
Electronic Communications of the EASST
Volume 38 (2010)

Proceedings of the Fifth International Conference on
Graph Transformation - Doctoral Symposium

(ICGT-DS 2010)

Static Type Checking of Model Transformation Programs

Zoltán Ujhelyi, Ákos Horváth and Dániel Varró

16 pages

Guest Editor: Andrea Corradini
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Static Type Checking of Model Transformation Programs

Zoltán Ujhelyi, Ákos Horváth and Dániel Varró ∗

(ujhelyiz,ahorvath,varro)@mit.bme.hu, http://www.inf.mit.bme.hu/
Department of Measurement and Information Systems (MIT)

Budapest University of Technology and Economics (BME), Budapest, Hungary

Abstract: Model transformation is seen as a promising approach to automate soft-
ware development and verification, thus improving quality and reducing production
costs significantly. However, errors of transformation programs can propagate into
the generated artifacts complicating the detection of errors. The current paper pro-
poses a static type checking approach for early detection of typing errors of partially
typed transformation programs. The approach describes type safety as constraint
satisfaction problems, and uses a dedicated back-annotation mechanism for error
feedback.

Keywords: model transformations, type checking, constraint satisfaction problems

1 Introduction

Model-driven development (MDD) has become a key technique in system and software engineer-
ing. MDD facilitates the systematic use of models from a very early phase of the design procedure
using high-level, engineering models (such as UML, SysML or AADL - Architecture Analysis &
Design Language). During development model transformations are used to generate appropriate
mathematical models for formal analysis, deployment descriptors and source code.

Validating these model transformations is critical, as errors can invalidate the analysis results
or might propagate into the target application. However, as the complexity of developed model
transformations grows, ensuring the correctness of transformation programs becomes increasingly
difficult. Several different methods and frameworks are already available for the verification
of model transformation programs, including testing strategies [LZG05, KGZ09], model check-
ing [RD06, LBA10] and static analysis [BW07, BCH+09]. However, there are many more formal
techniques used to support the development and validation of traditional programming languages,
and their application to model transformation programs can raise the maturity of the technology.

Albeit that static type checking is a common method to avoid or fix type errors (e.g. mismatched
parameters, invalid variable assignments) in traditional programming languages, current model
transformation frameworks using partially typed languages - having a statically typed (that check
type safety at compile time) graph transformation rules with a dynamically typed (checked at
runtime) control structure - have only very limited support for indentifying such errors.

The current paper presents a static analysis approach for the early detection of type errors in
partially typed model transformation programs. Type safety is described using finite domain
constraint satisfaction problems (CSP), where type constraints are created from every statement

∗ This work was partially supported by the SecureChange (ICT-FET-231101) and CERTIMOT (ERC_HU_09) projects.

1 / 16 Volume 38 (2010)

mailto:(ujhelyiz,ahorvath,varro)@mit.bme.hu
http://www.inf.mit.bme.hu/

Static Type Checking of Model Transformation Programs

of the transformation program based on the language specification. If these CSPs are unsatisfiable,
a type error is detected and back-annotated to the transformation program. As the type constraints
use concepts from the transformation language, the report is simply a compact representation of
the contradicting type constraints.

The rest of the paper is structured as follows. Section 2 gives a brief overview of the technologies
used in the paper. Section 3 details our approach with regards to identifying the type system,
and creating constraint satisfaction problems that represent the type safety of the transformation
programs. In Section 4 we demonstrate and evaluate the static type checking approach using
an implementation in the VIATRA2 framework. Section 5 assesses the related work, and finally,
Section 6 concludes our paper by evaluating the presented analysis approach and suggesting
possible future research directions.

2 Preliminaries

2.1 Running Example: Simulation of Petri nets

In the current paper we will use the simulation of Petri nets as a model transformation problem to
demonstrate the technicalities of our approach.

Figure 1: A Sample
Petri net

Petri nets are bipartite graphs with two disjoint set of nodes: Places
and Transitions. Places can contain an arbitrary number of Tokens, that
represent the state of the net (marking). The process called firing changes
this state: from every input Place of a Transition a Token is removed (if
there is none to remove, the Transition must not fire), then to every output
Place a Token is added. A sample Petri net model is depicted in Figure 1.

2.2 Foundations of Metamodeling

Figure 2: The Petri net
metamodel

Metamodeling provides a structural definition (e.g. abstract syntax)
of modeling languages. Formally, a metamodel can be represented
by a type graph. Nodes of the type graph are called classes. Associ-
ations define connections between classes with possible multiplicity
constraints on both ends declaring the number of objects that may
participate in the association. A metamodel for Petri net models is
depicted in Figure 2.

2.3 Graph Patterns and Graph Transformations

Graph patterns are often considered as atomic units of model transformations [VB07]. They
represent conditions (or constraints) to be fulfilled by a part of the (input) models, and are used in
model manipulation steps.

A basic graph pattern consists of graph nodes and edges corresponding to a metamodel.
Negative application conditions (NAC) are an extension to this formalism, defining a negative
subpattern to forbid contextual conditions for the original pattern in case of a successful match, or
alternate patterns where the pattern if fulfilled if any alternate pattern matches. Existing patterns

Proc. Doctoral Symposium ICGT 2010 2 / 16

ECEASST

:Token

:Place

:tokens

NEG

NEG

T:Transition
:OutArc

isTransitionFireable(T)

(a) Graphical Notation

ECEASST

(a) Graphical Notation

ECEASST

pattern isTransitionFireable(Transition) = {
’PetriNet’.’Transition’(Transition);
neg pattern notFireable(Transition) = {
’PetriNet’.’Place’(Place);
’PetriNet’.’Transition’(Transition);
’PetriNet’.’Place’.’OutArc’(OutArc, Place, Transition);
neg pattern placeToken(Place) = {
’PetriNet’.’Place’(Place);
’PetriNet’.’Place’.’Token’(Token);
’PetriNet’.’Place’.’tokens’(X, Place, Token);
}
}
}

2.3 Graph Patterns and Graph Transformations

Graph patterns are often considered as atomic units of model transformations [VB07]. They
represent conditions (or constraints) to be fulfilled by a part of models required for some manipu-
lation steps on the model.

A basic graph pattern consists of graph elements corresponding to the metamodel, that can be
extended in order to express more complex patterns. Such extensions are negative application
conditions (NAC) that define a negative subpattern describing forbidden contextual conditions
for the original pattern in case of a successful much, or alternate patterns where the pattern if
fulfilled if any alternate pattern matches.

It is possible to reuse existing patterns using pattern calls - if such calls are present, the caller
pattern holds only if the called pattern also holds with the specific graph nodes.

As an example, the firing enabledness condition of the Petri net simulator program is displayed
in Figure 3 as a graph pattern in the notation used in VIATRA2. The pattern uses nested negative
application conditions to express that a Transition is enabled if every input Place instance collected
to the Transition instance has at least one Token instance associated. In the example, the double
negation is used to express the universal quantification with double negation of existence.

