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Abstract: In this paper we describe our intended approach for the verification of
software written in imperative programming languages. We base our approach on
model checking of graph transition systems, where each state is a graph and the
transitions are specified by graph transformation rules. We believe that graph trans-
formation is a very suitable technique to model the execution semantics of languages
with dynamic memory allocation. Furthermore, such representation allows us to in-
vestigate the use of graph abstractions, which can mitigate the combinatorial explo-
sion inherent to model checking. In addition to presenting our planned approach, we
reason about its feasibility, and, by providing a brief comparison to other existing
methods, we highlight the benefits and drawbacks that are expected.
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1 Introduction

The verification of software systems has already been a venerable concern for some computer
scientists. However, given the ever-growing use of software in our society, and the consequent
problems and damages due to programming errors, over the last years this concern became more
wide-spread and hence, attracted more attention from researchers. As a natural consequence of
this fact, several different methods and techniques have been proposed and are being studied.
One recent key change in such verification techniques is the development of approaches that
can analyse the correctness of software written in commonly used imperative programming lan-
guages. Previously, those methods were limited to the so-called “modeling languages”, which
have a clean and simple definition and are thus more amenable to formal treatment. We can
roughly divide current software verification techniques in two types: deductive or exploratory.

Deductive methods are mostly based on the principles defined by Floyd [Flo67] and Hoare
[Hoa69], and later refined by Dijkstra [Dij76]. These methods rely on an axiomatic definition
of the semantics of the programming language elements and on inference rules that allow one
to reason about the desired correctness properties of a program in a compositional way. Among
the tools developed under this approach we can cite the KeY System [BHS07], Why/Krakatoa
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[FM07], jStar [DP08] and ESC/Java [FLL+02] for the verification of Java programs, and the
Spec# tool [BLS04] for analysing code written in a super-set of the C# language.

Exploratory methods try to (partially or exhaustively) enumerate the possible states of a pro-
gram. A program state corresponds to a snapshot of the program dynamic structures in memory,
e.g., heap, stack, threads locks and program counters, etc. The transitions between states are
given by the execution semantics of the language in which the program is written. In fact, an
exhaustive exploration mechanism can be seen as a non-deterministic machine that generates all
possible execution paths of the input program and produces a transition system representing the
program state space. A well known exploratory technique is model checking [CGP99, BK08],
where the desired correctness properties of the program are checked to hold over a transition
system. Among currently available software model checkers we can cite Java PathFinder (JPF)
[VHBP00] and Bogor [DHHR05] for Java, and MoonWalker [BNR09] for C# programs.

The purpose of this paper is to present an overview of a new exploratory approach that we plan
to develop for the verification of software. This approach is based on model checking of graph
transition systems (GTS), where each program state is modeled as a graph and the exploration
(execution) engine is specified by graph transformation rules. We believe that graph transfor-
mation [Roz97] is a very suitable technique to model the execution semantics of languages with
dynamic memory allocation. Furthermore, such representation provides a clean setting to inves-
tigate the use of graph abstractions, which can mitigate the space state explosion problem that is
inherent to model checking techniques. In fact, given the usual size of state spaces, abstraction
is a key factor in the eventual success of the proposed verification approach.

The rest of this paper is organized as follows. In Section 2 we explain the underlying concepts
of our approach, viz., graph transformations and graph abstractions. The planned verification
approach is given in Section 3, and a discussion about its feasibility is presented in Section 4.
Related work is given in Section 5, and Section 6 concludes the paper.

2 Concepts

In this section we present the two techniques on which we base our verification approach: graph
transformation and graph abstraction. These techniques are very generic and can be used in
various settings, thus we focus our presentation of the concepts to the relevant aspects of our
problem at hand.

2.1 Graph Transformations

Graph transformation (or graph rewriting) is a rule-based transformation technique with a solid
theoretical foundation [Roz97]. We use the term graph production system (GPS) to refer to a
set of graph transformation rules. Each rule specifies both the conditions under which it can be
applied and the changes to be performed. A transformation rule is composed of two graphs, a
left hand side (LHS) and a right hand side (RHS), and is applied to a host graph, i.e., the graph
to be transformed. In general terms, a rule is applied by searching for an image of the LHS on
the host graph and by replacing the found image with a copy of the RHS. This search for a LHS
image corresponds to the subgraph matching problem (see Section 4).
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A GPS can be used to simulate the execution semantics of a programming language. We
illustrate this with a simple example. Consider the snippet of Java code shown in Figure 1,
which implements a circular buffer with three Cells. Each Cell has two fields: next, a
reference to its adjacent position, and val, which can hold a reference to an Object. The state
of a Buffer object in memory, immediately after the execution of its constructor, can be easily
captured by a graph, depicted in Figure 2(a). In this representation, nodes stand for instances
of classes, or primitive values, and edges represent the references (object fields). The Buffer
class has two methods, put and drop.

