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Abstract: The ever-growing use of modeling languages today is largely due to a
maturation of model-based development technologies. However, there is enough
room for improving language specifications and consequently, the efficiency of their
usage. The state of facts in specifying Well Formedness Rules is among the most
important issues calling for improvements. Despite the fact that various papers have
approached it, the topic is still open. To solve it, there is the need of a rigorous
conceptual framework supporting the specification of modeling languages’ static
semantics. This would stand as a basis for ensuring model compilability, a manda-
tory requirement in a model-driven context. Through this paper, we aim at providing
core ideas that would contribute to the creation of such a framework. Our approach
is testing-oriented and promotes the use of OCL specification patterns.

Keywords: model compilability, metamodel, WFRs, static semantics, MOF, UML

1 Introduction

The value of both correctness and completeness in a language specification is widely acknowl-
edged. A poor language definition negatively impacts every model employing the language in
question. The emergence of the model-driven paradigm' is grounded on significant changes in
the model usage requirements, triggering counterparts in the area of modeling languages and
technologies. These concern an increased rigor of language definitions, accompanied by an
alignment of technologies to the specifics of the model-driven development process.

The automation goals envisioned by the aforementioned paradigm call for appropriate tools.
In a model-driven context, models are equally used as inputs and outputs of such tools. This
places two critical requirements on them: (1) being defined in rigorous languages supporting
their efficient manipulation, and (2) being fully compliant to (correct with respect to) those lan-
guages. Well Formedess Rules (WFRs) play a key role in ensuring the completeness and rigor
of a language definition and stand as a basis for assessing the correctness of models with respect
to it.

Researches in the field have revealed that modeling and programming languages share more
commonalities than differences [CSWO08]. The differences are mainly related to a higher ab-
straction level employed by modeling languages, as well as to the common use of graphical

! This paradigm comes in various flavors, such as MDA (Model Driven Architecture), MDE (Model Driven Engi-
neering), MDD (Model Driven Development) or LDD (Language Driven Development).
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formalisms for representing their concrete syntax. The graphical formalism though is exclu-
sively meant to support understandability, as all model processing tasks (serialization included)
employ a textual syntax representation. Moreover, nowadays there are experts promoting the use
of a textual concrete syntax even for model specification” [SS08], [FK]. Acknowledging the truth
that the graphical and textual concrete syntaxes are equivalent, that modeling and programming
languages are closely similar, assists in accepting the fact that, similar to program compilability,
full compliance of a model with its modeling language is a must.

Models that conform to their modeling language’s WFRs are generally referred to as well
formed models in the literature. However, we propose using the phrase compilable models in-
stead of well formed models. The arguments are twofold. On the one side, aparts from WFRs,
there may be other kinds of rules that a model has to comply with, such as methodological rules,
metric rules, or business rules. A well formed model should designate a model complying with
any of these rules, which is a generic requirement compared to mere compilability. On the other
side, the newly proposed phrase stresses on the similarity among modeling and programming
languages, hence on the imperative nature of the compilability requirement.

Therefore, regardless of their size, models’ compilability is a must if we want them manipu-
lated by tools. While in case of small (didactical) ones, checks may even be manually performed,
in case of medium-sized to large models the existence of appropriate verification instruments be-
comes a mandatory requirement.

The fact that models, at their turn, will generally be complemented by assertions denoting
different kinds of business rules is just another argument for requiring enforcement of model
compilability. An uncompilable model may trigger failures in the compilation of its own asser-
tions .

Despite all these arguments, current practice shows that model compilability is more a goal
than a reality. This state of facts has both human and technological roots. On the one side,
there is the unfortunate assumption that seems to be still governing the developers’ community
(worse, even the researchers’ one), according to which models are primarily meant to facilitate
problem understanding and assist the client-developer communication, a rigorous model verifi-
cation not being therefore an imperative. On the other, there are the shortcomings concerning
the formalisms and tools involved in compilability assessments. The current paper aims at iden-
tifying the reasons underneath this state of facts, with the intention of proposing solutions meant
to improve it.

The rest of the paper is organized as follows. Section 2 diagnoses the state of facts in the field
of model compilability, and summarizes our contribution as compared to related approaches.
The principles that we propose at the basis of a conceptual framework meant to support an
accurate specification of modeling languages’ static semantics (a prerequisite in enforcing model
compilability) are explained in Section 3. A proof of concepts is provided in Section 4, by means
of two relevant examples of UML WFRs. The paper ends with conclusions and hints on future
work in Section 5.

