Electronic Communications of the EASST

Volume 36 (2010)

Proceedings of the
Workshop on OCL and Textual Modelling
(OCL 2010)

Navigating Across Non-Navigable Ecore References via OCL

Martin Hanysz, Tobias Hoppe, Axel Uhl, Andreas Seibel, Holger Giese, Philipp Berger and
Stephan Hildebrandt

6 pages

Guest Editors: Jordi Cabot, Tony Clark, Manuel Clavel, Martin Gogolla

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

Navigating Across Non-Navigable Ecore References via OCL

Martin Hanysz', Tobias Hoppe', Axel Uhl’, Andreas Seibel', Holger Giese',
Philipp Berger' and Stephan Hildebrandt'

! holger.giese @hpi.uni-potsdam.de, http://www.hpi.uni-potsdam.de/giese/
Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

2 axel.uhl@sap.com
SAP AG, Office of the CTO
Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany

Abstract: The Eclipse Modeling Framework (EMF) and its meta-meta model Ecore
support uni-directional and bi-directional references. It is quite common that refer-
ences are defined uni-directionally only because of saving storage space or sepa-
rating meta models, which is problematic when implementing Object Constraint
Language (OCL) constraints that require navigation against the direction of uni-
directional references. This is essential for certain approaches, e.g., incremental
evaluation of OCL constraints on models shown by Altenhofen et al. that is used in
SAP’s Modeling Infrastructure (MOIN). In this paper, we present an approach that
overcomes the aforementioned issue by providing navigation across non-navigable
Ecore references via OCL. We further discuss different alternative solutions and
briefly describe the realization that was outcome of a project in cooperation with the
SAP AG.

Keywords: OCL, Ecore, EMF, Navigation

1 Introduction

The Object Constraint Language (OCL) [ObjO6b] was originally designed as a formal lan-
guage to describe invariants and queries on Unified Modeling Language (UML) [Obj04] models.
Nowadays, the application of OCL is more extensive, e.g., it is applied in Meta Object Facil-
ity (MOF) [Obj0O6a] compliant tools or the Eclipse Modeling Framework (EMF) [SBPMOS] to
constrain EMF models that are conform to the meta-meta model Ecore. However, in contrast to
Complete MOF (CMOF) [Obj06a, pp. 45], Ecore, which is conceptually equal to Essential MOF
(EMOF)[Obj06a, pp. 31], uses the restricted reference concept of EMOF. In CMOF references
(associations) always have association ends, which implies that there is always the possibility to
address the opposite of a reference, even if the reference is defined as uni-directional.

In Ecore references are always uni-directional. A bi-directional reference is realized by ex-
plicitly modeling two references as being the opposite of each other. Additionally, Ecore does
not support the concept of association ends. Thus, if defining a reference as uni-directional, the
opposite of the Ecore reference cannot be addressed. Defining bi-directional references between
elements of different meta models is not supported by EMF, because it would result in cyclic

1/6 Volume 36 (2010)

mailto:holger.giese@hpi.uni-potsdam.de
http://www.hpi.uni-potsdam.de/giese/
mailto:axel.uhl@sap.com

B

dependencies between these meta models. This is problematic because legacy EMF meta mod-
els do not always provide bi-directional references (cf. UML2 tools') to save storage space and
meta models may be separated in several meta models (separation of concerns). In both cases,
OCL constraints cannot be expressed against navigation direction. This is essential for certain
approaches, e.g., incremental evaluation of OCL constraints on models shown by Altenhofen et
al. in [AHKO7] that is implemented in SAP’s Modeling Infrastructure (MOIN). Furthermore,
OCL constraints can be optimized by restructuring navigation, which is restricted when refer-
ences are uni-directional. Thus, navigating across non-navigable references via OCL is required
to overcome this issue in such cases.

In this paper, we present an approach that overcomes this issue with minimal impact to existing
applications. It supports navigation across non-navigable references via OCL within and between
EMF meta models without adding cyclic dependencies. The approach was implemented as a part
of a project (see [Ber10, Hop10, Han10, Sch10]) in cooperation with the SAP AG?. Therefore,
we first introduce our requirements and design decisions in Section 2. In Section 3 we give a
brief explanation of our approach and finally conclude this paper in Section 4.

2 Design Considerations

To support the acceptance of our approach by the EMF community, the following requirements
have to be satisfied:

1. Avoid invalidation of existing technologies
2. Avoid impact on current usage of technologies
3. Avoid high integration efforts

There are several alternatives to provide navigation across non-navigable references in Ecore.
A straightforward approach is to only use bi-directional references in EMF models instead of uni-
directional ones. Consequently, partitioning of EMF models would be restricted due to cyclic
dependencies and the partition in two meta models as shown in Figure 1 would not be possible.
This clearly violates requirement two, because it restricts how EMF models can be partitioned.