Method put inserts the given argument Object after the current last element, provided
that the Buffer is not full. Figure 2(c) shows the graph transformation rule that models the
execution of the putmethod. The LHS defines the nodes and edges of the host graph involved in
the transformation and provides the conditions for the rule application, i.e., last.next.val
== null. The argument of the put method is assumed to have an arbitrary non-null value x.
The RHS of the put rule establishes the effect of the rule application, i.e., the next pointer is
moved and the argument value is stored.

Method drop discard the first element of a non-empty Buffer. The corresponding trans-
formation rule is given in Figure 2(d). The node label {?x[!null]} in the LHS can be seen as a
regular expression that matches with any node in the host graph except the null node.

The exploration of all possible applications of the put and drop rules over the initial host
graph shown in Figure 2(a) yields a graph transition system (GTS) that captures all possible
states of a Buffer object. If we consider that the arbitrary value x of the argument of put is
drawn from a finite set D, with cardinality #D = k, the number n of states of the GTS in this
example can be determined a priory, and is given by the formula n = k4−1

k−1 , for k > 1. Assuming
that D represents the set of Java integers, we have that k = 232, and thus the value of n, even
for such a small example, is already flabbergasting. In order to control such blow-up we need to
abstract away irrelevant information.

2.2 Abstract Interpretation

Continuing with the discussion of the previous section, the kind of information that can be con-
sidered irrelevant is dependent on the properties that one wishes to verify. For the circular buffer
example, we might want to check if indeed no element is inserted if the buffer is full. To verify
such property, it is not necessary to keep track of the concrete values stored in the buffer; it suf-
fices to know that the values are non-null. This simplifies the GTS to only 4 states, shown in
Figure 2(b), and makes the verification of p a trivial task.

The abstraction just described can be placed within the theory of abstract interpretation, de-
veloped by Cousot and Cousot [CC77]. An abstraction from a subset of concrete values C
to an element of an abstract set A is given by an abstraction function α : 2C → A, and con-
versely by a concretization function γ : A→ 2C. The elements of C and A are required to be
ordered in a lattice and α and γ must be monotonic with respect to this ordering. In our ex-
ample, C = D∪{null}, with an ordering (null v D); and A = {⊥,null,non-null,>},
with an ordering (⊥ v {null,non-null} v >). Let B ⊆ 2C and a ∈ A, the abstraction and
concretization functions are defined as
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public class Cell {
public Object val;
public Cell next;

}

public class Buffer {
private Cell first, last;

public Buffer() {
first = new Cell();
first.next = new Cell();
first.next.next = new Cell();
last = first.next.next;
last.next = first;

}

public void put(Object arg) {
if (last.next.val == null) {
last = last.next;
last.val = arg;

}
}

public void drop() {
if (first.val != null) {
first.val = null;
first = first.next;

}
}

}

Figure 1: A Java example of a circular buffer with three cells.

null

Cell

Buffer

Cell Cell

val

val val
first

last

nextnext

next

(a) Graph representation of Buffer
state after the constructor call.

s0 s1

s2s3

put

put

put

drop

drop

drop

(b) Transition system of the
Buffer GPS, after data abstrac-
tion.

Buffer null Object

Cell Cell x

Buffer null Object

Cell Cell x

last

next

val arg last

next val

arg

LHS RHS

(c) put transformation rule.

Buffer null

Cell Cell {?x[!null]}

Buffer null

Cell Cell

first

next val

first

next

val

LHS RHS

(d) drop transformation rule

Figure 2: (a), (c), and (d): Graph production system that captures the execution semantics of the
Java program given in Figure 1. (b): A graph transition system, see Section 2.2.
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α(B) =


⊥ if B =∅
null if B = {null}
non-null if B⊆ D
> otherwise

γ(a) =


∅ if a =⊥
{null} if a = null
D if a = non-null
C otherwise

The > value is the most coarse abstraction and represents every subset of C. On the other
hand, ⊥ is the most fine-grained approximation and thus maps to the empty set.