2 However, even in this case, the language used for model representation is complemented by a second language,
targeted at model navigation and specification of constraints.

3 As an example, the existence of several equally named properties in a class will make an OCL expression referring
to any of these properties uncompilable.
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2 Model Compilability - Reality and Goals

2.1 Diagnosing the State of Facts

As previously pointed out, there is a strong technological factor involved in what causes the
current state of facts in the field of model compilability. As a proof, we cite two recent references
arguing the behavior of a few UML2 tools and of ArgoUML when required to perform model
validation.

In a posting entitled “Poor validation of UML Models in Eclipse UML2 tools” [por], the
author analyzes the failure reasons of an XMI transformation service, concluding that the failure
has been caused by the use of an Eclipse UML2 not well-formed model. In [BF09], the authors
report on identifying “counter examples” of UML models (models breaking well-formedness
rules) that were not catched by the ArgoUML tool. The former reference highlights the fact that
the Eclipse UML2 tools under study enable the creation of uncompilable UML2 models, while
the latter raises a warning with respect to the proper translation of WFRs into Java. In addition,
[por] reveals the fact that the tools under study fail to implement the entire set of WFRs.

However, the problems with the aforementioned UML tools are only the visible tip of the
iceberg. In fact, these problems are rooted in the absence of a general consensus within the
modeling community with respect to the necessity and means of using constraints. Consequently,
the real, “hidden” issues are related to the inadequate specification, deficient validation, and poor
understanding of constraints and their usage. This statement is motivated by a detailed analysis
concerning the specification and use of constraints within UML and some of the best known
meta-metamodels (MOF [OMGO06], Ecore [SBPMOS], and XCore [CSWO08]). Unfortunately,
a number of specification errors reported for the UML 1.x WFRs ([RG00], [CCBC04]) have
not been fixed yet, being further inherited by the MOF 2.0 and UML 2.x documents. These
problems have significantly affected the possibility of checking models’ compilability, and have
even compromised the concept of model compilability itself.

2.2 Related Work

Through the last decade, a significant number of papers focusing on the specification and usage
of WFRs have been written. We claim that [RG00], [FQL"03] and [CCBCO04] are the closest to
the approach presented in this paper. Thus, we briefly summarize their contents in the following.

In [RGOO0], the authors have given a first quasi-exhaustive analysis of the WFRs specified in
UML 1.3. The work has focused on the Foundation::Core package (31 classes and 27 associa-
tions) that has been specified in USE, in order to check the corresponding 43 WFRs. Also, 28
Additional Operations were tested. Errors have been found in 39 out of 71 tested expressions.
Four categories of errors have been identified: syntax errors, minor inconsistencies, type check-
ing errors, and general problems. The paper was the first to draw an alarm with respect to the
quality of the UML WEFRs specifications. The following statement worth mentioned: “For future
work we plan to extend the analysis to the complete UML metamodel including all of its well-
formedness rules and making it available in USE. This might not only be usefull for improving
the state of the standard but also implies another very nice application: in principle, any UML
model can be checked for conformance to the UML standard. ”
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In [FQL 03], the second published paper on this topic, the authors claim having tested the
entire set of WFRs specified in the context of the UML 1.3 metamodel. They report 450 errors
of three kinds: non-accessible elements, empty names, and miscellanea. The proposed solutions
for fixing the reported problems seem a bit bizarre. Namely, they suggest to “Take the empty
names into account in every rule of the metamodel (296 errors). Consider access and contents
as two different concepts (138 errors). Avoid two opposite association ends with the same name
(18 errors)”.

In [CCBCO04], the authors analyze different kinds of errors and propose new specifications to
fix the identified bugs. As the title suggests, the focus is on proposing “good practices” meant
to support “a correct, clear and efficient specification”. The consistency among the formal and
informal specifications, the clearness of OCL expressions, the fact that evaluating OCL specifi-
cations instead of only compiling them is imperative, are among the proposed and exemplified
practices.