(a) Graphical Notation

ECEASST

(a) Graphical Syntax (b)
Tex-
tual
Syn-
tax

Figure 3: The Firing Condition of Petri nets

pattern TransitionFireable(Transition) = {
’PetriNet’.’Transition’(Transition);
neg pattern notFireable(Transition) = {

’PetriNet’.’Place’(Place);
’PetriNet’.’Transition’(Transition);
’PetriNet’.’Place’.’OutArc’(OutArc, Place, Transition);
neg pattern placeToken(Place) = {

’PetriNet’.’Place’(Place);
’PetriNet’.’Place’.’Token’(Token);
’PetriNet’.’Place’.’tokens’(X, Place, Token);

}
}

}

3 / 9 Volume 32 (2010)

(b) Textual Notation

Figure 3: The Firing Condition of Petri nets

Graph Transformation (GT) [Roz97] provides a high-level rule and pattern-based manupu-
lation language for graph models. GT rules can be specified using a left-hand side (LHS or

3 / 12 Volume X (2010)

(b) Textual Notation

Figure 3: The Firing Condition of Petri nets

pattern isTransitionFireable(Transition) = {
PetriNet.Transition(Transition);
neg pattern notFireable(Transition) = {
PetriNet.Place(Place);
PetriNet.Transition(Transition);
PetriNet.Place.OutArc(OutArc, Place, Transition);
neg pattern placeToken(Place) = {
PetriNet.Place(Place);
PetriNet.Place.Token(Token);
PetriNet.Place.tokens(X, Place, Token);
}
}
}

A basic graph pattern consists of graph nodes and edges corresponding to the metamodel.
Negative application conditions (NAC) are an extension to this formalism, defining a negative
subpattern to forbid contextual conditions for the original pattern in case of a successful match, or
alternate patterns where the pattern if fulfilled if any alternate pattern matches.

It is possible to reuse existing patterns using pattern composition - if such calls are present, the
caller pattern holds only if the called pattern also holds with the specific graph nodes.

Example 1 As an example, the firing enabled condition of the Petri net simulator program is
displayed in Figure 3 as a graph pattern in the notation used in VIATRA2. The pattern uses nested
negative application conditions to express that a Transition is enabled if every input Place instance
collected to the Transition instance has at least one Token instance associated. In the example, the
double negation is used to express the universal quantification with double negation of existence.

Graph Transformation (GT) [Roz97] provides a high-level rule and pattern-based manipu-
lation language for graph models. GT rules can be specified using a left-hand side (LHS or
precondition) graph (pattern) to decide the applicability of the rule, and a right-hand side (RHS
or postcondition) graph (pattern) which declaratively specifies the result model after the rule
application. To achieve this, the rule application removes all elements, that are only present in
the LHS, creates all elements that are only present in the RHS, and every other element remain
unchanged.

3 / 16 Volume X (2010)

(b) Textual Notation

Figure 3: The Firing Condition of Petri nets

!"#$%$&'()*'+,-.'+$

!"#$%&'!"#$%'

()*%+&'
()*%+'

,&'-)*%+.'

/"#%$&01*'+,-.'+$

!"#$%&'!"#$%'

(a) Graphical Notation

Static Type Checking of Model Transformation Programs

!"#$%$&'()*'+,-.'+$

!"#$%&'!"#$%'

()*%+&'
()*%+'

,&'-)*%+.'

/"#%$&01*'+,-.'+$

!"#$%&'!"#$%'

(a) Graphical Notation

Static Type Checking of Model Transformation Programs

gtrule addToken(in Place) = {
precondition pattern place(Place) = {
’PetriNet’.’Place’(Place);

}
postcondition pattern placeWithToken(Place, Token) = {
’PetriNet’.’Place’(Place);
’PetriNet’.’Place’.’Token’(Token);
’PetriNet’.’Place’.’tokens’(X, Place, Token);

}
}

!"#$%$&'()*'+,-.'+$

!"#$%&'!"#$%'

()*%+&'
()*%+'

,&'-)*%+.'

/"#%$&01*'+,-.'+$

!"#$%&'!"#$%'

(a) Graphical Notation

Static Type Checking of Model Transformation Programs

// Adds a token to the place ’Place’.
gtrule addToken(in Place) = {
precondition pattern place(Place) = {
’PetriNet’.’Place’(Place);

}
postcondition pattern placeWithToken(Place, Token) = {
’PetriNet’.’Place’(Place);
’PetriNet’.’Place’.’Token’(Token);
’PetriNet’.’Place’.’tokens’(X, Place, Token);

}
}

(a) Graphical Notation

Static Type Checking of Model Transformation Programs

(a) Graphical Notation

Static Type Checking of Model Transformation Programs

(a) Graphical Notation

Static Type Checking of Model Transformation Programs

(a) Graphical Notation

ECEASST

(a) Graphical Syntax (b)
Tex-
tual
Syn-
tax

Figure 3: The Firing Condition of Petri nets

pattern TransitionFireable(Transition) = {
’PetriNet’.’Transition’(Transition);
neg pattern notFireable(Transition) = {

’PetriNet’.’Place’(Place);
’PetriNet’.’Transition’(Transition);
’PetriNet’.’Place’.’OutArc’(OutArc, Place, Transition);
neg pattern placeToken(Place) = {

’PetriNet’.’Place’(Place);
’PetriNet’.’Place’.’Token’(Token);
’PetriNet’.’Place’.’tokens’(X, Place, Token);

}
}

}

3 / 9 Volume 32 (2010)

(b) Textual Notation

Figure 4: The Firing Condition of Petri nets

// Adds a token to the place ’Place’.
gtrule addToken(in Place) = {

precondition pattern placeWithToken(Place, Token) = {
’PetriNet’.’Place’(Place);
’PetriNet’.’Place’.’Token’(Token);

’PetriNet’.’Place’.’tokens’(X, Place, Token);
}
postcondition pattern place(Place) = {
’PetriNet’.’Place’(Place);

}
}

2.4 Control Structure

3 Type systems

3.1 Typing of transformation programs

3.2 Typing errors

4 Overview of the Approach

4.1 Type Safety as Constraint Satisfaction Problems

To evaluate type safety of transformation programs as CSPs, we create a CSP variable for each
potential use of every transformation program variable with the domain of the elements of the type
system. The constraints are created from the statements of the transformation program, expressing
the type information inferrable from the language specification (e.g. conditions have a boolean
type). For details about the constraint generation process see [UHV09].

After the CSPs are evaluated, we check for two kinds of errors: (1) typing errors appear as
CSP violations, (2) while variable type changes can be identified by comparing the different
CSP variable representations of transformation program variables, looking for inconsistencies
(although this may be valid, it is often erroneous, thus a warning is issued).

Proc. Doctoral Symposium ICGT 2010 4 / 9

(b) Textual Notation

Figure 4: The Firing Condition of Petri nets

// Adds a token to the place ’Place’.
gtrule addToken(in Place) = {
precondition pattern placeWithToken(Place, Token) = {

’PetriNet’.’Place’(Place);
’PetriNet’.’Place’.’Token’(Token);

’PetriNet’.’Place’.’tokens’(X, Place, Token);
}
postcondition pattern place(Place) = {
’PetriNet’.’Place’(Place);

}
}

2.4 Control Structure

3 Type systems

3.1 Typing of transformation programs

3.2 Typing errors

4 Overview of the Approach

4.1 Type Safety as Constraint Satisfaction Problems

To evaluate type safety of transformation programs as CSPs, we create a CSP variable for each
potential use of every transformation program variable with the domain of the elements of the type
system. The constraints are created from the statements of the transformation program, expressing
the type information inferrable from the language specification (e.g. conditions have a boolean
type). For details about the constraint generation process see [UHV09].

