Electronic Communications of the EASST

Volume 36 (2010)

Proceedings of the
Workshop on OCL and Textual Modelling
(OCL 2010)

On the Need of User-defined Libraries in OCL

Thomas Baar

10 pages

Guest Editors: Jordi Cabot, Tony Clark, Manuel Clavel, Martin Gogolla

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Eg ECEASST

On the Need of User-defined Libraries in OCL

Thomas Baar

akquinet tech @ spree GmbH
Biilowstra3e 66, D-10783 Berlin, Germany
thomas.baar @akquinet.de

Abstract: Reuse is a fundamental concept of efficient software development. Object-
oriented implementation languages offer reuse on different levels of granularity:
method, class, library. While encapsulation of implementation code within methods
and classes enables reuse within a project, user-defined libraries are widely used to
share implementation code among different projects.

The specification language OCL offers language concepts like defined attributes and
defined operations to enable reuse within a project. However, reuse among different
projects is not possible since OCL does not support the concept of user-defined
libraries. There is no standardized way to import user-defined OCL constraints into
another project. In this paper, we argue on the need of a standardized mechanism to
make reuse of OCL specifications within a different context possible.

Keywords: software reuse, library management, OO programming, OCL, Java

1 Motivation

One indicator for the success of an implementation language is the number of libraries made
available. A high number of available libraries is a sign of an active community. Many members
of the community are willing to share the achievements they made.

A library of an implementation language usually addresses one recurring programming prob-
lem, such as OR-mapping, graph rendering, or logging. By using the library, a programmer can
build on top of abstractions provided by the library, what can help to cut down development costs
and to improve the quality of the developed system.

Uncontrolled publication of libraries, however, can confuse the community; a well-known
example from Java are different logging frameworks such as log4j or Sun’s logging API. Fortu-
nately, some powerful mechanisms can avoid the proliferation of different libraries for the same
purpose. In the Java world, many of the widely adopted libraries are authored by organizations
whose name became a synonym for high-quality software, e.g. Apache Software Foundation
(ASF), Eclipse Foundation, Mozilla, JBoss. Important libraries can become an official standard'
or part of important library bundles, such as Java EE (Enterprise Edition). These mechanisms
as well as training and certification programs ensure a widespread dissemination and usage of
important Java libraries today.

The current version of the Object Constraint Language (OCL 2.2 [OMG10a]) does not support
the concept of user-defined libraries. This has both positive and negative consequences. On the

! The stardardization process is defined by the Java Community Process (JCP), see [Oral0] for details.

1/10 Volume 36 (2010)

mailto:thomas.baar@akquinet.de

On the Need of User-defined Libraries in OCL Ea

positive side, one could argue that there is no need for the OCL community to think about a
process to control the lifecycle of libraries, i.e. there is no need to invent something like the OCL
Community Process. Furthermore, OCL users are prevented from the pain of having to choose
the most suitable library from a set of competing libraries targeting the very same problem. On
the negative side, there is no standardized means to share OCL constraints between different
projects. Consequently, there is no market of user-defined OCL libraries where different authors
try to convince the OCL community that their library is the most elegant solution for an identified
problem.

The contribution of this paper is to stress the point that OCL’s current mechanisms for reuse
are not sufficient. We argue on the need of user-defined libraries and propose an architecture for
OCL libraries. A support of user-defined libraries would result in a much more flexible usage of
OCL, since the users are not bound to the limited set of data structures and operations offered
by the OCL Standardized Library. We illustrate our arguments using a small example, which is
discussed from the perspective of both OCL and Java.

The paper is organized as follows. In Section 2 we formulate requirements for a system to
be built. This system will serve as a running example for the rest of the paper. In Section 3
the informally described functionality of the running example is both specified using OCL and
implemented in Java. We compare the effort for writing both OCL specification and Java im-
plementation. We draw already the conclusion that writing the OCL specification would be less
painful, if OCL had a support for user-defined libraries. Section 4 presents a possible architecture
for library support in OCL and discusses its merits and limitations. While Section 5 reports on
alternative approaches found in the literature and gives further examples that underpin the need
of user-defined libraries in OCL, Section 6 summarizes the paper and draws conclusions.

2 Running Example

Suppose, you develop an analysis tool for Java code. The ultimate goal of the tool is to find dead
code. More precisely, the tool should detect classes, whose methods are never invoked if the
system is started via the main-method of the start class. The analysis tool works in two phases.

In the preparation phase, information about the control flow is extracted from the Java source
code and a call graph is built. The call graph shows method invocations as (directed) call depen-
dencies between the calling class and the called class.