The key point of an abstract interpretation is that, with respect to the correctness properties
that one wants to verify, the abstraction is an over-approximation of the concrete system. Thus,
if a property holds on the abstract domain, it is guaranteed to hold on the concrete domain. This
is the reason why we can check the correctness of the program of Figure 1 using the abstract
GTS of Figure 2(b). However, it might be the case, due to loss of precision in the abstraction,
that a property does not hold on the abstract domain but actually holds in the concrete domain, a
so-called false positive error report.

2.3 Graph Abstractions

The example of the previous section is an interesting case of abstraction from the data domain of
the program, which can be used to shrink the program state space to a reasonable size. However,
such abstraction fails to cope with structures of unbounded size, e.g., a linked list. Regardless
of data abstraction, the transition system of a such structure is infinite and thus unsuitable to
exploratory verification methods without some previous manipulation. What we need is a method
to deal with the graph structure, i.e., we need to abstract a possible infinite state graph to a finite
graph.

A graph abstraction is based on the concepts of shape analysis, proposed by Sagiv et al.
[SRW98, SRW02], and of abstract interpretation. A graph shape is an abstraction that cap-
tures the underlying structure of a set of concrete graphs, acting as their representative in the
abstracted domain. The basis of this technique falls within the same idea of abstract interpre-
tation presented in the previous section, except that now the abstraction function maps a set of
concrete graphs to a corresponding graph shape.

2.3.1 Neighbourhood abstraction

One possible type of graph abstraction is neighbourhood abstraction, which is based on neigh-
bourhood similarity: two nodes are considered indistinguishable if they have the same incoming
and outgoing edges, and the opposite ends of those edges are also comparable. Graphs are ab-
stracted by folding all indistinguishable nodes into one, while keeping count of their original
number up to some bound of precision. The incident edges are also combined. Counting up to
some bound is done using multiplicities. We use Mk = {0, . . . ,k,ω} with k ∈ N consisting of
exact numbers up to k (which is typically a low value such as 1 or 2) and the value ω standing
for “many”.

Formally, a graph is a tuple G = 〈V,E〉 of nodes and edges, where the edges are triples (v,a,w)
of source node, label, and target node. The universe of possible labels is denoted by Lab. The
abstract graphs (shapes) are 5-tuples S = 〈G,∼,multn,multo,multi〉 in which
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Figure 3: (a) A shape that represents a set of bipartite graphs. Two such concrete graphs are
shown in (b).

• G is the underlying graph structure of the shape;

• ∼ ⊆V ×V is a neighbourhood similarity relation;

• multn : V→Mν is a node multiplicity function, which records how many concrete nodes
were folded into a given abstract node, up to bound ν ;

• multo,multi : (V ×Lab×V/∼)→Mµ are outgoing and incoming edge multiplicity func-
tions, which record how many edges with a certain label the concrete nodes had that were
folded into an abstract node, up to a bound µ and a group of ∼-similar opposite nodes.

Figure 3(a) shows an example of a shape. This abstraction represents an infinite set of bipartite
graphs with two or more a-labelled nodes and three or more b-labelled nodes connected by c-
labelled edges. Two possible concrete graphs are shown in Figure 3(b). Details on the theory
of neighbourhood abstraction can be found in [BBKR08] and practical aspects of the theory
implementation are given in [RZ10].

3 Approach

Now that we have presented the most important underlying concepts, let us discuss how they
can be combined in our intended approach for software verification. Figure 4 provides a picture
of the whole verification cycle. The input is the program source code, written in some pro-
gramming language, e.g., Java. The code is analysed by a compiler that produces as output an
abstract syntax graph (ASG). This ASG is essentially the usual abstract syntax tree produced by
a language parser enriched with type and variable bindings. The ASG, together with definitions
of the language control flow semantics, is the input of a flow construction mechanism, which
builds a flow graph for the given ASG. This flow graph represents how the execution point of the
program should flow through the ASG, according to the rules of the programming language in
use. Together, an ASG and a flow graph form a program graph, an executable representation of
the program code as a graph.