After the CSPs are evaluated, we check for two kinds of errors: (1) typing errors appear as
CSP violations, (2) while variable type changes can be identified by comparing the different
CSP variable representations of transformation program variables, looking for inconsistencies
(although this may be valid, it is often erroneous, thus a warning is issued).

Proc. Doctoral Symposium ICGT 2010 4 / 9

(b) Textual Notation

Figure 4: The Firing Condition of Petri nets

// Adds a token to the place ’Place’.
gtrule addToken(in Place) = {
precondition pattern placeWithToken(Place, Token) = {
’PetriNet’.’Place’(Place);
’PetriNet’.’Place’.’Token’(Token);
’PetriNet’.’Place’.’tokens’(X, Place, Token);

}
postcondition pattern place(Place) = {
’PetriNet’.’Place’(Place);

}
}

2.4 Control Structure

3 Type systems

3.1 Typing of transformation programs

3.2 Typing errors

4 Overview of the Approach

4.1 Type Safety as Constraint Satisfaction Problems

To evaluate type safety of transformation programs as CSPs, we create a CSP variable for each
potential use of every transformation program variable with the domain of the elements of the type
system. The constraints are created from the statements of the transformation program, expressing
the type information inferrable from the language specification (e.g. conditions have a boolean
type). For details about the constraint generation process see [UHV09].

After the CSPs are evaluated, we check for two kinds of errors: (1) typing errors appear as
CSP violations, (2) while variable type changes can be identified by comparing the different
CSP variable representations of transformation program variables, looking for inconsistencies
(although this may be valid, it is often erroneous, thus a warning is issued).

Proc. Doctoral Symposium ICGT 2010 4 / 9

(b) Textual Notation

Figure 4: The Add Token GT Rule

Control Language Complex model transformation programs can be assembled from elementary
graph patterns and graph transformation rules using some kind of control language. In our
examples, we use abstract state machine (ASM) [] for this purpose as available in the VIATRA2
framework.

ASMs provide complex model transformations with all the necessary control structures in-
cluding the sequencing operator (seq), ASM rule invocation (call), variable declarations and
updates (let and update constructs), if-then-else structures, non-deterministically select-
ing (random) constructs, iterative execution (applying a rule as long as possible, iterate), the
simultaneous application at all possible matches (locations) (forall) and single rule application
on a single match (choose).

The example code in Figure 5 demonstrates how a transition can be fired in this language. At
first the code determines whether the input parameters is fireable using the perviously defined
isTransitionFireable pattern. Then sequentially if removes the tokens from all input
places in the first, then adds tokens to all input places in the second forall rule.

Proc. Doctoral Symposium ICGT 2010 4 / 12

(b) Textual Notation

Figure 4: The Add Token GT Rule

Control Language Complex model transformation programs can be assembled from elementary
graph patterns and graph transformation rules using some kind of control language. In our
examples, we use abstract state machine (ASM) [] for this purpose as available in the VIATRA2
framework.

ASMs provide complex model transformations with all the necessary control structures in-
cluding the sequencing operator (seq), ASM rule invocation (call), variable declarations and
updates (let and update constructs), if-then-else structures, non-deterministically select-
ing (random) constructs, iterative execution (applying a rule as long as possible, iterate), the
simultaneous application at all possible matches (locations) (forall) and single rule application
on a single match (choose).

rule fireTransition(in T) = seq {
/* perform a check to confirm that the transition is fireable */
if (find isTransitionFireable(T))
seq {/* remove tokens from all input places */
forall Place with find inputPlace(T, Place)
do apply removeToken(T, Place); // GT rule invocation
/* add tokens to all output places */
forall Place with find outputPlace(T, Place)
do apply addToken(T, Place);

}
}

Figure 5: The Fire Transition ASM rule

The example code in Figure 5 demonstrates how a transition can be fired in this language. At
first the code determines whether the input parameters is fireable using the perviously defined

Proc. Doctoral Symposium ICGT 2010 4 / 12

(b) Textual Notation

Figure 4: The Add Token GT Rule

rule fireTransition(in T) = seq {
/* perform a check to confirm that the transition is fireable */
if (find isTransitionFireable(T))
seq {/* remove tokens from all input places */
forall Place with find inputPlace(T, Place)
do apply removeToken(T, Place); // GT rule invocation
/* add tokens to all output places */
forall Place with find outputPlace(T, Place)
do apply addToken(T, Place);

}}

Figure 5: The Fire Transition ASM rule

gtrule addToken(in Place) = {
precondition pattern place(Place) = {
PetriNet.Place(Place);

}
postcondition pattern placeWithToken(Place, Token) = {
PetriNet.Place(Place);
PetriNet.Place.Token(Token);
PetriNet.Place.tokens(X, Place, Token);

}
}

Control Language Complex model transformation programs can be assembled from elementary
graph patterns and graph transformation rules using some kind of control language. In our
examples, we use abstract state machine (ASM) [BS03] for this purpose as available in the
VIATRA2 framework.

ASMs provide complex model transformations with all the necessary control structures in-
cluding the sequencing operator (seq), ASM rule invocation (call), variable declarations and
updates (let and update constructs), if-then-else structures, non-deterministically select-
ing (random) constructs, iterative execution (applying a rule as long as possible, iterate), the
simultaneous application at all possible matches (locations) (forall) and single rule application
on a single match (choose).

Example 3 The example code in Figure 5 demonstrates how a transition can be fired in this
language. At first the code determines whether the input parameters is fireable using the previously
defined isTransitionFireable pattern. Then in a sequence calls the removeToken GT

Proc. Doctoral Symposium ICGT 2010 4 / 16

(b) Textual Notation

Figure 4: The Add Token GT Rule

can be reused with pattern composition: the caller pattern holds only if the called pattern also
holds with the specific graph nodes.

Example 1 As an example, the firing enabled condition of the Petri net simulator program is
displayed in Figure 3 as a graph pattern in the notation used in VIATRA2. The pattern uses nested
negative application conditions to express that a Transition is enabled if every input Place instance
collected to the Transition instance has at least one Token instance associated. In the example,
the universal quantification is expressed with double negation of existence.

Graph Transformation (GT) [Roz97] provides a high-level rule and pattern-based manipu-
lation language for graph models. GT rules can be specified using a left-hand side (LHS or
precondition) graph (pattern) to decide the applicability of the rule, and a right-hand side (RHS
or postcondition) graph (pattern) which declaratively specifies the result model after the rule
application. To achieve this, the rule application removes all elements only present in the LHS,
creates all elements only present in the RHS, and leaves every other element unchanged.

Example 2 Figure 4 shows a GT rule that specifies how to add a token to a place. The LHS
pattern represents a single place, while the RHS pattern describes a Token connected to the Place.
When this rule is applied, a Place is found, and a new Token with an association is created.

3 / 16 Volume 38 (2010)

Static Type Checking of Model Transformation Programs

rule fireTransition(in T) = seq {
/* perform a check to confirm that the transition is fireable */
if (find isTransitionFireable(T))
seq {/* remove tokens from all input places */
forall Place with find inputPlace(T, Place)
do apply removeToken(T, Place); // GT rule invocation
/* add tokens to all output places */
forall Place with find outputPlace(T, Place)
do apply addToken(T, Place);

}}

Figure 5: The Fire Transition ASM rule

Control Language Complex model transformation programs can be assembled from elementary
graph transformation rules using some kind of control language. In our examples, we use abstract
state machine (ASM) [BS03] for this purpose as available in the VIATRA2 framework.

