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Abstract: Many modelling languages have both a textual and a graphical form. The
relationship between these two forms ought to be clear and concrete, but is instead
commonly underspecified, weak, and informal. Further, processes and tool support
for modelling often do not treat both forms as first-class citizens, instead choosing
to favour one as the “real” representation and the other as a derivable representation.

As textual and graphical forms have their individual strengths and weaknesses,
ideally one should be able to view and edit a model in whichever form is most
desirable at the moment. Furthermore, we should be able to do so without having to
worry about semantic differences between what is seen in a graphical view versus
what is seen in a textual view. If we are to develop tools that allow dual-editing—
simultaneous editing of both the textual and graphical forms—then it is essential
that their relationship is clearly and precisely defined.

This paper details a formal relationship between the textual and graphical forms of
a high-level modelling language called the Business Object Notation (BON). We
describe the semantics of the graphical and textual representations and the relation-
ship that holds between them. We also formally define a view on an underlying
model as an extraction function, and model diffs as a means of tracking changes
as a model evolves. This theoretical foundation provides a means by which tools
guarantee consistency between textual and graphical notations, as well shows how
to efficiently perform model updates, reason about model views, and interpret prop-
erties between modelling perspectives.

Keywords: textual modelling, graphical modelling, consistency, formalisation

1 Introduction

A wide variety of modelling languages and tools are now available to developers. For those
languages that have both graphical and textual representations, it is essential that these are con-
sistent such that the text that appears in the textual form and the dots, lines and shapes that are
drawn for the graphical form are semantically equivalent or consistent.

The specification of the relationship between the textual and graphical forms of a modelling
language should be more than the reference implementation of a tool that converts from one to
the other.

Edits to either representation change the underlying model in some fashion, and a correspond-
ing edit should be applied to the other representation. For instance, when we draw a new class A
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in our graphical editor, a class A should also be added to our text, and vice versa. It is crucial that
both forms are updated accurately and kept in sync. If no synchronisation guarantees are made,
then the model a user is viewing in one or other representation may not be accurate, leading to a
plethora of potential issues as development continues.

Frequently, each form represents a different subset of the overall model. For example, the
Object Constraint Language (OCL) for UML has no graphical representation. OCL annotations
are simply encoded in UML diagrams using unstructured notes or semi-structured stereotypes.
Similarly, most graphical forms contain some layout information that is not expressed in the cor-
responding textual notation. Since we are concerned with the interrelationship and interactions
of the two formats, in these cases we simply consider the subset of each form that is relatable, as
the matter of maintaining this extraneous information is one of careful engineering.

By formalising the textual and graphical models of BON, and the relationship between them,
we provide a precise notion of consistency between these two representations. By also formalis-
ing the notion of a view on a model, we are able to examine some common views, how they relate
to the original model, and their translation from one representation to another. Before looking in
detail at this formalisation, we first discuss our modelling language of choice, BON.

1.1 BON

The Business Object Notation (BON) was developed from within the Eiffel community, back in
the late 1980s and early 1990s, as a descriptive method that addresses both analysis and design
issues [Ner92]. In fact, much of its syntactical style is inherited from the Eiffel programming
language.

BON has two levels, which are loosely referred to as the informal and formal levels. Diagrams
at the informal level are comprised of natural language, written in a highly structured man-
ner. At the formal level we have dependent types, including behavioural contracts on features'
(preconditions/postconditions) and classes (invariants). Inheritance (with generics and multiple
superclasses) and client relations (associations and aggregations) are also expressed at the formal
level.

Classes are hierarchically arranged in clusters, which are structures that simply group together
one or more classes and/or clusters. Clusters are similar to packages in Java, except without the
additional effects on visibility that packages exert. A well-formed model in BON must have a
single top-level cluster—the system cluster.

Classes and clusters are described in the static part of a BON model, but there are also dynamic
diagrams that allow one to describe events and scenarios over the static system. In this work we
are concentrating on the static and formal parts of BON, although broadening it to cover the
entire modelling language is a natural extension.