We can now feed the program graph to an exploratory graph transformation system, com-
posed by graph transformation rules that capture the execution semantics of the elements of the
programming language, to exhaustively explore the state space of the program graph. This ex-
ploration produces a graph transition system (GTS) that captures all possible paths of execution
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Figure 4: Overview of the verification cycle proposed.

of the program. However, as discussed in Section 2, a program GTS may be finite but still pro-
hibitively large, or even infinite. At this point the previously presented abstraction techniques
come into play, in order to produce a finite GTS. Additionally, we may profit from our rep-
resentation of states as graphs and use a graph isomorphism algorithm to collapse isomorphic
states into a single representative, thus reducing the size of the GTS. This is further discussed in
Section 4.

After producing the GTS, we can perform model checking against a given set of correctness
properties that the program is expected to have. This check produces either a verdict that the
program is indeed correct, or a counter-example of an execution path that produces an error. This
counter-example can then be traced back to the ASG, or, better yet, the input code, so that the
user can inspect the error. As an exploration/model checking engine we use GROOVE [Ren03], a
tool specifically developed to perform model checking of graph production systems.

4 Discussion

As noted by Dwyer et al. [DHR+07], the combination of model checking with abstraction tech-
niques is an emerging trend. The new idea in our proposal is to use graphs and graph trans-
formations as a base of state representation and state space exploration. Although, at first, this
may seem to introduce a lot of unnecessary complexity into an already complex problem, after a
careful analysis we can see that this is not the case.

On the complexity of the subgraph matching problem. The general case of the subgraph
matching problem is known to be NP-complete [GJ79]. However, there are several cases for
which solving this problem is much easier. For example, in the case where the rules and the
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host graph contain a root label, Dodds and Plump [DP06] showed that the matching can be done
in constant time. Even on the general case, heuristics can be used to improve the execution
time of the matching algorithm. The work of Geiß et al. [GBG+06] shows how the search plan
heuristic can be used for this purpose. Another interesting improvement is described in the work
of Bergmann et al. [BHRV08], which presents a solution with incremental pattern matching,
where sets of matchings of graph transformation rules are stored and incrementally updated as
the host graph changes. This idea was recently implemented in GROOVE [GJR10].

Isomorphism for state space reduction. As noted in Section 3, our choice of graphs to rep-
resent states allows us to perform symmetry reduction of the state space by using graph isomor-
phism algorithms. The graph isomorphism problem belongs to the NP complexity class but it
is still not known whether the general case of the problem is solvable in polynomial time, or
is NP-complete, or is neither. However, in practice the problem can often be solved efficiently
[McK81]. Furthermore, this is an optional optimization in our verification cycle that can be
switched off if the cost of isomorphism checking is higher than the actual gain on the state space
reduction (which is the case if the expected symmetry is low).

The collapsing of states under isomorphism particularly pays off when the states representa-
tion of a problem have a high degree of symmetry. An interesting study on one of such cases
was conducted by Crouzen, Van de Pol, and Rensink [CPR08]. In this study, the protocol of an
ad-hoc self-configuring communication network was analysed with two model checking tools:
GROOVE, based on graph transformations; and µCRL, based on process algebra. In that partic-
ular problem, the study showed that isomorphism symmetry checks can reduce the state space
in several orders of magnitude. In [Ren07], Rensink presents the current implementation of
isomorphism checking in GROOVE, based on graph certificates.

Drawbacks. Every verification method has strengths and weaknesses, and ours is no different.
A problem with usual model checking techniques is the need of a “whole-world” model of the
system. In our case, no provision is currently available for compositional verification, for exam-
ple, of language libraries. Therefore, the implementation of the libraries elements that are used
in the input program must also be given as input.

On capturing the program execution semantics as graph transformation rules. In our run-
ning example of the circular buffer (Figure 2) we presented graph transformation rules that sim-
ulate the execution of the whole bodies of methods put and drop. This was done to provide a
clearer picture of the concepts that we use. However, it should be noted that it is not very prac-
tical to provide an automatic way to translate a whole method body to a single rule. Therefore,
we work on a more fine-grained level: we provide transformation rules based on the execution
semantics of the elements of the language, e.g., assignments, object creation, method invocation,
etc. This once more stresses the analogy of an exploration mechanism and a virtual machine.