The underlying data structure of call graphs is modeled by a UML class diagram as shown
in Figure 1. A call graph (represented by CallGraph) consists of Java classes (JavaClass)
and call dependencies (CallDep). The two associations between JavaClass and CallDep
indicate, which Java classes are actually connected by a call dependency. Finally, an integrity
constraint makes the model more comprehensible. This constraint says that a call dependency
belongs to the same call graph as the Java classes it connects. The constraint is formulated in
OCL in the comment box in Figure 1.

We assume for the rest of the paper that the preparation phase has already been implemented
correctly, i.e. that the call graph is available.

In the analysis phase, the analysis tool is supposed to provide two kinds of dead code analysis.
The first kind of analysis detects all classes that are never invoked by other classes. In the call

Proc. OCL 2010 2/10

@ ECEASST

CallGraph — - = -

selfjavaClass-=includesall(self.callDap.caller) and

‘ context CallGraph inv integrity:
selfjavaClass-=includesAll{selfcallDep.calles)

[0.2
JavaClass _caller -oLtgaing CallDep
1 *

-calles -incarming
1 *

Figure 1: Data structure of call graph

graph, such classes are isolated in the sense that they do not have any incoming call dependency.
In the example given in Figure 2a, the classes CIsolatedl and CIsolated2 are isolated
according to this definition.

The second kind of analysis detects orphan classes. Orphan classes are classes that can have
incoming call dependencies from other orphan classes, but no path of call dependencies exists
from the start class to an orphan class. Since orphan classes are not reachable from the start
class, their code is never executed. In the example given in Figure 2b, the classes COrphanl
and COrphan?2 are orphan classes.

<<u3zle>—>’ - '-~. _=suseRs <suseRs '-. _=RusEEE
StartClass | — — = s o | StartClass | — — = 4 c2
—
pan(stinall) ELE — =2SEEE znstinal) =2 SEEE ESEEE
& , # AN
— — —
) — — —
SELZERE
y <<uSEi> _
- - T~
Clsolated1 Clsolated? cOrphant |~ zausess " ={corphan2
— — i il S —
1 —— I I
(a) Isolated classes (b) Orphan classes

Figure 2: Two kinds of analysis. The start class of the analyzed system is colored in gray

3 Current Solutions in Java and OCL

How can the expected behavior of the analysis tool be specified/implemented? The tool’s func-
tionality is adequately represented by the two query methods isIsolated () :Boolean and
isOrphan (JavaClass startClass) :Boolean on class JavaClass. The method
call o.islsolated() returns true, iff o represents an isolated Java class. Analogously, the method

3/10 Volume 36 (2010)

On the Need of User-defined Libraries in OCL @

0.isOrphan(start) returns true, iff o represents an orphan class wrt. start, i.e. there is no path of
call dependencies from start to o.
In the sequel, we will try to realize these two methods both in Java and OCL.

3.1 Implementation in Java

3.1.1 isIsolated()

The implementation of islsolated() is very simple provided that the associations between classes
JavaClass and CallDep are implemented for each direction by a reference. In this case, the
implementation looks as in Listing 1.

Listing 1: Java implementation of isIsolated()

public boolean isIsolated() {
return incoming.isEmpty () ;

3.1.2 isOrphan()

The implementation of isOrphan(JavaClass startClass) requires to compute the transitive clo-
sure of the call dependency relationship.

The computation of the transitive closure is a well-known graph problem. Fortunately, graph
problems have been tackled by numerous Java libraries. For example, the open-source library
JGraph [JGR10] provides a class mxGraphAnalysis, whose methods implement some fre-
quently needed algorithms on directed graphs. The computation of the transitive closure is basi-
cally done in mxGraphAnalysis.getConnectionComponents ().

+ |JavaClass VertexPair 1-from
F . 1 | | |
— 1 i
i callee 1 _caller / * ! N
CallGraph Mapping

\ . . N * \ :

|! -incoming i -autgaing Edll‘ Pai ¥ -incoming

allDe ePair -
| I P ;
+ -outgaing

Figure 3: Implementation of running example when using library JGraph

Proc. OCL 2010 4/10

Eg ECEASST

Figure 3 shows the architecture when using the library. On the right hand side of the figure, the
classes of the JGraph library are shown (marked by a dark gray background). On the left hand
side, one finds the classes of our application (white background), which use the library classes.
In the middle, there are some mapping classes (light gray background).