BON models have both a textual and a graphical form, with a one-to-one structural map-
ping between them. The BON authors also describe interesting views on models, through
the use of compressions—representing a set of graphical or textual elements with a simpler
element [WNO95]. This is standard practice in many graphical systems as a user zooms out, and
similar techniques are employed through outline views and folding for textual editors. However,

I Features in BON can be thought of as methods or fields, but are more general than these and can potentially be
refined to either when creating an implementation from the model.
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when dealing with a modelling language, the meaning of these simpler elements is important in
the context of the elided elements that they represent. It is made all the more interesting in BON,
as we can write and display relationships between clusters, as an abstraction from the underlying
classes upon which the relationships really exist. We discuss this further in Section 3.3.3.

static_diagram EXAMPLE
component
cluster EXAMPLE_COMPONENTS
component
class A
feature
name: STRING
set_name: Void
—-> n:STRING
require X.is_valid_identifier (n)
end
end
class B inherit A end
class C inherit B end
class D inherit B end

B client UTILITIES.X
end

cluster UTILITIES
component

class X

feature
is_valid_identifier: BOOLEAN
-> id:STRING

end

end
end

Listing 1: A static diagram in Textual BON

Listing 1 shows an example of a textual BON model, which contains several classes linked
through inheritance and a single client relation. The same model represented in graphical BON
is shown in Figure 1.

1.2 Tools
1.2.1 BONc

We have previously developed a parser, typechecker and documentation generator for BON, the
BONC tool.” It is open source, and available as a command line tool or as an Eclipse plugin. We
have used BONc as a foundation for a number of projects, including a model-code consistency
checker and the BON IDE.

2 Available from http://kind.ucd.ie/products/opensource/BONc/
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Figure 1: Graphical BON.
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1.2.2 BONIDE

We have recently developed a prototype visual editor for BON, built on top of the Eclipse Plat-
form, leveraging the Eclipse Graphical Modeling Project (GMP) tools [Skil0].

A BON metamodel is defined using the Eclipse Modeling Framework Project (EMF) Ecore
metamodel. Defining the BON metamodel as an Ecore model empowers the use of the Eclipse
GMP and Graphical Editing Framework (GEF) to aid in the development/generation of tools for
manipulating graphical BON. The culmination of these efforts is a graphical editor for BON—
the BON IDE. The screenshot previously shown in Figure 1 is taken of the BON IDE in action.
The BON IDE checks the validity of a graphical BON model through constraints expressed in
the Ecore metamodel, with additional validity expressions written in the Check language (part of
the Model To Text (M2T)? Project).

The remainder of this paper is organised as follows. The next section describes the formalisa-
tion of graphical and textual BON models, the translation between these, as well as views on a
model. Section 3 discusses some uses of our setup, in particular tracking model evolutions and
keeping models synchronised. We next discuss related work, before finally drawing conclusions
about the current state and future directions of this work.

2 Model Formalisation

We have mechanically formalised our textual and graphical models in higher-order logic using
the PVS Specification and Verification System [ORS92]. Much of the formalisation is presented
here in standard mathematical syntax (i.e., the reader need not be familiar with PVS to understand
our theory), but several small examples of PVS are given as well to concretise our mechanisation.
The motivated reader is welcome to download the full mechanisation via our website.*

PVS provides an interactive proof checker for proving the correctness of theorems as well as
type-correctness of the input specifications. By mechanising our theory in PVS we are able to
assert desirable properties of our specification in a manner that is easily independently verified
by others.

2.1 Graphical Formalisation

Due to our use of the Eclipse Modeling Framework [The10] it was first necessary to describe the
core Ecore types, and their type hierarchy. The relevant parts of this type hierarchy are depicted
in Figure 2.

BON types are defined as subtypes of the relevant Ecore constructs, summarised in Figure 3.
A formal definition of several elements of this type hierarchy are necessary. Types that are not
mentioned below have mechanisations but are irrelevant to the focus of this paper.

Definition 1 (Basic Constructs) A system is a BON model instance. A class is a named concept
orideain a system. A cluster is anamed set of classes and sub-clusters. Every system has exactly
one cluster denoted as the system cluster.

3 http://www.eclipse.org/modeling/m2t/?project=xpand
4 Available from http://kindsoftware.com/documents/mech_theory/verified_vis.html
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Figure 2: Ecore type hierarchy.
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Figure 3: BON graphical model type hierarchy.
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We denote classes with the metavariable C, clusters with D, and the system cluster as S.
Functions on classes and clusters exist for extracting the relevant attributes (e.g., identifier, list
of features, etc.), but are not discussed further here.