5 Related Work

The amount of research dedicated to software verification is enormous. Here we limit ourselves
to the investigations that we consider most similar to our proposed approach.
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The use of graph isomorphism for state symmetry reduction was investigated by Turner et
al. [TLSB07], and Spermann and Leuschel [SL08], in the context of the ProB model checker.
In their work, the internal model checker representation of a state was translated to a graph,
that was then given to an external isomorphism checking tool: Nauty [McK81]. They report
empirical results to show the effectiveness on the state space reduction. A large part of their
work was devoted to the translation to a graph representation, a problem that we do not face.
Other researchers address the problem of symmetry reduction directly over the internal state
representation of their model checker of choice. This is the case of Lerda and Visser [LV01] for
Java PathFinder, and Robby et al. [RDHI03] for Bogor.

The automatic extraction of a finite-state model from Java code for the purpose of model
checking was addressed by Corbett et al. [CDH+00], with the Bandera tool set. They also
propose the use of data abstraction as one of the techniques for building tractable models for ver-
ification. Our approach could also benefit from their Slicer component, which removes variables
and structures from the code that are not relevant for checking a certain property.

Anand, Păsăreanu and Visser [APV06] proposed the use of abstraction and shape analysis
in the context of symbolic model checking. Again, a program state (captured by a symbolic
heap configuration) was represented using a graph-based formalism. Their method for symbolic
states subsumption and matching is quite similar to our proposal to use graph abstraction and
graph shapes. A drawback of their approach is the need for code instrumentation, which in our
case we believe will not be required. An interesting aspect of the work by these authors is that
the use of symbolic execution allows for modular verification of compilation units, e.g., libraries.
They implemented symbolic execution as an extension of JPF [APV07].

In the context of graph transformation we have seen several theoretical studies on suitable
abstractions [Ren04, RD06, BBKR08, RN08, BKK03, KK06]. However, to the best of our
knowledge, only two of these are backed up by an available implementation [RZ10, KK08].
The Augur tool [KK08] is based on the unfolding of Petri Graphs, and, as usual for unfolding
techniques, can normaly only verify safety properties of a system. This points to an interesting
aspect of our approach, which allows us to also check liveness properties.

Our proposed idea of translating Java source code to abstract syntax graphs was developed
independently by Striewe, Balz and Goedicke [SBG10]. Their work differs mainly on the choice
of the target tool: while we focused in creating input graphs for GROOVE, they chose to use AGG
[Tae04], another graph transformation tool.

An interesting line of related research is being done by Poskitt and Plump [PP10], based on the
work by Habel, Pennemann and Rensink [HPR06], which concerns the development of a Hoare-
like calculus for the verification of graph transformation systems. Such work falls in category of
deductive techniques that was introduced in the beginning of this paper, and allows one to reason
over the correctness of the rules of a graph grammar.

6 Conclusion

In this paper we present a new approach for software verification that combines the techniques
of graph transformation, model checking, and abstract interpretation. Other approaches that
combine model checking and abstraction eventually are forced to provide a translation from
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an internal state representation to a graph-based one. We believe that this translation is often
cumbersome and unattractive. The novelty in our method is to use an explicit representation of
program states as graphs, and to rely on graph transformations as a computational engine. In
doing so, we lift ourselves from the intricacies of a specific model checker implementation and
we arrive at a very clean setting to study abstractions over program states.

The development of our approach is ongoing. We chose Java as an initial programming lan-
guage to handle, due to its wide-spread use. At the moment, we have a graph compiler that
produces an abstract syntax graph from any legal Java program1. The details of the construction
of this compiler are presented in [RZ09]. In addition, the control flow semantics of Java has been
translated into a graph grammar. The elaboration of the execution semantics of Java in terms of
graph transformation rules is future work. Our current efforts are focused on the abstraction
techniques. Details on the implementation of the neighbourhood abstraction of [BBKR08] can
found in [RZ10]. In addition, we are working on a different graph abstraction that allows one to
reason about structural properties of graphs.

It should be noted all the ingredients of our proposed approach were previously investigated
and their feasibility analysed. How graph transformations can be used to capture the execution
semantics of a programming language was shown in [KKR06]. The construction of a control
flow semantics specification for a large part of Java was given in [SRK06]. Initial studies on
graph abstraction techniques were proposed in [Ren04], [RD06] and [BBKR08]. Nevertheless,
whether the combination of these techniques will indeed provide good practical results when
applied to reasonable sized programs is still to be seen.
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