the invariant synthesis techniques available in the tool) allowed us
to validate the safety of Algorithm 2 in the SOFM. The tool also validated the three lemmas used
in [14] to perform the pen-and-paper proof of the correctness of the algorithm.

4 Discussion

We have described a methodology that exploits the automated analysis capabilities of the model
checker MCMT to support an incremental and iterative approach to designing fault tolerant algo-
rithms. The methodology has been put to test on a group of significant algorithms for reliable
broadcast considered in [14]. Our experiments confirmed the finding of the original paper and
the support for incrementality and refinement during the design phases.

There are two main lines for future work. First, we would like to consider more general
failure models (e.g., general omission) and finish the formal validation of the reliable broadcast
algorithms in [14]. Second, we intend to investigate how to refine our models so as to take
into account temporal constraints that would allow us to consider more realistic models of the
algorithms along the lines of [13].

Bibliography

[1] Abdulla, P. A., Cerans, K., Jonsson, B., and Tsay, Y.-K. General decidability theorems for
infinite-state systems. In Proc. of LICS, pages 313–321, 1996.

[2] Arons, T., Pnueli, A., Ruah, S., Xu, J., and Zuck, L.. Parameterized Verification with
automatically computed inductive assertions. In Proc. of CAV’01, LNCS 2102, 221–234,
2001.

[3] Ghilardi, S., Nicolini, E., Ranise, S. and D. Zucchelli. Towards SMT Model-Checking of
Array-based Systems. In Proc. of IJCAR, LNCS 5195, 2008.

[4] Ghilardi, S. and Ranise, S. MCMT: A Model Checker Modulo Theories. Accepted for
publication in Proc. of IJCAR, 2010.

[5] Ghilardi, S. and Ranise, S. Goal Directed Invariant Synthesis for Model Checking Modulo
Theories. In TABLEAUX, LNAI, pages 173–188. Springer, 2009.

13 / 14 Volume 35 (2010)

Automated Support for the Validation of Fault Tolerant Systems

[6] Ghilardi, S. and Ranise, S. A note on the stop-
ping failure model. Unpublished note available at
http://homes.dsi.unimi.it/˜ghilardi/mcmt/stop fail note.pdf

[7] Graf, S. and Saı̈di, H. Construction of abstract state graphs with PVS. In Proc. of CAV
1997, volume 1254 of LNCS. Springer, 1997.

[8] Lahiri, S. K. and Bryant, R. E. Predicate abstraction with indexed predicates. ACM Trans-
actions on Computational Logic (TOCL), 9(1), 2007.

[9] Lahiri, S.K., Seshia, S.A. and Bryant, R.E. Modeling and Verification of Out-of-order
Microprocessors using UCLID. Proc. Intl. Conf. on Formal Methods in Computer-Aided
Design (FMCAD), LNCS 2517, 143–159, 2002.

[10] Lynch, N. A.: Distributed Algorithms. Morgan Kaufmann, 1996.

[11] Manna, Z. and Pnueli, A. A hierarchy of temporal properties. In Proc. of PODC ’90, pages
377–410. ACM Press, 1990.

[12] Manna, Z. and Pnueli, A. Temporal Verification of Reactive Systems: Safety. Springer-
Verlag, 1995.

[13] Rushby, J.: Systematic Formal Verification for Fault-Tolerant Time-Triggered Algorithms.
Proc. 6th Working Conference on Dependable Computing for Critical Applications, IEEE
Computer Society Press, 203—222 (1997).

[14] Toueg, S., Chandra, T. D.: Time and Message Efficient Reliable Broadcast. Proc. 4th Intl.
Workshop on Distributed Algorithms, LNCS 486, 289–303 (1990).

Proc. AVoCS 2010 14 / 14

http://homes.dsi.unimi.it/~ghilardi/mcmt/stop_fail_note.pdf

	Introduction
	Fault tolerant algorithms in MCMT
	Case Study: Chandra and Toueg Algorithms
	Discussion