Informally, a BON model consists of a set of classes, a set of clusters, and a set of relations
between these classes and clusters. The general idea is that inheritance relations define the sub-
typing relations between classes, cluster relations give the clustering structure of the system, and
client relations state dependencies between the classes in the system. Each of these constructs,
in turn, is formalised in the following.

The inheritance, cluster, and client relations of a system are all dependently typed directed
graphs (“digraphs” within PVS). An inheritance graph is more precisely a tree of BONClasses,
rooted with the ANY class.’

Definition 2 (Inheritance Tree) An inheritance tree is a (directed) tree whose vertices are
elements of the type BONC1ass and whose root is the BONClass ANY.

This definition is expressed in PVS in the following fashion.

ANY: BONClass
inheritance_tree: TYPE =
{ t: Tree[BONClass] | root?(t)(ANY) }

This PVS specification states that the constant ANY is of type BONClass and the simple
dependent type inheritance_tree is atree of BONClasses whose root vertex is ANY.

A cluster graph is also a tree, with the system cluster at its root. Since StaticAbstraction
is subtyped by both the Cluster and BONClass types, we thus use StaticAbstractions
as the vertex type in our cluster tree.

Definition 3 (Cluster Tree) A cluster tree is a directed tree ¢T of StaticAbstractions
where the root of T is the system cluster, and every non-root vertex in (7 has exactly one
cluster as its parent.

The last condition within this definition is necessary to insist that only clusters may contain
other static abstractions (i.e., classes must be leaf vertices within the cluster graph), and every
static abstraction is directly contained within one cluster (except the system cluster).

Definition 4 (Client Graph) A client graph is a directed graph of BONClasses. Each edge in
the graph is a client relation.

Note that, as no further constraints are placed on the client graph, cycles are permitted—as
would be expected for client relations.

A BON model is comprised of an inheritance tree, a cluster tree and a client graph. Addition-
ally, all classes in the system must appear as vertices in both the inheritance tree and the cluster
tree, and no other classes may appear in the client graph. The metavariable used to denote a BON
model is M .

5 ANY is the top-most type in BON.
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Definition 5 (BON Model) A BON model is a record [IT, (T, CG] where:

e [T is an inheritance tree, CT is a cluster tree, and CG is a client graph,

e the set of BONClasses that are vertices in ¢'7 must be equivalent to the set of vertices in
IT,

o and the set of BONClasses that are vertices in CG must be a subset of those appearing in
CT/IT

This definition is expressed within PVS by declaring the record type and a predicate that
determines if such a record meets the latter two criteria above. The BON_model type is then the
subset of these records that satisfies this predicate.

BON_model_rec: TYPE =
[# it: inheritance_tree ,
ct: cluster_tree ,
cg: client_digraph #]

BON_model ?(m: BON_model_rec): bool =
vert(m‘it) = class_vert(m‘ct)
AND
subset?(vert(m‘cg), vert(m‘it))

BON_model: TYPE = (BON_model?)

2.2 Textual Formalisation

BON textual models are represented as a type context. Classes are stored in the type context in a
partial function from a FormalClassType toaFormalClassDefinition. The function
is partial, as it only returns a class definition when such has been given in the system and stored
in the type context. Asking for the definition of a class type that is not present in the type context
returns bot t om.® The metavariables ¢7 and CD denote FormalClassTypes and Formal-—
ClassDefinitions, respectively.

A FormalClassType contains the identifier that denotes the class in question and a list of
generic parameters for the type it represents. The fype function extracts the type from a given
class definition: type : CD — (7.

Definition 6 (Class Definition Map) A class definition map CDM is a partial function def :
CT' — CD where:

e (7T’ is a subset of 7 and

e Vei' € CT' :type(def(ct')) = ct'.

% In a partial function in PVS the function returns bot t om when the function is undefined for the input.
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The second condition in this definition ensures that class types are only mapped to class def-
initions that actually have the type in question.

Clusters are similarly stored in a partial function from FormalClusterType to Formal—
ClusterDefinition. We omit the precise definition for brevity.

TypeRelationPairs are used to represent the various relations between types in a system
with subtypes InheritanceRelation,ClusteringRelationandClientRelation.
In our PVS mechanisation TypeRelationPair is an abstract datatype with these three sub-

types.’
Using all of this mathematical infrastructure, one can now define BON textual type contexts.

Definition 7 (Type Context) A BON textual type context is arecord [CDM , CLDM , S, R | where
CDM 1is a class definition map, CLDM is a cluster definition map, § is the system cluster type,
and R is a set of TypeRelationPairs.