Another approach that avoids the dependency cycles a bi-directional reference creates, is to
allow the opposite reference to be contained by the original reference. This circumvents the
limitations of the aforementioned approach, but yields severals other problems. For example
the validation of multiplicity or ordering constraints for the opposite reference becomes a very
expensive operation, due to the fact that the list of referenced instances is not stored explicitly.
Apart from that, the original architecture assumes that a reference is always contained by an
element. Since this assumption does not hold anymore, existing technologies relying on it might
be invalidated.

To circumvent those requirement violations, another alternative that avoids to change Ecore
has been taken into account. It relies on annotations, which are added to uni-directional refer-
ences in EMF models, as shown in Figure 1. The example shows a simple situation with two

1 http://www.eclipse.org/uml2/
2 http://www.sap.com

Proc. OCL 2010 2/6

Eg ECEASST

Meta Model 1 Meta Model 2
=== 1 — T T T T T T T T T T T T T ¥
: D epartment ! :empluy‘eg‘h Employee interq Student :

Aw T -~ | Ay T -~ |
I i 0.+ Pot |
I 1 I i
_________ T |
i i
key= Property.oppositeRoleMame B key = Property.oppositeRoleMame
value = employer value = advisor

Figure 1: An example that visualizes the problem of uni-directional references

meta models defining two concerns of a company. The annotations contain opposite role names
of the references. This solution does not impact the usage of existing technologies, because it
can be seamlessly integrated into existing EMF models. It also does not impact requirement
three since these annotations can be automatically generated. To navigate across non-navigable
references using these annotations, we extend the OCL meta model as well as the OCL tool-
ing of EMF. Our extension of OCL does not invalidate requirement two because it is downward
compatible.

3 Contribution

In this section, we explain how we exploit the annotation concept of Ecore and the extensions
we have made to the OCL tooling in EMF.

3.1 Adding Annotations to EMF Models

Annotations in Ecore are defined by the EAnnotation element, which can be added to any ele-
ment. EAnnotation may have a details entry, that maps key to value attributes. In our approach,
every uni-directional reference that should be navigated in its opposite direction, represented by
an EReference element, is associated with an EAnnotation element holding a details entry that
has a key attribute “Property.oppositeRoleName”. The value attribute contains the name of the
opposite role. EMF models that should benefit from bi-directional navigability can be modified
manually or automatically.

3.2 Extending OCL

Our approach does not come without extending EMF’s OCL, but we are using the dot notation
for navigation across references to be compatible to legacy OCL constraints. Thus, there is no
need to introduce an extra notation to make the missing navigability explicit. For example, the
expression in Figure 2 refers to the annotated opposite role name of the EReference intern. This
constraint expresses, that each Student must have at least one Employee as his advisor.

The extensions we have made are in the background and extend OCL’s abstract syntax (meta
model), as well as its parser, validator, and evaluator.

3/6 Volume 36 (2010)

context Student inv:
self .advisor.size() > 0

Figure 2: An example OCL expression using reverse navigation

3.2.1 Abstract Syntax of OCL

Although we did not change the concrete syntax of OCL, we have extended the abstract syntax
of OCL to reflect the navigation across non-navigable references. Therefore, we extended the
NavigationCallExp with an OppositePropertyCallExp as shown in Figure 3. An OppositeProper-
tyCallExp describes the navigation of a reference between two elements that are not explicitly
connected via an EReference pointing from the source element to the target elements, which
avoids cyclic dependencies if elements are defined in different meta models. Instead, this asso-
ciation is built by an EReference from the target that defines the opposite navigation direction.

The OppositePropertyCallExp inherits a navigation source property, which is the element from
where the navigation is started. It is also related to a referred opposite property, which contains
the opposite role name that is defined in the EAnnotation of an EReference pointing to the navi-
gation source element.

Feaatura CallExp

[]

OperationCallExp +parentM NavigationCallExp]

0 i

+referringExp | * +parentCall & 0.1 * gualifier ﬁ;_\

- 1 0.1 +navigation Source
OclEcpress ion
PropertyCallExp | * +referredPropert Property

+referringEx 0.1

0.1 +referredCperation | +argum ent f‘|*
O peration 0 ppositePropertyCallExp

+referredOppositeProperty 0.1

=

+referringk xp

Figure 3: Extended OCL meta model

3.2.2 OCL Parser

OCL constraints are handled by means of their abstract syntax. Thus, OCL constraints defined
in the concrete syntax have to be parsed into the abstract syntax first. The parsing of OCL
constraints in EMF is performed by an OCL analyzer. We extended the parsing functionality to
create OppositePropertyCallExp instances when necessary.

When the OCL analyzer comes across the dot notation, it tries to resolve the token next to
it to a type name, a variable name, a property name, an opposite property name, an association
class name, and finally to an undefined name. The resolving of an opposite property name is

Proc. OCL 2010 4/6

Eg ECEASST

encapsulated in the OppositeEndFinder to allow different implementations of it’. The example in
Figure 2 contains an opposite property after the first dot, since advisor is the annotated opposite
role name of the EReference intern. Hence, an OppositePropertyCallExp is created.