2.3 Setting the Goals

As shown in the previous subsection, there are various papers signaling the inadequacy of UML
WFRs specifications. However, most of the reported work has focused on the uncompilability
of WFRs with respect to OCL. Still, a closer look at the standard specifications (both WFRs and
Additional Operations (AOs)) reveals that, apart from compilability issues, the specifications in
question enclose logical errors, as well as drawbacks caused by their superficial testing®.

In this context, the current paper aims at contributing to the set up of a framework support-
ing an accurate definition of the static semantics of modeling languages and enabling efficient
model compilability checks. The topics addressed outrun those concerning the mere compilabil-
ity of OCL WFRs, being closer to the conceptual issues involved in specifying a static semantics.
Namely, we focus on the difference between WFRs and “classical invariants” and the importance
of choosing an appropriate specification context, test-driven specifications, testing-oriented spec-
ifications and the use of OCL specification patterns.

The experience aquired while working at and with the UML 1.5 WFRs in OCLE [LCI] has
allowed us to conclude that the task of creating an efficient OCL specification for the static
semantics of an UML metamodel is not an easy one, even for specialists. This may explain the
previously reported state of facts in the field. Therefore, explaining the basics of the specification
approach that we promote and arguing it by means of selective examples, is believed to provide
greater benefits than merely depicting the complete, final set of WFRs. Moreover, the chosen
examples (one related to the semantics of composition, and the other to the name uniqueness
constraint within namespaces) have not been randomly picked; they are both well known, core
metamodeling issues. The fact that even their corresponding specifications are bogus is a strong
argument towards the adoption of a rigorous WFRs specification framework, as promoted by this

paper.

4 The information outputed in case of an invariant violation is insufficient for error diagnosis.
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3 Requirements of a Static Semantics Specification

Compilability of a model is checked against its metamodel and associated WFRs; the metamodel
defines the abstract syntax of the modeling language, while the WFRs enclose its static seman-
tics. In order to fully serve its intended purpose of supporting efficient model compilability
checks, there are a number of requirements that any set of WFRs should comply with.

The first one is completeness; the WFRs should entirely cover the static semantics rules of the
language. This entails an intimate understanding of all metamodel-level concepts and how they
may be suitably related.

Furthermore, each WFR specification should fulfill some quality criteria. The following three
are among the most important, the first two being also among the least addressed in the literature.

1. Detailed, test-driven informal specification. Preceding the formal WFR expression with
a detailed and rigorous informal equivalent is the basic requirement for ensuring correct
understandability of the rule. At its turn, the informal specification should be based on
meaningful test snapshots needed for its validation (both positive and negative). By anal-
ogy to the programming approach known as test-driven development, this test-driven spec-
ification approach provides for a deeper reasoning with respect to the rules, with a positive
effect on the correctness/comprehensiveness of their final statements. In fact, all good
programming habits remain valid in the design of sizable OCL specifications.

2. Testing-oriented formal specification. The OCL WFRs should be stated so as to facilitate
efficient error diagnosis in case of assertion failure. In this respect, [CPO10] argues on the
use of several testing-oriented OCL specification patterns. This quality requirement comes
from acknowledging the ultimate purpose of models and assertions within a model-driven
development process.

3. Correct and efficient formal specification. The correctness of an OCL WFR encompasses
two different aspects: correctness with respect to its informal equivalent, as well as cor-
rectness with respect to the language specification. The former asks for a full conformance
between the OCL specifications and their natural language counterparts; the latter enforces
compilability, therefore conformance to the OCL standard.

Another aspect to consider when specifying WFRs refers to choosing the most appropriate
context and shape for each. This involves understanding the differences between a WFR and a
“classical invariant”, as introduced by object oriented programming (OOP) techniques. Specif-
ically, in OOP, the semantics of invariants states that the invariant of a class should refer exclu-
sively to relationships between the values of its attributes [Mey97],[MO94]. In case the type of
the attribute is a reference or a collection of references, the invariant is only allowed to constrain
their existence and cardinality, being denied any access to the state of the objects attached to the
references. This comes from the fact that objects should be autonomous and have exclusive con-
trol over their state. When specifying WFRs however, this rule is seldom obeyed. Generally, the
invariant corresponding to a WFR refers to the state of the objects that are accessible by naviga-
tion starting from the contextual instance se1£. This semantic difference among WFRs and the
“classical” OOP invariants influences the choice of their specification context, their complexity
and evaluation.
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4 Proof of Concepts

This section is aimed at offering a proof of concepts by means of two case studies centered
around two relevant constraints for UML: one related to composition, and the other to name
clashes within namespaces.