Following the architecture of Figure 3, the main challenge when using JGraph is to keep the
data structure of the application (left hand side) with the data structure of the library (right hand
side) in sync. Whenever objects of classes JavaClass and CallDep are created, it must
be ensured that corresponding objects of the library classes Vertex and Edge together with
objects of the mapping classes VertexPair and EdgePair are created as well. The same
effort of synchronization is necessary when objects of JavaClass and CallDep change or
when they are deleted.

Once the synchronization of application and library objects is done, the implementation of
isOrphan() is a simple delegation as shown in Listing 2.

Listing 2: Java implementation of isOrphan()

public boolean isOrphan (JavaClass start) {
Graph graph =
this.getVertexPair () .getVertex () .getGraph();
return mxGraphAnalysis.getConnectionComponents (graph) .
differ (this.getVertexPair () .getVertex (),
start.getVertexPair () .getVertex());

3.2 Specification in OCL
3.2.1 isIsolated()
The specification of method isIsolated() in OCL is as simple as the corresponding implementa-

tion in Java. The specification is shown in Listing 3.

Listing 3: OCL specification of isIsolated()

context JavaClass::isIsolated() :Boolean
post: result = incoming->isEmpty () ;

3.2.2 isOrphan()

For the specification of method i sOrphan () we would like to reuse a library similar to JGraph.
Unfortunately, OCL does not support user-defined libraries.

Interestingly, there has been attempts to add a transitive closure operator to OCL?, but, at
times of writing this paper, this operator is not a part of OCL. Listing 4 shows the definition of
isOrphan if OCL had already support for the transitive closure operator. Note that in Listing 4

2 See request http://www.omg.org/issues/issue13944.txt

5/10 Volume 36 (2010)

On the Need of User-defined Libraries in OCL Ea

we use TC as a concrete syntax representation of the transitive closure operator. This, however,
is just a “private notation’, because no decision of the OMG, the standardization committee for
OCL, has been yet taken on whether and in which form the transitive closure operator will be
made available in OCL.

Listing 4: OCL specification of isOrphan() using transitive closure operator TC

context JavaClass::isOrphan(start:JavaClass) :Boolean
post: result = not start.TC(outgoing)->includes(self)

It should be noted that there would be no need to integrate the transitive closure operator into
OCL (and, by doing this, to give up the goal to have a loose semantics for standard OCL, see
also [Baa03]), if (1) OCL had support for user-defined libraries and (2) if there would be an OCL
library analogously to JGraph available.

4 A Proposal for OCL Libraries

In the last section, we tried to find an ad-hoc solution for the problems illustrated by the running
example. As a serious source of problems we identified the missing support for user-defined
libraries. In this section, a proposal for an architecture of user-defined OCL libraries is presented.

4.1 Overview

Figure 4 shows a possible architecture of OCL libraries using an example. As example we have
chosen the library-based solution for specifying isOrphan(). The core idea is to have libraries
both for OCL specifications and for underlying UML models>.

The upper part of Figure 4 shows the library layer LIB. This layer comprises both OCL con-
straints (right part) and the underlying UML model (left part). For our running example, an ap-
propriate library would define concepts like Graph, Node, Edge in order to represent graphs.
OCL constraints (right part) can fix the intended meaning of the defined concepts, e.g. integrity
constraints, and they can specify operations such as Graph: : isConnected () for the pur-
pose of reuse. Note that the layer LIB itself is nothing but an ordinary UML/OCL model.

The bottom part of Figure 4 shows the reuse of LIB within the application layer APP. The
UML model UML-APP imports UML-LIB by using UML’s package import. In our example, the
concepts of the application domain (JavaClass, CallDep) must be mapped to the imported
concepts, what is achieved by additional mapping associations with multiplicity 1-1. Further-
more, the constraints of OCL-LIB have to be imported. Finally, the operation isOrphan() can be
specified by a constraint that simply delegates to Graph::isConnected() as shown in OCL-APP.

4.2 Obstacles for realizing this proposal

The following obstacles must be taken into account when realizing this proposal:

3 OCL constraints can also refer to non-UML models, e.g. to DSL models. The problems for UML/OCL libraries
discussed here apply analogously also to non-UML/OCL libraries.

Proc. OCL 2010 6/10

@ ECEASST

LIB

—— |
UML-LIB OCL-LIB

Graph

comtext Graph imv integrity:
+izConnected(Mode, Mode) : Boolean selfnode-=includesAll{self. edge from) and
selfnode-=includesAll{zelf edge. tao)

1 1

* *

Node [-from Edge

1 comtext Graph:isConnected(.) :Boolean
to
post: result= .