As usual, the metavariable I" denotes a BON textual type context, and the sentence I' - ¢
indicates that I' is well-formed.

Type contexts are created and reasoned about with a standard suite of operations that guarantee
they remain well-formed and consistent. As is normal, our formalisation of type contexts only
permits types (i.e., classes and clusters) to be added to the context, not removed, at this time.

2.3 Relating Textual and Graphical Formalisations

Next comes the meat of the matter: relating the theory of fextual BON to the theory of graphical
BON.

The key idea here is that one incrementally defines a semantics-preserving bijective function,
called a model interpretation, that maps from a well-formed textual type context to a well-formed
graphical type context. As the function is bijective, it implicitly defines an equivalence class
between (pairs of elements in) the contexts, and hence between contexts’ contents (classes and
clusters). Moreover, since the interpretation is semantics-preserving, any property proven about
constructs at one end of the interpretation can be “pushed” through the interpretation to its other
end.

Providing the details of this interpretation is beyond the scope of this paper. The interested
reader should obtain the PVS source and look, in particular, at the theory viz_to_typesystem.
This theory contains about a dozen critical lemmas, of which we have mechanically proven half
at this time, and sketched out proofs of the other half by-hand.

Commonly, one only defines this kind of interpretation as a model relation; but, as we have
carefully crafted the theories at both ends of the relation, we have also defined “executable”
interpretation functions that go “both ways,” from graphical to textual and vice versa.

Mathematically, this is unsurprising and not necessarily terribly useful. But practically, the
existence of these functions is extremely useful, as any well-formed type context created with
a tool realising either side of the relation (i.e., whether a developer draws a picture or writes a

7 Abstract Datatypes in PVS automatically generate additional axioms. This includes an axiom that each type must
be one of its subtypes (inclusive) and an axiom that the subtypes do not overlap (disjointness). These properties are
especially useful for case analysis.
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textual specification that describes a system) can be interpreted into the dual semantic domain.
Performing the defined conversion in PVS involves applying the relevant functions to rewrite
a model from one representation to another. As such, the conversion scales to large models,
although the number of intermediate steps in the conversion may grow with the model size. A
textual specification is “rendered” into a graphical specification, and it is guaranteed that all
properties of the textual specification are captured in the graphical specification. Likewise, a
graphical specification is “pretty-printed” into a textual specification, and the same semantic
guarantees hold.

Finally, the relation itself is useful as it permits one to check that two specifications, graphical
and textual, are consistent with each other and if one is a refinement of the other.

Definition 8 (Consistent Models) A (graphical) BON model 9 is consistent with a (textual)
type context I" iff there exists a quintuple of maps between classes, clusters, systems, and rela-
tions that are bijections. We write M = I" if this is the case.

Definition 9 (Refinements as Submodels) A model M is a refinement of a type context I iff
there exists a quintuple of maps between classes, clusters, systems, and relations from M to I"
are surjections. We write 4 7 I' if this is the case. This definition is symmetric.

Now that we can compare textual and graphical specifications, and understand what it means
to refine between them, we must reflect on the kind of operations that we can perform to either
end of the interpretation, and what each of those operations means in the dual domain. The first
operation of interest is views, as it is not always the case that one wishes to render an entire
graphical model.

2.4 Views

We can informally define a view as the display of a subset of the elements (classes, clusters,
relations) in a model. In order to formally define a view, we first define the type of a (generic)
model view. A model view is a “slice” of a model amenable to visualisation. As our models have
three components—inheritance and cluster hierarchies and a client relation graph—a view slices
through all three components.

Definition 10 (BON Model View) A BON Model View for a BON Model [IT,CT, CG] (recall
Definition 5) is a record [IT,, (T, CG,] where IT, is a (possibly empty) subgraph of I7 (resp.
CT, and (7T, and CG, and CG).

The metavariable we use for the BON Model View type is 7/, and we denote the corresponding
relation as @ : M x V.

A relation is expressed in PVS in one of several ways. We have chosen to formalise this
relation as a (curried) function with a codomain of type boolean.® The definition is based upon a

8 In PVS, the declaration of a function F of type A x B — C is denoted as F (A, B) : C, in which case any use of
the function must include all parameters; whereas a curried function type A — (B — C) is denoted F (A) (B) : C.
The latter allows for partial application yielding a new function of type B — C. As relations can be represented
as A x B — B, if we use the curried form we can, through partial evaluation, obtain a predicate on the type B.