The first case study reveals the incompleteness of the WFRs set enclosing the semantics of
composition in both UML 1.x and 2.x, and emphasizes some inconsistencies among the informal
statements and the OCL WFRs related to composition in UML 2.x. The proposed solutions stem
from an analysis supported by the use of the test-driven specification principle. The possibility
of expressing the same informal constraint in different contexts and under different shapes, as
well as the criteria involved in choosing the right ones are also discussed and exemplified here.

The second case study uncovers three types of errors within the WFR and AOs prohibiting
name clashes within namespaces: syntactic errors, logical ones, as well as faults coming from
failure to provide the information required for error diagnosis in case the assertion gets violated.
The solution proposed for the latter case involves the use of an appropriate OCL specification
pattern.

To sum up, the considered case studies cover all aspects discussed in the previous section.
Moreover, apart from proving our point, the solutions offered contribute to improving the static
semantics of the UML 1.x and 2.x metamodels.

4.1 On the UML Composition Relationship

Let us consider the UML composition relationship. As inferable from the OMG documents
([OMGO05], [OMG10]) and papers such as [BHB"01], composition is a stronger form of associ-
ation, whose semantics may be captured by the following constraints:

[C1]. Only binary associations can be compositions.

[C2]. At most one end of an association may specify composition (a container cannot be itself
contained by a part).

[C3]. An association end specifying composition must have an upper multiplicity bound less or
equal to one (a part is included in at most one composite at a time).

[C4]. Since the composite has sole responsibility for the disposition of its parts, the parts should
be accessible starting from the container (navigation from container to parts should be
enforced).

The above mentioned rules are equally important in defining the semantics of composition and
should be all formalized at the metamodel level by means of appropriate WFRs.

In accordance with the test-driven specification principle, let us consider the example models
from Figure 1. The first (from top to bottom) is correct with respect to the semantics of compos-
tion, as expressed by constraints [C1] to [C4]. The last two are both wrong; the second breaks
the [C3] constraint (having an upper bound of 2 on the composition end), while the third violates
the navigability constraint [C4] (allowing exclusively a part-to-container navigability).
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Cantainer +owner +owned Caontained
0.1 O.n

Container +owner +owned | Contained
2 0.n

Container +owher +owned | Contained
0.1 O.n

Figure 1: Sample models involving composition

As shown in Figure 2, in UML 1.x, an Association is defined by its two Associa-
tionEnds. Composition can be specified by setting the aggregat i on enumeration attribute
of AssociationEnd to #composite’.

AssociationEnd
(from Cuore)

+isMavigable : Boolean

Association | sassociation +connection | ordering - OrderingKind
(fram Core) [ - + aggregation : Aggregationkind
1.1 2. +targetScope : Scopekingd

{ordered} + rultiplicity : Multiplicity
+ changesbility : Changeablekind

Figure 2: UML 1.4 metamodel excerpt illustrating Associations

With respect to enforcing the composition semantic rules [C1] to [C4], the specification only
covers the first three of them. The OCL WFRs for [C1] and [C2] are stated in the context of
Association, while the one for [C3] is written in the context of AssociationEnd, as
follows:

self.aggregation = #composite implies self.multiplicity.max = 1

Listing 1: The UML 1.4 WER for C3

The navigability constraint [C4] is missing from the UML 1.x specification, therefore the third
sample model of Figure 1, although incorrect, would be reported as compilable. There are at
least three different ways of writing this missing WFR in OCL, as shown below. Favoring one
over another is a decision that depends on both language semantics and available tool facilities.

context AssociationEnd
inv validCompositionNavigabilityl:
self.aggregation = #composite implies self.association.connection->any (ae |
ae <> self) .isNavigable

context AssociationEnd
inv validCompositionNavigability2:

5 For denoting Enumeration Type values, we kept the notation used in the UML 1.4 specification
(#enumerationLiteral),instead of Classifier: :enumerationLiteral, as used in UML 2.x.
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self.association.connection->exists(ae | ae <> self and
ae.aggregation = #composite) implies self.isNavigable

context Association

inv validCompositionNavigability3:
self.connection->exists(ae | ae.aggregation = #composite) implies
self.connection->any (ae | ae.aggregation <> #composite) .isNavigable