HE H

<<imp0rts>>| <<imp0rts>:T
I | |
| APP |
| | |
UML-APP OCL-APP
CallGraph
context CallDep imv mappinalntegrity:
1 i . 1 selfcallernode = self edge.from and
selfcallee.node = selfedyeto
EEEREISSS ~caller ~outgoing CallDep y
1 * F—
-calles -incoming
1 * context JavaClassiisOrphanilavaClass sta)Boolean
post: result=not node.graph.isConnected(start.node, self.node)

Figure 4: Proposal for an architecture of OCL libraries

Different UML-imports UML defines different kinds of package import: import, access, merge.
Each kind has its own semantics with direct consequences on the usage of imported ele-
ments within OCL expressions. Furthermore, it must be possible to change the library
after its import. In our example, the library concepts Node, Edge became endpoints of
the mapping associations.

OCL-import OCL does not support an import-statement. The semantics of such OCL-import
must correspond with the different kinds of import of the underlying UML models.

Customization of imports for UML, OCL When reusing libraries in object-oriented program-
ming languages, flexibility is considerably improved by the possibility to redefine and
adapt imported entities towards the needs of the importing context. For UML/OCL-
imports, comparable kinds of customization are imaginable, e.g. merge of model elements
and (de)selection of constraints.

7/10 Volume 36 (2010)

On the Need of User-defined Libraries in OCL Ea

5 Related Work

The problem of missing library support in OCL has been recently recognized and addressed by
Chimiak-Opoka in [CO09]. Her tool OCL editor [ST10] implements an import-statement for
OCL, which enables reuse of OCL constraints. Currently, Chimiak-Opoka and her team are
extending OCL editor in a way that it can process the running example presented in this paper.

According to Cabot et al. [CMPT09], statistical functions play an important role in certain
domains. They describe in their paper how statistical functions such as max(), avg(), which com-
pute the maximum and average value of a given OCL collection, could be formally defined in
terms of OCL functions. They conclude that these functions should become a part of the OCL
Standard Library, but this would be a rather long and laborious process, since the OMG as the
standardization authority had to be convinced on the general usefulness of statistical functions. If
OCL had already support for user-defined libraries, Cabot et al. could have published an OCL li-
brary containing all the functions discussed in the paper. Consequently, everybody could straight
away reuse the functions described in [CMPT09] in every OCL tool, propose extensions, give
feedback, etc. All this without having to wait for the outcome of a long-winded standardization
process.

In [AHMO6], Akehurst et al. discuss an interesting approach to generalize the idea of libraries
in OCL. They start with the observation that OCL is used as a constraint language not only
for UML but for many MOF-based modeling languages. To make these modeling languages
amenable to OCL constraints, these languages have to provide certain interfaces. Some of these
interfaces, however, are purely related to the OCL Standard Library, e.g. the modeling language
has to provide interfaces for primitive OCL types such as String and Real. Akehurst et al. pro-
pose to let a modeling language not only implement interfaces for primitive types, but to let the
modeling language completely or partially implement the OCL Standard Library. Analogously,
the modeling language could implement any other user-defined library for OCL. Such an OCL
library could be reused at least by any other user of the same modeling language, because the
library is now part of the modeling language.

Since we use for the Java implementation of the running example the Java library JGraph,
it will be tempting to name the corresponding OCL library OCLGraph. However, one has to
be aware that for the scheduling and planning community, OCLGraph denotes a generator for
planning graphs [SMLOO]. These planning graphs take object representations for entities of the
planning domain into account. These objects are formalized using the object-centred language
[MP97], which provides concepts such as sort hierarchy, predicates, sub-state class definitions,
invariants, operators. While these concepts play also an important role for the Object Constraint
Language, the object-centred language is a different language. To make the confusion perfect,
both Object Constraint Language and object-centred language are abbreviated by OCL.

6 Conclusions

Specification languages such as OCL are supposed to work on a higher level of abstraction
compared with implementation languages. A higher abstraction level means less details to deal
with and to use much simpler data structures.

Proc. OCL 2010 8/10

Eg ECEASST

At the level of implementation languages, sharing useful abstractions among projects is done
by publishing a library. Successful libraries must have a managed lifecycle, i.e. they are specified
and reviewed prior to publication and change.

OCL does not yet support the concept of user-defined libraries. OCL Standard Library is the
only available library in OCL. Sometimes, this library does not offer the data structures one
would wish. Today, the only possibility to share new abstractions among different projects is
to add them to the OCL Standard Library. However, adding a new element to OCL Standard
Library is comparable to adding a new element to the java.util package. This is, however,
not an appropriate solution in most cases.