Proc. OCL 2010 10/18



Eg ECEASST

case distinction on all subtypes of 9. The function type definition in PVS is shown below.

BON _model_view ?(m: BON_model )(v: BON_model_view_rec): bool

Using a curriable representation enables us to define a type for all legal views of a given model.
We do so by defining a dependent type of a view function that takes a BON_mode1 and returns a
valid view for the given model.

Definition 11 (The View Type) The View Type V), is a function type dependent upon a model
mandis of typem: M — (v: Vim@v).

Such a dependent type is realised in PVS by the following type declaration. Note that the
codomain is the type of all views on m.

view: TYPE = [m: BON_model —> (BON_model_view ?(m)) ]

3 Uses

3.1 Model Evolution

As models change over time, keeping track of those changes and maintaining the consistency of
the graphical and textual forms is crucial. We will first define a few relevant functions on graphs,
leading up to a definition of a diff on a pair of BON models.

Definition 12 (Graph Merge) A graph merge is a function gm : G X G — G that produces a
graph that contains a union of the vertices and edges from the two input graphs.

The difference of two graphs is a new graph with vertices as the difference of the two input
graphs’ vertices, and edges as the difference of the two input graphs’ edges.

Definition 13 (Graph Difference) A graph difference is a function gd : G X G — G, such that
the resultant graph contains all the edges and vertices that are contained in the first of the input
graphs, but not in the second.

A model difference record, MD, is a record [IT 4, CT 4,CG 4] Where IT is a directed graph of
BONClasses, (T4 is a directed graph of StaticAbstractionsand CG, is a directed graph
of BONClasses. Model difference records are used to store the output of a model difference.

Definition 14 (Model Difference) The model difference function difference : M x M — MD
creates a record containing the graph differences of each of the constituent graphs of the input
models.

A model difference gives us what was present in the first model and not in the second—i.e.,
the elements that are removed when translating from the first model to the second. However, we

Consequently, since PVS uses predicate subtyping in HOL, this partial application denotes a new subtype of B.
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also need to know what was present in the second model but not in the first (the elements that
were “added”).

Definition 15 (Model Diff) The model diff function for input models m;, m, produces a record
l[add, rem], where add = difference(my,m;) and rem = difference(m;,my).

This is akin to the diff file comparison utility that represents the changes between two files
through the parts that are added and the parts that are removed. We now define a diff application
function for BON models that “applies” a diff to a given model.

Definition 16 (Model Diff Application) The model diff application function apply_diff : M x
MD — M creates a new model produced by adding all elements in the add field of the model
diff and removing all elements in the rem field.

Technically the output of a model diff application is a BON model record, as the diff used
might produce an invalid BON model. In PVS this means that we produce a BON_model_rec
that does not necessarily satisfy the predicate BON_mode1?. We could of course define a pred-
icate that tells us if a given input model and model diff would produce a valid model through
apply_diff, but this is not likely to be more useful than simply applying the diff and then seeing
if the result is a valid model.

One essential property of the apply_diff and diff functions is that

apply_diff (my, diff (my,mz)) = m

That is, if we take the diff of two models, and apply this diff to the first of those models we
should produce the second model. This property is intuitive from the understanding that a diff
describes the changes that must be made to the first input model to produce the second.

It is possible to define a bijective translation of the BON graphical model diff to a (similarly
defined) textual diff that operates on the BON textual model, allowing updating of the textual
model from the graphical model (and similarly the graphical model from the textual model) by
computing the diff for the changes, translating this diff and applying it to the textual model. This
removes the need to translate the full model every time we want to synchronise our two model
forms.

3.2 Chasing Refinements

Given the relation and functions defined in Section 2.3, there are a number of interesting prop-
erties we can “push” between worlds. In essence, much like in theoretical physics and other
branches of mathematics involving symmetries, sometimes it is easier to state or reason about a
property in one theory than another.

We propose taking advantage of this situation in a few novel ways, though we summarise only
a few here due to space reasons. Note that we have not mechanised any of these ideas as of yet,
nor have any been implemented in our toolset in a fashion that reflects our formalisation.