Listing 2: Proposed WFR expressions for C4 in MOF and UML 1.x

The first two invariants from Listing 2 are both written in the context of AssociationEnd.
If we were to judge from a classic invariants perspective, the second is better, since, in case of
assertion failure, the objects which own the slot whose value has caused the failure (i sNavi-
gable) would be the ones reported as guilty. The first WFR reports the opposite ends. Nev-
ertheless, with the aid of an OCL-supporting tool that allows the evaluation of subexpressions
(such as [LCI]), the other ends can be easily accessed.

The third invariant is written in the context of the Association metaclass. This specifi-
cation is the only one fully complying with the UML 1.x composition semantics, stating that
the ends of a composition association are both created and destroyed simultaneously with their
owning association. According to this, the WFR in Listing 1 can be itself rephrased in the
Association context as follows.

context Association

inv validCompositionUpperBound:
self.connection->exists(ae | ae.aggregation = #composite) implies
self.connection->any (ae | ae.aggregation = #composite) .multiplicity.max = 1

Listing 3: Proposed WFR for C3 in MOF and UML 1.x

The WFR from Listing 3 and the last WFR from Listing 2 may also be combined within
a single OCL expression, as shown below. However, this has the disadvantage of requiring
partial evaluation in case of assertion failure, so as to identify precisely which expression in the
conjunction has caused the failure.

context Association
inv validCompositionUpperAndNavigability:

self.connection->exists(ae | ae.aggregation = #composite) implies
( self.connection->any(ae | ae.aggregation = f#composite) .multiplicity.max = 1
and self.connection->any(ae | ae.aggregation <> #composite) .isNavigable )

Listing 4: Proposed WFR covering both C3 and C4 in MOF and UML 1.x

As illustrated by Figure 3, the UML 2.x Infrastructure brings some changes in the definition
of associations, changes that are also reflected in the MOF 2.0 specification. At the core of
these changes stands the removal of the Associat ionEnd metaclass, and its replacement with
Propety, “.. associated with an Association via memberEnd attribute” [OMGO06] (pp.
66). Regarding navigability, [OMG10] (pp. 112) states that: “An end property of an association
that is owned by an end class or that is a navigable owned end of the association indicates that
the association is navigable from the opposite ends, otherwise the association is not navigable
from the opposite ends.”

Unfortunately, concerning the semantics of composition, things seem to have worsened com-
pared to the 1.x specifications. From those four constraints expressing the semantics of com-
position stated at the beginning of this section, only [C1] has a correct OCL equivalent within

Proc. OCL 2010 8/14
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MultiplicityElement
(from Constructs)
+isOrdered : Boolean = false
+ islnigue : Boolean = true
Tipe +Hype TypedEiement | |+ lower : Integer=1
(from Construct (fram Construct: + upper : Unlimitedhatural =1
0.1
StructuralFeature
(fram Constructs)
Association Property +subsettedProperty
(from Constructs) +agzsociation +memberEnd (from Constructs) 0.
+isDerived : Boolean = false . |+ isReadOnly : Boolean = falze
0.1 2.7 |+ isDerivedUnion : Baolean = false
+isComposite : Boolean = false
+owningdssociation +ownedEnd
.y
- +edefinedProperty
0.1 0.
.
+navigableCOwnedEnd
.
Class +class +ownedAttribute 0.1
(from Construct - -
+isdhbstract : Boolean = false| 0.1 0.r +Hopposite

Figure 3: MOF 2.0 and UML 2.3 metamodel excerpt

the specification documents. As for the others, [C4] seems to be missing, [C3] has a drawback
that we will detail in the following, and [C2] appears in the MOF 2.0 specification rather as an
informal precondition of the create operation from the Reflection: :Factory package.

Regarding composition, [OMG10] (pp. 113) states that “Composition is represented by the
isComposite attribute on the part end of the association being set to t rue”. Given the fact
that the word composite has a similar meaning to container, the previous statement is totally
counter-intuitive. It basically reads as A part in a composition is a composite/container. In this
respect, the OMG specifications should adopt a solution inspired by the EMF Ecore implemen-
tation, which has introduced the attributes container and containment with their natural
interpretation.