ASMs provide complex model transformations with all the necessary control structures in-
cluding the sequencing operator (seq), ASM rule invocation (call), variable declarations and
updates (let and update constructs), if-then-else structures, the simultaneous applica-
tion at all possible matches (forall) and single rule application on a single match (choose).

Example 3 The source code in Figure 5 demonstrates how is firing described in VIATRA2. At
first the code determines whether the input parameter is a fireable Transition using the previ-
ously defined isTransitionFireable pattern. Then in a sequence the removeToken GT
rule for each inputPlace, then the addToken GT Rule for every outputPlace are called.

2.4 Type Checking and Type Inference

A type system of a language can be defined as “a tractable syntactic framework for proving the
absence of certain program behaviours by classifying phrases according to the kinds of value they
compute” [Pie02]. In other terms, the type system defines a categorization for statements of the
program (typically for variables and terms).

During the execution of a statement the types of all used variables are ensured to fulfill selected
type constraints. These constraints are simple logical expressions created using the specification
of the executed statement and the current execution path. If the type constraints are insatisfiable, a
runtime error is issued, as the selected statement cannot be executed.

In statically typed languages type information is either available, or easily inferred during
compile-time, allowing precise type checking. Dynamically typed languages on the other hand
postpone constraint validation until runtime. In these languages type constraints are often kept
simple to avoid costly runtime validation, allowing some type errors to give incorrect output
instead of an error message.

This can make such errors hard to identify, while they can be introduced easily by writing a
statement with incorrect parameters, or correct parameters in an invalid order. To avoid such
issues an efficient compile-time verification technique is needed.

A static type checker framework defines a compile-time approximation of the constraints,
and evaluates it before execution. By creating an over-approximation it is possible to detect all

Proc. Doctoral Symposium ICGT 2010 4 / 16

ECEASST

type errors by forbidding constructs that are often (but not every time) problematic. Similarly
under-approximations can be used, in these cases all reported errors are valid, however some type
errors might remain undetected.

Statically typed languages often require the developer the annotate variable definitions with
type information, resulting in a simple type checking for analysis. However, type constraints are
useful for both validating the usage of user-defined type information (called type checking) and
calculating the proper types of variables based on their uses and definitions (type inference).

The type system of transformation programs consists of (i) built-in types of the transforma-
tion language (e.g. string, integer, double and boolean in VIATRA2 [VB07]) and (ii)
the set of metamodel classes and associations used in the transformation program.

Type constraints can be constrain variables, terms containing variables and pattern conditions.
The remaining language elements are not constrained directly, but are used to combine the existing
constraints to detect insatisfiabilities.

Graph patterns or graph transformation rules are statically bound with user-defined metamodel
types, while the control structure might use dynamic typing (such as ASM rules in VIATRA2).

The dynamic control structure makes it easy to call the GT rules and graph patterns with
incorrect parameters that results in an empty match set (not a runtime error). E.g. switching
the parameters of the inputPlace pattern call in Figure 5 causes the pattern to return with an
empty match set, and the removeToken GT rule will not be called.
forall Place with find inputPlace(Place, T) // parameters in invalid order
do apply removeToken(T, Place); // GT rule invocation

This and similar errors (e.g. invalid variable assignments) can be detected automatically using
a type checker component. This type checking is possible because types can be inferred from the
statically typed graph patterns, and propagated through the control structure.

2.5 Constraint Satisfaction Problems for Variables over Finite Domains

A CSP(FD) is a problem composed of a finite set of variables, each of which is associated with a
finite domain, and a set of constraints that restricts the values the variables can simultaneously
take. In a more precise way a constraint satisfaction problem is a triple: (Z,D,C) where Z is
a finite set of variables x1,x2, ...,xn; D is a function which maps every variable in Z to a set of
objects of arbitrary type; and C is a finite (possibly empty) set of constraints on an arbitrary
subset of the values of variables in Z. The task is to assign a value to each variable satisfying all
the constraints. Solutions to CSPs are usually found by (i) constraint propagation: a reasoning
technique to explicitly forbid values or domains for variables by predicting future subsequent
constraint violations and (ii) variable labeling: searching through the possible assignments of
values to variables already restricted by the (propagated) constraints.

3 Type Checking of Model Transformation Programs

3.1 Overview of the Approach

Our constraint-based type checking process is depicted in Figure 6. The inputs of the static
analysis are the transformation program and the metamodel(s) used by the program, while its

5 / 16 Volume 38 (2010)

Static Type Checking of Model Transformation Programs

!"#$%&'&(

)*+#,(
-./*$(

01#"&2.1-3(
41.51#-(

0%6*(7%&+*-(
8"'9#$':#9."(

;11.1(
<**/=#>?(

41.51#-(
01#@*1&#$(

A74(
BC'$/'"5(

!"#$
"%&'()*$

A."+1#>+(
D#"/$'"5(

Figure 6: Overview of the Approach

output is a list of found errors, such as mismatched parameters. It is important to note that the
instance models (input of the transformation program) are not used at all in the static analysis
process. Our analysis process consists of the following steps:

Type System Initialization creates a representation of the type system of the transformation
program, and makes it available for the analysis step, as described in Section 3.2.

Analysis The analysis phase can be split into three co-operating tasks:

Transformation Program Traversal processes every statement in every possible execu-
tion path of the transformation program. This task is carried out by a simple tree
traversal algorithm operating on the abstract syntax tree of the transformation program.

CSP Building creates type constraints from every program statement, and calls a CSP
solver to evaluate the generated problem. This step is detailed in Section 3.3.

Contract Handling is used to store (and return) partial analysis results as contracts. This
task is described in Section 3.4.

Error Feedback back-annotates the analysis results to the transformation program to provide
error messages to the transformation developer. For details see Section 3.5.

3.2 Type System Initialization

The first step of the analysis process is the identification of the type system (T S) of the transfor-
mation, and initializing it for the CSP solver library. As transformations often deal only with a
selected aspect of models, such a type system consists only of a (potentially very small) subset of
the source and target metamodels and some built-in types.

In order to calculate the used subset of the metamodels, we collect every type directly referenced
from the transformation program, then for each type we add all their supertypes, and in case of
relations type, their endpoint and inverse associations as well. This metamodel pruning method
was described in [SMBJ09], and was proven to calculate a superset of the metamodel elements
used in the transformation, providing a reduced metamodel with all needed elements for analysis.

After the type system is collected, to each remaining type a unique integer set was assigned
in a way, that the set-subset relation between the integer sets represent the inheritance hierarchy
in the type system. Informally, we define a mapping function m : type 7→ 2N, guaranteeing

Proc. Doctoral Symposium ICGT 2010 6 / 16

ECEASST

∀T1,T2 ∈ T S : supertypeO f (T1,T2)⇔m(T1)⊂m(T2). An algorithm for creating such a mapping
from multiple inheritance hierarchies is proposed in [Cas93].