Proc. OCL 2010 12/18
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3.2.1 The Right Tool Principle

Certain activities, like brainstorming or sketching out an architecture, are often better accomp-
lished in one tool (e.g., a graphical model editor, like the BON IDE) than another. Since an
interpretation exists between domains, generating a complete, human-readable, consistent text-
ual specification from a “sketch” of a system is trivial.

We call this idea “the right tool” principle—one should not be prevented from using the right
tool for the job and one should be able to leverage such work in both domains.

3.2.2 Difficult Properties

At first blush, the idea of a well-formed graphical model seems simple enough. But we found
encoding such in a framework as complex as the EMF+GEF to be fraught with peril. On the
other hand, defining such a property in the textual model is a straightforward proposition. Con-
sequently, we do not bother attempting to specify complete and complex well-formedness con-
ditions on a graphical model, we simply translate from the graphical to the textual and check
well-formedness there.

3.2.3 Axiomatic Properties

Axiomatic properties like well-formedness are delicately realised in textual and graphical tools.
When should such properties hold, and when must they hold? In our experience, too many tools,
especially those with formal underpinnings, improperly force consistency-like properties.

For example, many modern compilers are able to successfully compile erroneous programs by
making assumptions about developer intent and performing runtime error correction of the input
program. Of course, they issue warnings in such cases, but overall this behavior makes the tools
easier to use and more robust. The Java compiler included with the Eclipse IDE is an excellent
example. Eclipse can perform type-completion and summarise a class in the outline view even
if the program code in the editor is not type-correct.

As another example, while using a tool like the BON IDE, often it is not just useful, but is nec-
essary to draw an inconsistent or ill-formed model. Perhaps such happens during brainstorming;
perhaps in a few more steps the model will be consistent again; perhaps the designer is modelling
an existing system which, by virtue of its very definition, is inconsistent in the first place.

By formally defining such properties on either side of the interpretation and understanding
precisely when reasoning infrastructure depends upon their validity, we are able to characterise
how and when to enforce them. Within PVS we realise such a theoretical trick by putting prop-
erties that are strictly necessary for reasoning within the definitions of our predicate types, while
those that are optional are encoded as axioms or lemmas. If a definition of a formula F that
is used to reason about a model, or proofs relating to such a formula, does not involve a given
axiom or lemma P, then we know F and P to be independent, and as such is optional.

3.3 Views

The simplest and least interesting views are of course the empty view, where none of the model
elements are displayed, and the full view, where all elements of the model are displayed. This
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7# public static veid main(String[] args) {[]

Figure 4: Code folding in the Eclipse Java editor.

section discusses a couple of more interesting views commonly provided for textual models, and
explores what should happen to relationships involving elements that are hidden in a view (i.e.,
present in the original model, but not in the view).

3.3.1 Outline View

Outline views of textual modelling languages typically give a hierarchical view of the principal
elements in the model. It is clear that an outline view is indeed a view, under our definition, since
the hierarchies in question are present in the original model. Outline views are less common for
graphical editors, but the principle remains the same and can be provided in a similar manner.

3.3.2 Folding

Another common feature with modern textual editors is folding. This is where a large, multi-line
element can be collapsed in the view to a single line. For instance, a class definition that normally
spans dozens of lines can be collapsed to just one line. Typically a small graphical widget in the
left margin of the line denotes the folding state of an element, as well as to function as a button
for the fold and unfold operations. An example of code folding in the Eclipse Java development
tools (JDT) source editor is shown in Figure 4. Here a method body (lines 8—13) has been hidden
from view, with graphical artifacts to indicate this to the user.

Collapsing or restoring a foldable element are relatively straightforward alterations to the view
on a model. When an element is collapsed, the view has been altered so that sub-elements in the
hierarchical structure of the original model are ellided from the view.

3.3.3 Relationships Involving Hidden Elements

Folding is related to compression in BON, as previously discussed in Section 1.1. When one
performs folding, compression, or some other view adjustment where model elements are being
hidden as a means of providing a simplified or abstracted view of the system, it raises an inter-
esting question as to what should happen to the relationships that exist between model elements
that are hidden. In the case where model elements are hidden because they are not relevant, then
of course no relationships involving these elements should appear in the view.

Consider the specific example of views to visualise the dependencies that exist in a system.
Client relationships are expressed between classes, and in our definition of a view no relation-
ships can appear involving a class that is not present in the view—since a relationship is an
edge in a graph, we cannot have an edge involving a non-existent vertex. However, a view that
showed the dependencies that exist between clusters that did not contain the clutter of the under-
lying classes would be useful. The client relationships are “pulled up” in the clustering hierarchy
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Figure 5: Graphical BON compression example (from [WNO95]).

to appear at the cluster level.