As discussed in Subsection 3.2, there is currently an open request to the OMG to include the
transitive closure operator to OCL. This request would become superficial if OCL had support
for user-defined libraries and if a library similar to JGraph would be made available in OCL. Note
that the latter variant would be a much more general solution and would alleviate also many other
problems indicated by other authors, e.g. [CMPT09].

For these reasons, we propose — in a first step — to extend the OCL language definition
by mechanisms for defining and importing OCL libraries. Note that these mechanisms have to
be supported by each OCL tool. This could pave the way for a so far missing market of OCL
libraries. Once a vivid market of reusable OCL libraries has emerged, the OCL community
could agree — in a second step — on mechanisms to avoid proliferation of libraries. One pos-
sible action in this direction is the adoption of a library management process similar to the Java
Community Process.

Bibliography

[AHMO06] D. H. Akehurst, W. G. J. Howells, K. D. McDonald-Maier. UML/OCL Detaching
the Standard Library. Pp. 205-212 in [DCGWO06].

[Baa03] T. Baar. The Definition of Transitive Closure with OCL — Limitations and Applica-
tions. In Proceedings, Andrei Ershov Fifth International Conference, Perspectives
of System Informatics, Novosibirsk, Russia. LNCS 2890, pp. 358-365. Springer,
July 2003.

[CO09] J. Chimiak-Opoka. OCLLib, OCLUnit, OCLDoc: Pragmatic Extensions for the
Object Constraint Language. Pp. 665-669 in [SS09].

[CMPTO09] J. Cabot, J.-N. Mazon, J. Pardillo, J. Trujillo. Towards the Conceptual Specication
of Statistical Functions with OCL. Pp. 7-12 in [YERO09].

[DCGWO06] B. Demuth, D. Chiorean, M. Gogolla, J. Warmer (eds.). OCL for (Meta-) Models
in Multiple Application Domain, Workshop co-located with MoDELS 2006, Gen-
ova, Italy, October, 2006. Proceedings. Technical Reports TUD-FI06-04. Technis-
che Universitit Dresden, Fakultit Informatik, 2006.

[JGR10] JGraph Ltd. JGraph, Version 1.4.0.8. Nov 2010. Available from
http://www.jgraph.com.

9/10 Volume 36 (2010)

On the Need of User-defined Libraries in OCL E"}

[MP97]

[OMG10a]

[OMG10b]

[OMG10c]

[Oral0]

[PUKOO0]

[SMLO00]

[ST10]

[SS09]

[YERO9]

T. L. McCluskey, J. M. Porteous. Engineering and Compiling Planning Domain
Models to Promote Validity and Efficiency. Artif. Intell. 95(1):1-65, 1997.

OMG. Object Constraint Language, Version 2.2. Feb 2010. Available from
http://www.omg.org/spec/OCL/2.2.

OMG. OMG Unified Modeling Language (OMG UML), Infrastructure, Version
2.3. May 2010. Available from http://www.omg.org/spec/UML/2.3.

OMG. OMG Unified Modeling Language (OMG UML), Superstructure, Version
2.3. May 2010. Available from http://www.omg.org/spec/UML/2.3.

Oracle. Java Community Process (JCP). Nov 2010. Available from
http://www.jsp.org.

Proceedings of the 14th Workshop ”New Results in Planning, Scheduling and De-
sign” (PuK2000), Berlin, 21-22 August 2000. 2000.

R. M. Simpson, T. L. McCluskey, D. Liu. OCL-Graph: Exploiting Object Structure
in a Plan Graph Algorithm. In [PUKOO].

SQUAM-Team. SQUAM framework / OCL editor. Nov 2010. Available from
http://squam.info/.

A. Schiirr, B. Selic (eds.). Model Driven Engineering Languages and Systems, 12th
International Conference, MODELS 2009, Denver, CO, USA, October 4-9, 2009.
Proceedings. Lecture Notes in Computer Science 5795. Springer, 2009.

E. Yu, J. Eder, C. Rolland (eds.). Proceedings of the Forum at the CAIiSE 2009
Conference, Amsterdam, The Netherlands, 8-12 June 2009. 2009.

Proc. OCL 2010 10/10

	Motivation
	Running Example
	Current Solutions in Java and OCL
	Implementation in Java
	isIsolated()
	isOrphan()

	Specification in OCL
	isIsolated()
	isOrphan()

	A Proposal for OCL Libraries
	Overview
	Obstacles for realizing this proposal

	Related Work
	Conclusions