!"#$%&%$'$()*+,*

-%.//*+0,*

1"#$*+023,*

4%.5$*+02326,* 7"8$(*+02329,* 7:.(/;<"(*+0232=,*

>//"5;.<"(*+?,*

&#@$*+?23,*

AB)>:5*+?2329,* C(>:5*+?232=,*

5"().;('$()*+?26,*

)"8$(/*+?2629,*

Figure 7: The Type System of the Petri net Simulator (without built-in types)

Example 4 Figure 7 displays the type system of the Petri net simulator transformation program.
The built-in types are omitted for the sake of readability, but they should be included in the
top level of the tree, without child elements. The hierarchy also includes three additional types
referring to every model element, class or association respectively - this is useful for expressing
certain type constraints.

For every type the associated integer set is also displayed on the figure. For types that are in
supertype relation (such as the Node and Transition) the sets are in subset relation (m(Node) =
{1,3} ⊂ {1,3,6}= m(Transition)), while for those that are not (such as Edge and Transition)
they are not (m(Edge) = {2,3}* {1,3,6}= m(Transition)).

3.3 Constraint Generation

The type safety of transformation programs can be described as a finite domain CSP as follows.
For each use of every transformation program variable a CSP variable is created with the domain
of the integer sets defined in the type system (T S). These CSP variables represent the type of a
variable of the transformation program, that will be matched with constraints representing the
various uses of the variable.

These constraints are created from the statements of the transformation program, expressing
type information available from the language specification. This information consists of the
parameters and return values of the statement, e.g. conditions have the (built-in) boolean type.

By adjusting the constraint generation step it is possible to change whether the analysis creates
an over- or under-approximation of the runtime type constraints. Less restrictive constraints can
be created by creating type constraints directly from the language specification. On the other
hand more restrictive constraints might be part of coding style policies aimed at the reduction of
potentially (but not always) erroneous code.

In this paper we show how to create type constraints from graph patterns, type constraints from
other language elements can be calculated similarly. All other type constraints derived from the
transformation language of VIATRA2 are described in detail in [UHV09].

According to the body of graph patterns consists of a set of pattern variables with a type taken
from the metamodel. These can be translated to constraints as follows: as the type of the pattern

7 / 16 Volume 38 (2010)

Static Type Checking of Model Transformation Programs

variable has to be the same as (or a subtype of) the type defined in the pattern, a constraint
representing the correct set-subset relation has to be created.

Pattern Graph Element Type Information Constraint
Place(Pl) typeO f (Pl) = Place m(typeO f (Pl))⊂ {1,3,4}
Token(To) typeO f (To) = Token m(typeO f (To))⊂ {1,3,5}

tokens(X,Pl,To) typeO f (Pl) = Place m(typeO f (Pl))⊂ {1,3,4}∧
typeO f (To) = Token m(typeO f (To))⊂ {1,3,5}∧
typeO f (X) = tokens m(typeO f (X))⊂ {2,3,5}

Figure 8: Constraint Generation from the PlaceToken Graph Pattern

Example 5 Figure 8 displays the constraint generated from the PlaceToken NAC pattern (see
in Figure 3b). The pattern defines a Place (called Pl) and a Token (To) pattern variables
representing classes from the metamodel connected with a tokens association (X). The first
column contains the different pattern graph elements, while the second one displays the derived
type information. Finally, the third column shows the constraint that can be filled into CSP solvers.

3.4 Contract Handling

For performance considerations, the transformation program is traversed in a modular way: the
transformation programs are split into smaller segments based on the natural structure of the
program, that are traversed and analyzed separately. The partial analysis results of the segments
are described and stored as pre- and postconditions. After being assigned to a segment, the contract
is used to generate the relevant constraints instead of re-traversing the referenced segment.

Such a contract is basically a constraint that stores the externally visible properties of the
contracted code segment. In case of type contracts, the type information of the externally visible
variables are stored before (precondition) and after (postcondition) the execution of the code
segment. This dual storage is only needed if the contract has to represent variable updates,
otherwise it is enough to store a single unit of type information.

It is possible to assign a set of contracts to every code segment allowing to represent different
behaviour in different execution paths. This construct allows reducing the number of execution
paths to consider by filtering out execution paths providing the same type information, but
retaining the different results. When reaching a segment with a set of contracts assigned, the
segment has to be considered as a statement with multiple possible executions, thus maintaining
the exhaustive nature of the traversal.

Call Contracts Callable elements, such as graph patterns queries, GT and ASM rules give a
natural modularization of the transformation program: they are independent blocks running with
their own set of variables. The type contracts of patterns and rules (call contract) have to store
type information for its parameters, other variables used inside it are not visible externally. After
that, every call to that pattern or rule can be replaced by the application of the call contract.

As the analysis of a callable element depends on other call contracts, it is important to calculate

Proc. Doctoral Symposium ICGT 2010 8 / 16

ECEASST

!"#$%&'()%&*+*,"-.$)%.*
pattern placeToken(Pl)={	
 Place(Pl);	
 Token(To);	
 tokens(X, Pl, To);	
}	

!"#$%&'()*+,+()-.$+

!"#$%&'/0*+,+/01$2+

!"#$%&'3*+,!01$24++
!"#$%&'()*+,+()-.$++
!"#$%&'/0*+,+/01$2+

!"#$%&'()*+,+()-.$+5+

6+

7+

8+

(a) Call Contracts

seq {	
 forall P	
 with find inputPlace(T, P)	
 do apply removeToken(T, P);	
 forall P	
 with find outputPlace(T, P)	
 do apply addToken(T, P);	
}	

!"#$%&'()*+*(,-./012.**
!"#$%&'3)*+*34-5$*
!"#$%&'()*+*(,-./012.**
!"#$%&'3)*+*34-5$*

!"#$%&'()*+*(,-./012.**

!"#$%&'()*+*(,-./012.**
!"#$%&'3)*+*34-5$*

!"#$%&'()*+*(,-./012.**
!"#$%&'3)*+*34-5$*

!"#$%&'()*+*(,-./012.**

6*

7*

8*

9*

:*

;*

(b) Block Contracts

Figure 9: The Use of Contracts

the contracts in inverse call order: first the contract of the called element, then the callers. In case
of recursive calls, no such order can be created.

To overcome this challenge, we propose to use a queue of callable elements, initially sorted by
inverse call order (circular dependencies are broken). The queue is used to determine the order of
contract calculation. After its contract is created or updated, we ensure that every caller of the
rule is present in the queue by adding the missing elements, maintaining the inverse call order.

Example 6 Figure 9a shows the generation of the call contract of the placeToken graph pattern.
Next to each line in the pattern body the associated type information is presented (1–3), in the
order it is collected. After the constraints are evaluated, (4) the contract of the pattern is created.
The pattern has a single parameter Pl, that is not changed, so the call contract contains a single
type information: typeO f (Pl) = Place. This contract is displayed next to the pattern header.

Block Contracts The analysis of control structures can also be modularized: blocks defining
local variables (such as let, choose or forall rules in ASM) may also offer a compact
contract. These block contracts store type information for the variables defined outside the block.

Blocks may be embedded into each other, but no circular embedding is possible, thus the
ordering of block contract calculation is much simpler: first the contract of the innermost block
has to be calculated, then the outer ones. This way, no recalculation of contracts is needed.