Overpassing the language ambiguity problem, the OCL WEFR corresponding to constraint [C3]
found in [OMG10] (pp.125) in the context of Property

isComposite implies (upperBound()->isEmpty () or upperBound() <= 1)

contradicts the above cited specification statement. If i sComposite is true, then (in accor-
dance with the above) the property plays the role of a part in a composition. Thus, this OCL
expression constrains the upper bound of the part, instead of constraining the upper bound of its
container.

Given the conflicting situation, we assume the textual statement at pp. 113 of [OMGI10],
although counter-intuitive, as being the intended one. In tis context, in the following we propose
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appropriate OCL WFRs for each of the constraints [C2] to [C4].
The natural context for [C2] is represented by the Association metaclass. Its correspond-
ing OCL invariant is given below.

context Association
inv atMostOneCompositeEnd:
self .memberEnd->select (p | p.isComposite)->size() <=1

Listing 5: Proposed WFR for C2 in MOF and UML 2.x

The rules [C3] and [C4] can be stated both in context of Association and Property, as
shown in Listing 6 and Listing 7.

context Association

inv validCompositionMultiplicityl:
self .memberEnd->exists(p | p.isComposite) implies
self.memberEnd->any(p | not p.isComposite) .upper = 1

context Property

inv validCompositionMultiplicity?2:
self.isComposite and self.association->notEmpty () implies
self.association->any(p | p <> self) .upper = 1

Listing 6: Proposed WFRs for C3 in MOF and UML 2.x

context Association

inv validCompositionNavigabilityl:
self .memberEnd->exists(p | p.isComposite) implies
self .memberEnd->any (p | p.isComposite) .isNavigable ()

context Property

def: isNavigable() : Boolean =

(self.class->notEmpty()) xor
(self.owningAssociation->notEmpty () and
self.owningAssociation.navigableOwnedEnd->includes (self))

context Property

inv validCompositionNavigability2:
self.isComposite and self.owningAssociation->notEmpty () implies
self.owningAssociation.navigableOwnedEnd->includes (self)

Listing 7: Proposed WFRs for C4 in MOF and UML 2.x

4.2 On Forbiding Name Clashes within Namespaces

The rule prohibiting name conflicts within namespaces is among the most important WFRs,
therefore, in the following we will argue on its specification. In [OMGI10], a namespace is
defined as follows: “A namespace is an element in a model that contains a set of named ele-
ments that can be identified by name.” It logically follows that the coexistence under the same
namespace of at least two elements having identical names should be forbidden. The type of the
elements is irrelevant. In fact, this is the only constraint specified in the Namespace context
of Core: :Abstractions (see [OMGI10], pp. 73). Its corresponding informal specifica-
tion states that: “All the members of a Namespace are distinguishable within it.”” Below is the
corresponding formal specification.

Proc. OCL 2010 10/ 14
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context Namespace
inv distinguishableName: membersAreDistinguishable ()

The membersAreDistinguishable () operation is formaly defined as:

context Namespace
def: membersAreDistinguishable () :Boolean =
self .member->forAll ( memb | self.member->excluding (memb)
->forAll (other | memb.isDistinguishableFrom(other, self)))

Element

{readOnly, union
subsets ownedElement,
subsets member}

+ownedhember

0.

NamedElarment
+ name : String

+mermber

{readOnly,
union}

o.r

0.1 Namespace

+namespace
{readOnly, union,
subsets owner}

Figure 4: The elements defined in the Name space package

Let us assume that the namespace contains a large number of elements. If this additional
operation evaluates to false, itis important to discover the identity of those elements producing
the failure. With this aim, we propose instead the specification below, which is an instantiation
of the ForAl1l_Reject OCL specification pattern proposed in [CPO10].

context Namespace
def: membersAreDistinguishable () :Boolean =
self .member->reject (memb | self.member->excluding (memb)->
reject (other | memb.isDistinguishableFrom(other, self))->isEmpty())->isEmpty ()

Both the standard specification and the proposal above employ the AO isDistinguish-
ableFrom(pl,p2). This operation is firstly defined within the NamedElement context,
being redefined in the BehavioralFeature context. As stated in the [OMGI10] (pp. 72), the
query “... determines whether two NamedElements may logically co-exist within a Namespace.
By default, two named elements are distinguishable if (a) they have unrelated types or (b) they
have related types but different names.”