3.2.3 OCL Validator

After parsing the OCL expression into an abstract syntax, it needs to be validated. Through-
out the whole OCL tooling of EMF, several visitors are used. To make these visitors aware of
opposite properties, the common Visitor interface has been extended with a visitOppositeProper-
tyCallExp() method and the AbstractVisitor has been adapted to properly call this method when
coming across an OppositePropertyCallExp. The Visitor used to validate OCL expressions is the
ValidationVisitor and has been modified to implement this method to check if the correctness of
the OppositePropertyCallExp is given.

3.2.4 OCL Evaluator

The OCL evaluator actually executes the evaluation of the parsed and validated OCL expres-
sion. For this task, the EvaluationVisitor is used. It has also been modified to implement the
visitOppositePropertyCallExp() method and use a modified, opposite property aware version of
the EvaluationEnvironment to perform the navigation.

Navigating an OppositePropertyCallExp results in the set of instances, that reference one of
the expression’s source instances via an EReference that is annotated with the given opposite
role name. Therefore, the evaluation of the expression in Figure 2 leads from self to all instances
of Employee that reference that one instance of Student. Our approach uses EMF’s reflection
mechanism for resolving the requires instances to avoid cyclic dependencies between meta mod-
els. To find all instances pointing to an EObject via an EReference, EMF provides a utility called
ECrossReferenceAdapter. The cross-referencer iterates through the content tree rooted at the
initially passed EObject, Resource, or ResourceSet and checks for each retrieved reference of
all objects if it points to the wanted object or not. In case of a positive match, the object is added
to the result [SBPMOS, pp. 523].

Because the cross-referencer is a simple implementation, we may get scalability issues when
dealing with large models. Thus, we have implemented a modular interface to integrate alter-
native technologies for resolving OppositePropertyCallExps, e.g, Model Query 2 (MQ2)*. MQ2
provides an efficient interpreter for resolving queries, which comes with an index structure. In
this alternative, MQ2 queries are formulated and interpreted to return all objects referencing the
source via an EReference with a specific EAnnotation.

4 Conclusions & Future Work

Throughout this paper, we presented a solution that overcomes a restriction of Ecore. This re-
striction prohibits navigability through EMF models via OCL constraints, because uni-directional

3 currently Model Query 2 is used to find the properly annotated references

4 http://www.eclipse.org/modeling/emf/?project=query2

5/6 Volume 36 (2010)

B

references cannot be navigated in reverse. This is problematic, when working with EMF models
that provide many uni-directional references (cf. UML2 tools). Our approach can be seam-
lessly integrated into existing technologies. It uses the EAnnotation concepts of Ecore. These
annotations are used by an extension of EMF’s OCL that we have implemented.

As future work we plan to evaluate the scalability of our approach by using EMF’s cross-
referencer, MQ2, and other indexing technologies like EMF Index’. Furthermore, multiplicities
cannot be expressed via the annotations currently.

Bibliography

[AHKO7]

[Ber10]

[Han10]

[Hop10]

[Obj04]

[Obj06a]
[ObjO6b]

[SBPMO8]

[Sch10]

M. Altenhofen, T. Hettel, S. Kusterer. OCL Support in an Industrial Environment.
In Proc. of the Workshops and Symposia at MoDELS 2006, Genoa, Italy. LNCS,
pp- 169-178. Springer, 2007.

P. Berger. Central Event Manager for the Eclipse Modeling Framework. 2010.
http://www.hpi.uni-potsdam.de/giese/gforge/bibadmin/uploads/pdf/Ber10_Philipp
Berger_Bachelorarbeit.pdf.

M. Hanysz. Instance-Based Context Calculation of OCL Expressions. 2010.
http://www.hpi.uni-potsdam.de/giese/gforge/bibadmin/uploads/pdf/Han10_Martin
Hanysz_Bachelorarbeit.pdf.

T. Hoppe. Synthesis of Event Filter determining the reevalu-
ation of affected OCL expressions. 2010. http://www.hpi.uni-
potsdam.de/giese/gforge/bibadmin/uploads/pdf/Hop10_TobiasHoppe_Bachelorarbeit
.pdf.

Object Management Group. UML 2.0 Superstructure Specification. October 2004.
Document: ptc/04-10-02 (convenience document).

Object Management Group. Meta Object Facility. 2.0 edition, January 2006.
Object Management Group. Object Constraint Language. 2.0 edition, May 2006.

D. Steinberg, F. Budinsky, M. Paternostro, E. Merks. Eclipse Modeling Framework
2.0. Addison Wesley, 2 edition, December 2008.

T. Schroter. Effiziente Navigation bei der OCL-Auswertung. 2010.
http://www.hpi.uni-potsdam.de/giese/gforge/bibadmin/uploads/pdf/Schroeter10_Thea
Schroeter_Bachelorarbeit.pdf.

5

www.eclipse.org/proposals/emf-index/

Proc. OCL 2010 6/6

	Introduction
	Design Considerations
	Contribution
	Adding Annotations to EMF Models
	Extending OCL
	Abstract Syntax of OCL
	OCL Parser
	OCL Validator
	OCL Evaluator

	Conclusions & Future Work