Example 7 Figure 9b shows an example for generating block contracts in the fireTransition ASM
rule. The rule contains two forall blocks to create contracts from. To calculate the type of the
first rule, (1) we read the contracts from the inputPlace pattern and (2) the removeToken
GT rule - both state, that typeO f (P) = Place∧ typeO f (T) = Transition. (3) The contract of the
block does not contain locally defined variables, so the only variable present in the contract is T .
The contract of the other forall rule can be calculated similarly (4−6).

The performance gains of both call and block contracts over the naive, non-modular traversal
approach are detailed in Section 4.3.

9 / 16 Volume 38 (2010)

Static Type Checking of Model Transformation Programs

Statement Type Information Constraints
with typeO f (T) = Transition m(typeO f (T))⊂ {1,3,6}

find inputPlace(T,P) typeO f (P) = Place m(typeO f (P))⊂ {1,3,4}
do typeO f (P) = Transition m(typeO f (P))⊂ {1,3,4}∧

apply removeToken(P,T) m(typeO f (P))⊂ {1,3,6}
typeO f (T) = Token m(typeO f (T))⊂ {1,3,6}∧

m(typeO f (T))⊂ {1,3,4}

Figure 10: Error Detection

3.5 Error Reporting

Most CSP solvers do not give detailed output in case of an unsatisfiable constraint set, only
the unsatisfiable variables are reported. In order to obtain context information, we evaluate the
constraints in parallel with the traversal. This way, in case an error is found, both the variable and
the last processed statement are known, allowing to associate the error to this segment.

Additionally, every CSP variable and constraint is linked with its source variable or program
statement, so it is possible to find the related elements.

If the CSP solver reports an unsatisfiable set of constraints, it means that the various uses of a
variable (e.g. its definition and its use) expect incompatible types, indicating a type error, that
can be presented to the transformation developer as an error. The most common way such errors
manifest are parameter mismatching in calls.

Example 8 The first column of Figure 10 shows two modified lines from the previously intro-
duced fireTransition ASM rule: the parameters of the removeToken call are switched, which is a
common error committed by transformation developers. In this case the analysis first uses the con-
tract of the inputPlace pattern to determine that typeO f (T) = Transition and typeO f (P) = Place.
After that, it applies the contract of the removeToken GT rule. At this point, the solver has the fol-
lowing constraints for the variable P: m(typeO f (P))⊂ {1,3,4}∧m(typeO f (P))⊂ {1,3,6}⇔
m(typeO f (P)⊂ {1,3,4,6}, that is not a subset of any allowed set from the type system. Finally,
a failure is reported, that no type can satisfy the constraints for variable P.

As values (and possibly types) of the transformation program variables can change during
execution, multiple CSP variables might be needed to represent them. After the constraints are
evaluated, it also needs to be checked whether the CSP variables return a single, consistent type
from the transformation program variable. Inconsistency indicates that the type of a transformation
program variable changes during execution. Such changes are almost always unintended, but as
dynamic languages allow it, only a warning is displayed to the developer.

4 Implementation and Evaluation

4.1 Implementation

The proposed static type checker framework was implemented and evaluated in the VIATRA2
model transformation framework and integrated into its Eclipse-based user interface.

Proc. Doctoral Symposium ICGT 2010 10 / 16

ECEASST

The implementation defines an under-approximation of the type constraints, and evaluates
them with various available CSP solvers for Java, most notably the Gecode/J1 and the clpfd
module of SICStus Prolog2. A preliminary performance comparison between the different solvers
is described in [Ujh09]. In our experience neither of them supported our needs well: Gecode/J
became slow with larger sets (about 50 metamodel elements), while SICStus Prolog did not
support incremental CSP building required for error reporting.

Thus, we created a simple CSP solver tailored to our requirements. Incremental evaluation is
supported by maintaining a constraint graph with variables as nodes and constraints as arcs and
propagating information from new type constraints using optimized propagation rules.

4.2 Case Studies

To demonstrate the analysis capabilities, we evaluated larger transformation programs with more
complex metamodels next to the Petri net firing example. As examples we tried to select different
kind of transformation programs: (1) the Petri net simulator and generator are very simple basic
transformation programs, (2) the AntWorld case study present a larger simulation case study, (3)
while the BPEL2SAL case study represents and industrial-sized model transformation.

The Petri net generator program In addition to the Petri net simulator program a generator
transformation is also defined in [BHRV08]. This transformation is used to generate Petri nets
with an approximately equal number of places and transitions as test cases for the firing program.

The nets are created using the inverse of six reduction operators that preserve safety and liveness
properties of the net. The operators are selected using a weighted random function.

The generator program consists of 9 patterns, 5 GT and 9 ASM rules with a control structure
using more elaborate ASM rules.

The AntWorld Case Study The AntWorld case study [Zü08] is a model transformation bench-
mark featured at GraBaTs 2008. It is based on the ant colony optimization problem and simulates
the life of a simple ant colony searching and collecting food to spawn more ants in a dynamically
growing world. The ant collective forms a swarm intelligence, as ants discovering food sources
leave a pheromone trail on their way back so that the food will be found again by other ants.

The case study uses a turn-based simulation, with each turn divided into seven different phases
for ant simulation (e.g. grad, search) and world management (e.g. create ants, boundary breached).

The metamodel of the case study is somewhat larger than the Petri net metamodel: it consists of
7 different classes with complex associations between them. The transformation program consists
of 17 graph patterns and 13 relatively simple ASM rules as control structure.

The BPEL2SAL Transformation Business processes implemented in BPEL (Business Process
Execution Language) are often used to create business-to-business collaborations and complex web
services. Their quality is critical to the organization and any malfunction may have a significant
negative impact on financial aspects. To minimize the possibility of failures, designers and

1 http://www.gecode.org/gecodej/
2 http://www.sics.se/isl/sicstuswww/site/index.html

11 / 16 Volume 38 (2010)

http://www.gecode.org/gecodej/
http://www.sics.se/isl/sicstuswww/site/index.html

Static Type Checking of Model Transformation Programs

Contracts
of

execution
paths

Avg # of
paths in a
contract

Analysis
time

Petri net simulator

Petri net generator

Antworld

BPEL2SAL

!"##$%&'()"%(*+ ,- *./0 1.*2
3#&%4$%&'()"%(51 56 *.,0 1.*2
!"##$%&'()"%(,0 -, ,.+1 *.,2
3#&%4$%&'()"%(/+ 6+ *.+1 1.62
!"##$%&'()"%(01 5+ *./+ 1.,2
3#&%4$%&'()"%(/- +6 *.5* 1.02
!"##$%&'()"%(,+6 *,6* 5.-0 77
3#&%4$%&'()"%(*,58 */-8 *.,- -62

LOC
Calls

(P/G/A) Time (naive)

Petri net simulator

Petri net generator

Antworld

BPEL2SAL

*,1 *,9,90 1.*2

65 69/96 ,2

011 *+919*0 ,5:;'

8006 *++919*1, 77

(a) Execution Time with the Naive
Traversal Algorithm

of
contracts

of
execution

paths

Avg # of
paths in a
contract

Max # of
paths in a
contract

Analysis
time

Petri net simulator

Petri net generator

Antworld

BPEL2SAL

!"##$%&'()"%(*+ ,- *./0 1 2.*3
4#&%5$%&'()"%(12 16 *.,0 0 2.*3
!"##$%&'()"%(,0 -, ,.+2 00 *.,3
4#&%5$%&'()"%(/+ 6+ *.+2 00 2.63
!"##$%&'()"%(02 1+ *./+ 1 2.,3
4#&%5$%&'()"%(/- +6 *.1* 1 2.03
!"##$%&'()"%(,+6 *,6* 1.-0 /+- 77
4#&%5$%&'()"%(*,18 */-8 *.,- *, -63

LOC Calls
(P/G/A)

Time (naive)

Petri net simulator

Petri net generator

Antworld

BPEL2SAL

*,2 *,9,90
61 69/96
022 *+929*0

8006 *++929*2, 77

(b) Execution Times with the Modular Traversal Approaches

Figure 11: Runtime results

analysts need powerful tools to guarantee the correctness of business workflows. The BPEL2SAL
transformation program [GHV10] is used inside a tool for such analysis.