context NamedElement::isDistinguishableFrom(n:NamedElement,ns: Namespace) :Boolean
def: isDistinguishableFrom(n:NamedElement, ns:Namespace) :Boolean =
if self.oclIsKindOf (n.oclType) or n.oclIsKindOf (self.oclType)
then ns.getNamesOfMember (self)->intersection (ns.getNamesOfMember (n))->isEmpty ()
else true
endif
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A simple analysis of this last additional operation specification suggests that this query is
wrong. In both EMOF and CMOF, Class and Enumeration are unrelated types. Let
Colour be the name of two instances, one of the Class metaclass (self), and the other
of the Enumerat i on metaclass (n). In this case, the i f condition evaluates to false, and the
entire i f statement to t rue. This evaluation result, allowing the two instances to co-exist in the
same namespace, is obviously a wrong one.

As concerning the query getNamesOfMember (m:NamedElement), [OMGI10] states
that “The query getNamesOfMember () gives a set of all of the names that a member would
have in a Namespace. In general, a member can have multiple names in a Namespace if it
is imported more than once with different aliases. Those semantics are specified by overriding
the getNamesOfMember operation. The specification here simply returns a set containing a
single name, or the empty set if no name.”

context Namespace
def: getNamesOfMember (element:NamedElement) : Set (String)=
if member->includes (element)
then Set{}->including(element.name)
else Set({}
endif

The above specification is not compilable, because the type of Set{} is Set (OclUnde-
fined) and not Set (String). In order to fix the bug, Set{} must be replaced with
oclEmpty (Set (String)).

Behavioral features are namespaces. In this case, the coexistence relationship requests that
each two BehavioralFeatures have different signatures. Therefore, the query isDis—
tinguishableFrom() from specified in the NamedElement context must be overriden.
In [OMG10], the corresponding formal specification is:

context BehavioralFeature
def: isDistinguishableFrom(n:NamedElement,ns: Namespace) :Boolean =
if n.oclIsKindOf (BehavioralFeature)
then if ns.getNamesOfMember (self)->intersection (ns.getNamesOfMember (n))
—>notEmpty ()
then Set{}->include (self)->include (n)->isUnique (bf |
bf.ownedParameter->collect (type))
else true
endif
else true
endif

This specification is not compilable because the type of Set{}->include (self)->in-
clude (n) is Set (NamedElement), thus bf.ownedParameter cannot be computed
since bf is a NamedElement. Following, is the correct specification.

context BehavioralFeature
def: isDistinguishableFrom(n:BehavioralFeature,ns:Namespace) :Boolean =
if ns.getNamesOfMember (self)->intersection (ns.getNamesOfMember (n))->notEmpty ()
then oclEmpty (Set (BehavioralFeature))->including (self)->including (n)
—>isUnique (bf | bf.ownedParameter->collect (type))
else true
endif
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5 Conclusions and Future Work

Switching the developers way of thinking with respect to the role of models in software develop-
ment from supporting communication and problem understanding to supporting code generation
and system testing is a key aspect in ensuring the success of model-driven methodologies. In this
respect, we have proposed thinking about model compilability by similarity to program compi-
lability. In this context, the completeness and correctness of WFRs specifications represents a
mandatory requirement. Unfortunately, the state of facts is far from expectations. There are no
MOF or UML 2.x editors supporting model compilation. In order to surpass this situation, the
first priority is fixing the bugs in the existing specifications, followed by the addition of new AOs
and constraints, so as to complete the specification of the static semantics.

The approach proposed in this paper highlights the importance of a detailed analysis, reflected
in both informal and formal specifications. The use of the fest-driven specification principle
(describing test models prior to writing the formal specification itself) has proven to be a useful
technique. Choosing the right context for each WFR is another key issue. This is due to the
fact that, as opposed to “classical” invariants, the WFRs may refer to the state of those objects
connected to the current object through links. Another core issue concerns the specification style.
We have proposed a specification style supporting model testing, by providing the information
needed for error diagnosis in case of assertion failure. This testing-oriented specification style
relies on the use of appropriate OCL specification patterns [CPO10].

In future, we intend to extend our work to encompass the whole MOF 2.0 and UML 2.3
specifications, as well as to identify and test new specification patterns.
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