It is this type of view that the BON authors were keen to support. Figure 5 shows a simple
example of an inheritance relationship that has been abstracted from the underlying classes B, C,
D, E, to their containing cluster CHILDREN.

How to amend our definition of a view of a model, such that it can accommodate this “pulling
up” of relationships to higher-level abstractions, is an ongoing research question for us.

4 Related Work

There is a great abundance of related work on modelling languages and tools that deal with
textual and graphical representations, so we will only briefly mention a few of those that are
relevant.

Lancaric et al. developed a case tool for BON that supported drawing and editing of graphical
BON class diagrams (static) and dynamic diagrams [LOP02, PKOL02]. The graphical repre-
sentation they used largely followed that originally set out by Walden and Nerson. Skeleton
code generation is possible to the target languages of Eiffel, Java with JML, and textual BON.
Importing existing BON models is not supported, so round-tripping during development is not
possible.

Goguen’s early work on formal semiotics [Gog99] and Feferman’s work on reasoning with
diagrams [Fef10] has been inspirational to our work. Both researchers argue, in essence, that
only by connecting the formal world (of which computing, and thus system design, is definitely
one of the most complex examples thereof) with a grounding in social reality via semiotics, or
the general theory of signs, can one effectively communicate complex constructs in effective
ways. Moreover, proofs appealing to diagrams and other semiotic constructs are ubiquitous in
geometry, number theory, and especially category theory.

UML-B is a profile of UML, which defines a subset and specialisation of UML that has a map-
ping to, and is therefore suitable for, translation into the (textual) B language [SB06]. Although
an equivalency of UML features to B structures is defined, this work is differentiated by the fact
that UML-B operates across two very disparate modelling languages.

The Alloy Analyzer [Jac02] tool contains a visualiser for graphically displaying Alloy models.
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However, the graphical form is not editable so synchronisation of the graphical with the textual
formats is simply a matter of updating the visualiser with the current version of the textual model.
UML2Alloy [ABGRO07] defines a profile of UML (and OCL) suitable for translation to Alloy,
and translates an XMI representation (exported from ArgoUML) of a UML model from this
profile to an Alloy textual model for analysis. Again, this process is in one direction—from
graphical UML to textual Alloy.

Our description of model diffs is related to the work of Alanen and Porres [AP03], although
our definitions are simpler as we operate on graph structures and treat a change to a class or
cluster (a vertex/node) as the removal of the old version and the insertion of the new.

Modern Eclipse platform projects provide powerful tools for creating textual and graphical
editors. The Xtext project focuses on supporting the development of textual editors and integrates
with the Eclipse Modeling Framework. Thus, a modelling language textual editor built on top
of XText can integrate with graphical modelling tools built using the Eclipse Graphical Editing
Framework. Model edits are represented through Eclipse model transactions and these can be
used to keep the graphical and textual models synchronised.

Paige and Ostroff previously developed a formally specified metamodel for a subset of the
BON language [POO1]. Two versions of the metamodel were produced: the first written in BON
itself, and the second formalised in the PVS specification language. Their metamodel was used
as a starting point for our own Ecore-based metamodel.

5 Conclusions and Future Work

We believe that formalising the textual and graphical sides of a modelling language and their
interrelationship helps to bring clarity to the semantics of the language and the representations
employed therein. Semantically consistent translations and updates to the model representations
are essential to provide high reliability on the validity of models that have been automatically
updated by tools.

Our tool support is at an early stage; in particular, the BON IDE cannot yet be used to describe
any of the dynamic parts of the BON modelling language. Translation between the graphical and
textual models as described here has been started, but not completed.

There also still remains a great deal to be completed in the formalisation. The work described
in this paper only deals with the static elements of formal BON, but providing full coverage is
both desirable and necessary to reason about complete BON models.

This approach can be generalised and applied to other modelling languages, such as UML
with OCL. The complexity is likely to rise with the size of the language, however, and the utility
will be reduced if the textual and graphical forms are only loosely integrated.

Acknowledgements: Thanks to Ralph Skinner for his work on the BON IDE. This work is
supported by the EU Artemis project CHARTER.
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