Both the BPEL and SAL metamodels used in the transformation are much more complex than
the AntWorld case study, together consisting of 150 classes and associations between them. To
express this transformation, 177 different graph patterns have been defined together with 102
ASM rules, some of them are really complex (over 100 lines of code).

4.3 Performance Assessment

In order to evaluate the performance we measured the execution time of the analysis on the
various case studies. We compared the execution time of a naive traversal (without contracts)
to the modular traversals, using either call contracts or both call and block contracts. During
the measurements we used error-free programs as erroneous execution paths are only analyzed
until the first unsatisfiability found, thus shortening analysis time. For measurements we used a
developer notebook with a 2.4 GHz Core2Duo processor and 4 GB RAM with a 64 bit Java SE
runtime. Measurements were repeated several times, and the average of the analysis time is used.

We tested memory consumption by limiting the available heap size to 500 MB - the analysis
could handle every tested transformation. A more detailed evaluation is planned for the future.

Figure 11a summarizes the size of the different transformation programs with the analysis
time using the naive traversal approach (without modularization). The first column displays
size of the program (number of code lines), while the second the number of graph patterns, GT
rules and ASM rules respectively. The third column shows the analysis time. The BPEL2SAL
transformation did not terminate in several hours, so its result was omitted.

Figure 11b consists of our measurement results related to the modular traversal approaches:
(1) when using only call contracts and (2) using both call and block contracts. The first column
displays the number of contracts created, in case of block contracts holding both call and block
contracts. The second column then describes the total number of partial execution paths the
analysis must traverse: the total number of different execution paths inside contracted elements.

The third column shows the average number of execution paths per contract. We believe, the
performance of the analysis correlates with this number, as it shows how many times a call or
block has to be evaluated before its contract can be created. Even worse, a large number of
execution paths usually suggests a complex call or block resulting in large CSPs to solve.

The fourth column displays the maximum number of execution paths per contract. In most

Proc. Doctoral Symposium ICGT 2010 12 / 16

ECEASST

cases it is similar to the average value, with the notable exception of the BPEL2SAL program.
When only call contracts are used, there exists a complex ASM rule responsible for 576 paths,
almost half of the total number. We believe, that the use of block contracts reduce this maximum
to 12 causes that the analysis becomes possible. Similarly, if the code would be refactored in a
way that every call contains only a single block, the performance would increase similarly.

The last column displays the execution time of the analysis. These results show, that even the
use of call contracts can reduce the execution time significantly: the AntWorld transformation can
be analyzed in 0.2 seconds instead of 24 minutes. Similarly, the use of block contracts allowed to
analyze the BPEL2SAL transformation program in about 1 minute.

It is important to note, that the use of block contracts can also increase the analysis time: in
case of the AntWorld case study the increased administrative overhead of maintaining contracts
outweighed the benefits of the contract generation. As Figure 11b shows, the average number of
execution paths is only slightly smaller using block contracts, however, the total number of paths
to evaluate grows significantly.

The type checking is performed before the transformation is executed, so it does not cause
slowdowns during runtime. However, as the parsing of various transformation programs happens
fast (in case of the BPEL2SAL transformation it needs about 5 seconds, otherwise it happens
instantly), the type checking should be executed in a similar time frame in order to maintain the
speed of the framework.

In case of smaller programs the analysis time is comparable with the parse time, and the
combined parsing and type checking could be executed every time when the transformation is
saved. However, the BPEL2SAL transformation is analyzed much slower than its parse time,
so further optimizations are needed to provide a fast, integrated analysis. This issue is partly
mitigated by the fact that the analysis is executed in the background, thus it does not block the
development environment, allowing the developer to work during the analysis.

5 Related work

In this section we give a brief introduction to various approaches to the verification of model
transformations, and also compare our system with existing type checking solutions.

Verification of Model Transformations Various analysis methods are being researched for the
verification and validation of model transformations. Testing methods are very common in the
field of traditional software engineering, and its applications to model transformation programs
are actively researched [LZG05, KGZ09], but early results show that testing or comparing the
output of transformation programs (usually models) can be very time consuming.

Formal methods, such as theorem proving based approaches [Pen08] show the possibility to
prove statement validity over graph-based models. For the verification of dynamic properties
model checking seems promising [LBA10, Ren04], but the challenge of infinite state spaces needs
to be overcome, e.g. by creating an abstraction [RD06] or by statically computing a Petri graph
model [KK06]. However, these techniques usually do not scale well and are cumbersome to apply
to industrial size problems.

In addition to model checking, static analysis techniques have been used in the verification

13 / 16 Volume 38 (2010)

Static Type Checking of Model Transformation Programs

of static properties. They provide efficiently calculable approximations of error-free behaviour,
such as unfolding graph transformation systems into Petri nets [BCH+09], creating and validating
OCL constraints derived from GT rules [CCGL08], or using a two-layered abstract interpretation
introduced in [BW07]. Our approach works similarly: we transform the model transformation
program into constraint satisfaction problems, and verify it statically.

The PROGRES environment allows the definition of static semantic rules on the model [EJS95],
that are evaluated incrementally when the model changes. These rules are more expressive than
our type constraints, and are evaluated with an algorithm similar to the arc consistency-based
propagation algorithm in CSP solvers, but the basic goal is different. Semantic rules are used to
describe well-formedness constraints over the model, while type constraints are generated from
transformation programs.

Type Checking Approaches As the number of type checking frameworks and algorithms is
extremely large, we focus only on the approaches for dynamically typed functional and logical
programming languages solve because of their similarities with model transformations.

The well-known Hindley-Milner algorithm [Mil78] for lambda calculus reduces the typing
problem to a unification problem of equations, and is widely used in the functional programming
community. [JVWS07] extends to this algorithm, supporting higher-order functions.

Our approach was influenced by the work started in [Pot05] which translates the typing problem
to a set of constraints. As the type mapping of lambda calculus does not support inheritance
hierarchies required for the transformation languages, we designed a different mapping and
evaluation approach that fits better the graph based data structures and multi-level metamodeling.

Type checking of Prolog programs works differently: the basic task of type checking is to
infer the concrete type, represented as a hierarchical tree structure from its basic uses. A typical
approach is to calculate with different kinds of widening [VB02, Lin96] steps.

Other approaches exist as well for the type checking of logical programming languages:
[HCC95] creates type graphs to represent the various Prolog structures, and uses abstract inter-
pretation techniques to validate the program, while [HM04] traces back type safety of Datalog
languages to the consistency of ontologies.

6 Conclusion and Future Work

We have presented a static type checker approach for model transformation programs. It was
implemented for the VIATRA2 transformation framework, and evaluated using transformation
programs of various size. In our initial evaluation the type checker seemed useful for early error
detection as it identified typing errors related to swapped variables or erroneous pattern calls.

As for the future, we plan to enhance the expressiveness of the analysis by identifying the
subset of well-formedness constraints that can be included for type checking. We’d also like to
enhance the performance by various optimizations, such as the merging of similar traces or using
a single-pass algorithm to handle recursive calls to avoid possible recalculations and ordering.

In addition, the inferred types can be used to detect indirect dependencies between parts of
the transformation program (readers and writers of a selected type). Identifying these dependen-
cies allow the creation of static program slicing solutions for model transformation programs.

Proc. Doctoral Symposium ICGT 2010 14 / 16

ECEASST

This would allow to generate meaningful traces for reaching possibly erroneous parts of the
transformation programs, thus helping more precise error identification.

Bibliography

[BCH+09] P. Baldan, A. Corradini, T. Heindel, B. König, P. Sobociński. Unfolding Grammars in
Adhesive Categories. In Proc. of CALCO ’09 (Algebra and Coalgebra in Computer
Science). P. 350–366. Springer, 2009. LNCS 5728.

[BHRV08] G. Bergmann, Á. Horváth, I. Ráth, D. Varró. A Benchmark Evaluation of Incremental
Pattern Matching in Graph Transformation. In Proc. 4th International Conference on
Graph Transformations, ICGT 2008. Pp. 396–410. Springer, 2008.

[BS03] E. Börger, R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer-Verlag, 2003.

[BW07] J. Bauer, R. Wilhelm. Static Analysis of Dynamic Communication Systems by Partner
Abstraction. In Static Analysis. Pp. 249–264. Springer Berlin / Heidelberg, 2007.

[Cas93] Y. Caseau. Efficient handling of multiple inheritance hierarchies. In OOPSLA ’93:
Proceedings of the eighth annual conference on Object-oriented programming systems,
languages, and applications. Pp. 271–287. ACM, New York, NY, USA, 1993.

[CCGL08] J. Cabot, R. Clarisó, E. Guerra, J. Lara. An Invariant-Based Method for the Analysis
of Declarative Model-to-Model Transformations. In Proceedings of the 11th interna-
tional conference on Model Driven Engineering Languages and Systems. MoDELS
’08, pp. 37–52. Springer-Verlag, Berlin, Heidelberg, 2008.

[EJS95] W. Emmerich, J.-H. Jahnke, W. Schäfer. Object Oriented Specification and Incremen-
tal Evaluation of Static Semantic Constraints. Technical report, Universität Paderborn,
1995.

[GHV10] L. Gönczy, Á. Hegedüs, D. Varró. Methodologies for Model-Driven Development
and Deployment: an Overview. In Results of the SENSORIA project on Software
Engineering for Service-Oriented Computing. Springer-Verlag, 2010. To appear.

[HCC95] P. V. Hentenryck, A. Cortesi, B. L. Charlier. Type analysis of Prolog using type graphs.
The Journal of Logic Programming 22(3):179–209, Mar. 1995.

[HM04] J. Henriksson, J. Małuszyński. Static Type-Checking of Datalog with Ontologies. In
Principles and Practice of Semantic Web Reasoning. Pp. 76–89. LNCS 3208, 2004.

[JVWS07] S. P. Jones, D. Vytiniotis, S. Weirich, M. Shields. Practical type inference for arbitrary-
rank types. Journal of Functional Programming 17(01):1–82, 2007.

[KGZ09] J. Küster, T. Gschwind, O. Zimmermann. Incremental Development of Model Trans-
formation Chains Using Automated Testing. In Model Driven Engineering Languages
and Systems. Pp. 733–747. Springer Berlin / Heidelberg, 2009.

15 / 16 Volume 38 (2010)

Static Type Checking of Model Transformation Programs

[KK06] B. König, V. Kozioura. Counterexample-guided Abstraction Refinement for the
Analysis of Graph Transformation Systems. In TACAS ’06: Tools and Algorithms for
the Construction and Analysis of Systems. Pp. 197–211. 2006.

[LBA10] L. Lúcio, B. Barroca, V. Amaral. A Technique for Automatic Validation of Model
Transformations. In 13th Model Driven Engineering Languages and Systems. Pp. 136–
150. LNCS 6394, 2010.

[Lin96] T. Lindgren. The impact of structure analysis on Prolog compilation. Technical
report UPMAIL Technical Report No. 142, Uppsala University, 1996.

[LZG05] Y. Lin, J. Zhang, J. Gray. A Testing Framework for Model Transformations. In Model-
Driven Software Development. Pp. 219–236. Springer Berlin Heidelberg, 2005.

[Mil78] R. Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences 17(3):348–375, Dec. 1978.

[Pen08] K. Pennemann. Resolution-Like Theorem Proving for High-Level Conditions. In
Graph Transformations. Pp. 289–304. Springer Berlin / Heidelberg, 2008.

[Pie02] B. C. Pierce. Types and programming languages. MIT Press, Cambridge, USA, 2002.

[Pot05] F. Pottier. A modern eye on ML type inference. 2005. In Proc. of the International
Summer School On Applied Semantics (APPSEM ’05).

[RD06] A. Rensink, D. Distefano. Abstract Graph Transformation. Electronic Notes in Theo-
retical Computer Science 157(1):39–59, May 2006.

[Ren04] A. Rensink. The GROOVE Simulator: A Tool for State Space Generation. In Appli-
cations of Graph Transformations with Industrial Relevance. Pp. 479–485. 2004.

[Roz97] G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph Trans-
formations: Foundations. World Scientific, 1997.

[SMBJ09] S. Sen, N. Moha, B. Baudry, J. Jézéquel. Meta-model Pruning. In Model Driven
Engineering Languages and Systems. Pp. 32–46. Springer Berlin / Heidelberg, 2009.

[UHV09] Z. Ujhelyi, A. Horváth, D. Varró. Static Type Checking of Model Transformations by
Constraint Satisfaction Programming. Technical report TUB-TR-09-EE20, Budapest
University of Technology and Economics, June 2009.

[Ujh09] Z. Ujhelyi. Static Analysis of Model Transformations. Masters thesis, Budapest
University of Technology and Economics, 2009.

[VB02] C. Vaucheret, F. Bueno. More Precise Yet Efficient Type Inference for Logic Programs.
In 9th International Symposium on Static Analysis. Pp. 102–116. Springer, 2002.

[VB07] D. Varró, A. Balogh. The model transformation language of the VIATRA2 framework.
Sci. Comput. Program. 68(3):214–234, 2007.

[Zü08] A. Zündorf. AntWorld benchmark specification, GraBaTs. 2008.

Proc. Doctoral Symposium ICGT 2010 16 / 16

	Introduction
	Preliminaries
	Running Example: Simulation of Petri nets
	Foundations of Metamodeling
	Graph Patterns and Graph Transformations
	Type Checking and Type Inference
	Constraint Satisfaction Problems for Variables over Finite Domains

	Type Checking of Model Transformation Programs
	Overview of the Approach
	Type System Initialization
	Constraint Generation
	Contract Handling
	Error Reporting

	Implementation and Evaluation
	Implementation
	Case Studies
	Performance Assessment

	Related work
	Conclusion and Future Work

